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Quantum phase transition of nonlocal Ising chain with transverse field in a resonator
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We study the quantum phase transition in a spin chain with variable Ising interactions and position-dependent
coupling to a resonator field. Such a complicated model, usually not present in natural physical systems, can be
simulated by an array of qubits based on man-made devices and exhibits interesting behavior. We show that,
when the coupling between the qubit and field is strong enough, a superradiant phase transition occurs, and it is
possible to pick a particular field mode to undergo this phase transition by properly modulating the strength of
the Ising interaction. We also study the impact of the resonator field on the magnetic properties of the spin chain
and find a rich set of phases characterized by distinctive qubit correlation functions.
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I. INTRODUCTION

Quantum simulation is a powerful tool to study difficult
physics problems that cannot be easily solved analytically or
simulated with a classical computer [1–6]. In order to study
such hard problems, the simulation system must be carefully
designed and set up to capture as much as possible the essence
of the simulated problem. This requirement often poses a great
challenge and can only be met to a certain degree. It is one of
the main reasons why many quantum simulation protocols are
very difficult to realize experimentally. This issue is especially
prominent in simulation systems based on artificial atoms
such as Josephson devices, because many of their properties
are fundamentally different than those of natural physical
particles [7–11].

Although the inevitable discrepancy between the simulation
and simulated systems is often considered an obstacle in
quantum simulation, it can also provide opportunities for
studying physics models under conditions not easily accessible
in natural physical systems. This is because, due to the
excellent controllability available in simulation systems based
on man-made devices, one can often tune the critical physical
parameters over a range far greater than what is feasible
in a natural physical system and even realize configurations
not possible in a natural physical system. To explore such
opportunities in quantum simulation that have not received
sufficient attention, we study the quantum phase transitions
in a nonlocal Ising chain interacting with a resonator. This
problem has its root in the well-known Dicke model [12–14],
in which a collection of identical and noninteracting two-level
atoms are coupled to a single electromagnetic (EM) field mode.
Our problem has a few important differences from the original
Dicke model, in that many qubits are spread out within a
single wavelength of a multimode EM field, and there are
controllable interactions between the qubits. It is also possible
to tune the transverse field of each qubit individually. These
characteristics, usually not present in a natural atom-cavity
system, are accessible in simulation systems based on artificial
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atoms and man-made devices, and they have profound impact
on the behavior of the system and the method we use to
treat it.

A possible physical realization of our simulation model is
depicted in Fig. 1. It consists of N superconducting charge
qubits placed at equal distances and capacitively coupled to a
transmission-line resonator (TLR). The charge qubit is biased
at the charge degeneracy point to make it an effective two-level
system. The TLR supports multiple resonant modes that the
charge qubits interact with [15–17]. This simulation system
is analogous to an atom-cavity system in the Dicke model,
but with notable differences. In a natural atom-cavity system,
because the size of an atom is so small, the displacement
between individual atoms in an atomic cloud is negligible
compared with the wavelength of the EM field, and we can
use the “long-wavelength approximation” which assumes that
the atoms are at the same location and their coupling strengths
to the EM field are identical. This approximation does not
apply in the system in Fig. 1 because the charge qubits, being
macroscopic devices much larger than atoms, can spread out
along the entire TLR length which is also the wavelength (or
its multiple) of the EM modes that they couple to, and the
position dependence of the coupling strength must be taken
into account. Another important distinction concerns the fact
that it is difficult to induce significant interactions between
charge-neutral atoms. This limitation can be overcome in our
system by introducing coupling circuitry as shown in Fig. 1.
By using large Josephson junctions inductively coupled to the
charge qubits, we can induce strong and adjustable interactions
between them, greatly enriching the physics of our system.

In the following, we focus on phase transitions in our
system of spatially separated and interacting qubits coupled
to a resonator field with multiple modes. In the traditional
Dicke model, the atom-field coupled system is subject to
an instability due to the interaction between the atom and
field. When the interaction strength grows above a critical
value, the field of the ground state of the system is no longer
in the vacuum mode. It becomes macroscopically occupied
with photons and the system enters the so-called superradiant
phase [18]. In our system, we find that the superradiant phase
transition can also occur when the coupling strength between
the qubits and the resonator field is strong enough, although
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FIG. 1. (Color online) (a) An array of charge qubits capacitively
coupled to the TLR. The TLR consists of a center conductor and
two ground planes. The voltage between the center conductor and the
ground planes is position dependent, as indicated by the cosine curve
in the figure. The charge qubits located between the center conductor
and ground plane are capacitively coupled to the center conductor.
The nearest-neighbor interaction between charge qubits is realized
by an rf superconducting quantum interference device (in the dashed
box). (b) The equivalent distributed circuit of panel (a).

the details of the phase transition is much more complicated.
Furthermore, by periodically modulating the strength of the
interaction between the qubits, we can select which mode of
the resonator field undergoes the superradiant phase transition.
We then study the magnetic properties of the qubit chain and
its phase transitions which are impacted by the state of the
resonator field.

II. MODEL HAMILTONIAN

The full Hamiltonian of our system reads

H = HQ + HR + HR-R + HQ-R + HQ-Q. (1)

Among these terms, the Hamiltonian of the N -qubit system

HQ = −Ez

2

N−1∑
j=0

σ z
j (2)

is written in the eigenbasis {(|0〉 ± |1〉)/√2} at the charge-
degeneracy point, with |0〉 and |1〉 the 0 and 1 excess
charge state. The multimode (labeled by the energy quantum
number l) resonator field Hamiltonian is

HR =
∑

l

ωlb
†
l bl . (3)

The coupling between the qubit system and the resonator field
is assumed to be dipolar and described by

HQ-R = −
∑

j

∑
l

λl(j )√
N

σx
j (b†l + bl), (4)

where the coupling strength

λl(j ) = λ0

√
l cos(lπj/N) (5)

is dependent on the position of the qubits which are assumed
to be equally spaced. In addition, we also have terms for the
self-energy of the resonator field and nearest-neighbor qubit
interaction,

HR-R =
∑

l

Dl(bl + b
†
l )2 (6)

and

HQ-Q = −
∑

j

J (j )σy

j σ
y

j+1. (7)

Here, Dl is the field self-interaction strength and the J (j )s
characterize the position-dependent Ising interaction strength.

The Hamiltonian in Eq. (1) has several important differ-
ences from the conventional Dicke model:

(1) The EM field can have multiple modes, consistent with
the situation in physical resonators.

(2) The long-wave approximation does not apply and the
coupling between the qubit and field is dependent on the
position of the qubit.

(3) There is an Ising interaction between nearest-neighbor
qubits.

These new elements in our model have a profound impact
on the system behavior and phase transitions. As mentioned in
the introduction, such a model Hamiltonian can be realized by
using man-made devices with excellent controllability such
as the charge-qubit–TLR system in Fig. 1. As shown in
Appendix A, in such a system the qubit energy is equal to the
Josephson energy Ez of the charge qubit. The resonator-mode
frequencies are determined by the parameters of the TLR,
ωl = lπ/(d

√
L0C0), where L0 and C0 are the inductance and

capacitance per unit length of the TLR and d is its length. The

qubit-field coupling strength λ0 = eCg

C�

√
Nω1
dC0

, where Cg and

C� are the gate capacitance of the charge qubit and the total
capacitance of the charge island, respectively, and the field
self-interaction strength Dl = 1

N

∑
j

C�

2e2 λ
2
l (j ).

III. QUANTUM PHASE TRANSITION

A. Mean-field treatment

The solution of our system is complicated by the fact that
the resonator field has multiple modes. To avoid nonessential
complications and focus on the study of phase transitions,
we will adjust the system parameters such that no more than
one resonator mode has macroscopic occupation. To find the
conditions for such a setup, we consider one resonator mode
l first and use the mean-field approximation to simplify the
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qubit-resonator coupling term HQ-R as∑
j

λl(j )√
N

(b†l + bl)σ
x
j =

∑
j

2φlλl(j )σx
j +

√
N (b†l + bl)�

x
l

− 2Nφl�
x
l , (8)

where the order parameters

φl = 〈G| (b†l + bl)

2
√

N
|G〉,

�x
l = 〈G|

∑
j λl(j )σx

j

N
|G〉, (9)

with the ground state of the system being |G〉.
Under the mean-field approximation, the qubit part of the

Hamiltonian becomes that of a nonlocal Ising chain with a
transverse field dependent on φl , which is the order parameter
for the resonator field. As shown in Appendix B, it can be
solved by the Jordan–Wigner transformation which maps the
Ising chain to a collection of fermionic quasiparticles. The
energy per particle for the system is

eg =
(

ωlφ
2
l + 4Dlφ

2
l − 1

2N

∑
k

�k(φl)

)
, (10)

where the spectrum of the quasiparticles �k is a complicated
function dependent on φl , as shown in Appendix B. By finding
the value of φl that minimizes eg , we can determine the ground-
state energy and the order parameter φ

g

l for the resonator field.
Unlike in conventional Dicke problems, this problem cannot
be solved analytically because of the complicated quasiparticle
spectrum �k . Thus we numerically solve for φ

g

l , which is the
order parameter of the resonator field for the ground state.

B. Superradiant phase transition

In this section, we focus on the state of the resonator
field. We start with the simple case of the homogeneous Ising
interaction J (j ) = J, ∀ j , and calculate the ground-state-field
order parameter φ

g

l for different values of qubit-field coupling
strength λ0 and Ising interaction strength J . In Figs. 2(a)
and 2(b), the numerical results of φ

g

l for J = 0.05 and J =
0.35 (in units of ω1) are shown. It is seen that, when the qubit-
field coupling λ0 is small, the ground-state energy is minimized
when φ

g

l = 0. When λ0 is greater than a critical value λc
0, φ

g

l

becomes nonzero, indicating that the photon field has a macro-
scopic occupation. Therefore, a superradiant phase transition
occurs when the qubit-field coupling becomes strong enough.

We also calculated φ
g

l for different resonator modes l.
We find that, for homogeneous Ising interaction J (j ) = J ,
the critical points λc

0 for all resonator modes are the same.
Therefore, when λ0 increases, all the resonator modes undergo
the superradiant transition at the same critical point λc

0. In
Figs. 2(a) and 2(b), the results are obtained by considering
only one mode in the calculation as shown in Sec. III A.
Since the plots indicate that all resonator-field modes can
become macroscopically occupied at the same time, a more
rigorous treatment requires including all resonator modes in
the calculation. This is challenging numerically since the
amount of calculation required increases dramatically with
the number of resonator modes included. In Fig. 2(c), the

FIG. 2. (Color online) φ
g

l versus λ0 for different resonator modes
l. In panels (a) and (b), only one mode is considered in the calculation,
although a different mode is used for each curve. The Ising interaction
is homogeneous, J (j ) = J , and J = 0.05 and 0.35, respectively. In
panel (c), the ground-state values of three modes (l = 1,2,3) are
plotted for a homogeneous Ising interaction J = 0.05 by considering
all modes simultaneously in the calculation. In panels (d) and (e), J (j )
has a rectangular waveform as in Eqs. (11) and (12), and Jmax = 0.35,
Jmin = 0.05 are used. The modes l = 2 and l = 3 are singled out since
the critical value λc

0 for them to undergo the superradiant transition is
the lowest. Only one mode is considered in each calculation. In panel
(f), three modes are considered simultaneously in the calculation.
J (j ) has a rectangular waveform as in Eq. (11), and Jmax = 0.35,
Jmin = 0.05. In panel (a)–(f), the parameters, e2

2C�
= 8 and Ez = 0.8,

are chosen to be accessible values in typical experiments. The size of
the system is N = 200.

results are plotted when the first three resonator modes are
considered simultaneously. We see that, the average values for
all resonator-field modes indeed become nonzero at the same
critical point, consistent with the results in Fig. 2(a).

For our studies, we wish to pick a particular mode
to undergo the superradiant phase transition. This can be
accomplished by making the critical value λc

0 for the chosen
mode lower than that of other modes. For this purpose, we
make the Ising interaction strength J (j ) inhomogeneous and
position dependent. We find that, by giving J (j ) a spatial
modulation as simple as a rectangular wave, we can lower the
critical value λc

0 for one particular resonator mode below that
of all others. For example, if the position dependence of J (j ) is

J (j ) =
{
Jmax, j ∈ [N/8,3N/8] and [5N/8,7N/8]
Jmin all other sites, (11)
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the critical value λc
0 for the mode l = 2 is the lowest, as shown

in Fig. 2(d). If instead the position dependence of J (j ) is

J (j ) =

⎧⎪⎨
⎪⎩

Jmax, j ∈ [N/12,3N/12] and [5N/12,7N/12]

and [9N/12,11N/12]

Jmin all other sites,
(12)

then the mode l = 3 becomes the first one to undergo the
superradiant phase transition when λ0 increases, as shown in
Fig. 2(e). In these examples, notice that the period of J (j ) is
the same as that of the chosen resonator mode. Also, the gap
between the critical value of λc

0 for the chosen mode and others
increases with the amplitude of the Ising-interaction-strength
modulation, 	J = |Jmax − Jmin|. In Figs. 2(d) and 2(e),
only one mode is included in each calculation. To check the
validity of the conclusion derived from this simplification, we
also performed the calculation by including all three modes
simultaneously and plot the results in Fig. 2(f). It is seen
that the critical value of λ0 for the first mode to undergo the
superradiant phase transition remains approximately the same
as that in Fig. 2(d), and there is a clear gap in the values of λ0

for other modes to undergo the phase transition. Therefore, by
using this technique we can in principle single out a resonator
mode to undergo the superradiant phase transition while all
other modes remain unoccupied.

C. First- and second-order quantum phase transition

The exact nature of the quantum phase transition (QPT) of
the resonator field and its relation with the Ising interaction
strength J (j ) and transverse field Ez is an interesting topic
in our problem. To study it, we first choose a single mode
to undergo the superradiant phase transition while all other
modes remain in the unpopulated state. Specifically, we focus
on the mode l = 2 by modulating the Ising interaction strength
as in Eq. (11). Assuming a transverse field Ez = 0.8, we fix
the amplitude of the Ising interaction modulation by setting
	J = 0.375Ez = 0.3 and use the value of Jmin as the measure
for the strength of the Ising interaction. We then calculate the
order parameter φ

g

2 as a function of Jmin and the qubit-field
coupling strength λ0. This will allow us to examine the phase
transition in great detail and determine its exact nature. The
results are plotted in Fig. 3.

We find that, when the Ising interaction is weak and the
value of Jmin is small, the transition of φ

g

2 from 0 to a
nonzero value is continuous. This smooth increase in φ

g

2 is
the most conspicuous signature for a second-order QPT which
is represented by the red dashed line in Fig. 3. On the other
hand, when Jmin increases above about 0.35, the transition to
a nonzero value for φ

g

2 becomes discontinuous, indicating that
the phase transition has changed to first order. This is labeled
by the blue solid line. Since the first-order phase transition
grows out of a second-order one, there will be a region where
the jump of φ

g

2 is small [19,20].
To demonstrate clearly the differences between the second-

and first-order QPT, we consider two cases where Jmin is
much smaller and much greater than 0.35 and calculate the
single-particle energy eg as a function of φ2 for different values
of λ0 near the critical point λc

0. This will reveal how the strength
of the Ising interaction Jmin impacts the nature of the phase
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FIG. 3. (Color online) Phase diagram of the superradiant quan-
tum phase transition (QPT) in the Jmin-λ0 plane. When the phase
transition occurs, the mean-field value φ

g

2 changes from 0 (the normal
phase) to nonzero (the superradiant phase). When Jmin is small, the
change of φ

g

2 from 0 to nonzero is continuous. When Jmin is greater
than 0.35 (roughly), this change becomes discontinuous. Correspond-
ingly, the phase transition changes from second order to first order.
In the upper-left and lower-right corner, the Ising interaction strength
J (j ) and effective transverse field 
(j ) at points A and B in the phase
diagram are plotted. J (j ) is modulated as in Eq. (11) to single out
the mode l = 2 for the superradiant phase transition. The effective
transverse field 
(j ) = {( Ez

2 )2 + [2λ2(j )φg

2 ]2}1/2 [see Eq. (B4)] is
dependent on the order parameter φ

g

2 . At point A in the normal phase,
φ

g

2 = 0 and 
(j ) is constant. At point B in the superradiant phase, φg

2

is nonzero and 
(j ) is oscillatory because of the position dependence
of λ2, as in Eq. (5). Parameters used in the simulation are e2

2C�
= 8,

Ez = 0.8, l = 2, N = 200, and 	J = 0.3.

transition. The result for Jmin = 0.3 is shown in Fig. 4(a). In
the curves for eg , we see that the single minimum at zero field
continuously splits into two symmetrically located minima as
the field-qubit coupling λ0 is increased. This smooth transition
signals a second-order QPT. To verify this, we further calculate
the first and second derivative of the ground-state energy
egg with respect to the parameter λ0 and plot the result in
Figs. 4(b) and 4(c) [21,22]. It is seen that the first derivative
is continuous, whereas the second derivative is discontinuous.
We can then conclude that the phase transition is indeed second
order in this case. In Fig. 4(d), the single-particle energy
with Jmin = 0.5 is shown for different values of λ0. In these
curves, as λ0 increases, the number of local minima in eg

changes from one to three and then to two. When the two
minima at nonzero φ

g

2 appear, the original local minimum at
zero field does not vanish and remains the global minimum
of the system. When λ0 increases further, the energy at the
local minima corresponding to nonzero φ

g

2 abruptly become
the global minimum. In Figs. 4(e) and 4(f), the ground-state
energy and its first derivative with respect to λ0 are plotted.
Since the first derivative is discontinuous, the phase transition
in this case is first order.

The reason for the QPT changing to first order is that,
when the Ising interaction is strong, the qubit chain is in the
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FIG. 4. (Color online) (a)–(f) The single-particle energy eg ,
ground-state energy egg , and the first and second derivative of egg . In
panels (a)–(c), Jmin = 0.3, and the phase transition is second order.
In panels (d)–(f), Jmin = 0.5, and the phase transition is first order.
Other parameters are the same as in Fig. 3. (g) |�x

2 | as a function of
λ0 for different values of Jmin. The red, blue, and black solid lines
refer to the values of |�x

2 | for the stable points of the minimum energy
in the eg-φ2 plane. The dashed lines refer to the values of |�x

2 | for
the unstable points of the maximum energy in the e2-φ2 plane. The
vertical dotted line marks the critical point of the first order QPT for
Jmin = 0.5. To the left of the dotted line, |�x

2 | = 0 for the ground
state of the system. To the right of this line, the value of |�x

2 | for the
ground state becomes nonzero.

ferromagnetic phase before the superradiant phase transition
occurs. Once the superradiant phase transition occurs, the qubit
chain experiences a large effective transverse field due to the
nonzero field value φ

g

2 . As a consequence, the qubit chain may
abruptly switch to a paramagnetic phase, which in turn leads
to a discontinuous change in the first-order derivative of egg .

We can further study the nature of the phase transition by
investigating the magnetic properties of the qubit chain. In
Appendix B we show that, at the minima or maxima of eg(φ2),
the order parameter for the qubit system is related to that of
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FIG. 5. (Color online) The full phase diagram in the parameter
space (Ez,λ0,Jmin). The λ0 − Jmin plane at Ez = 0.8 (which cor-
responds to Fig. 3) is shown, and the black dashed line marks
the boundary between the first and second order phase transition.
The effective transverse field is constant in the normal phase and
oscillatory in the superradiant phase as in Fig. 3. Here, we set
	J = 0.375Ez. Other parameters are the same as Fig. 3.

the field according to

φ2 = �x
2

ω2 + 4D2
. (13)

In Fig. 4(c), we plot |�x
2 | at the minima or maxima of eg

versus λ0. We can see that, when Jmin = 0.3, |�x
2 | changes

continuously with λ0 which indicates that the QPT is second
order in nature. When Jmin = 0.4 or 0.5, the curve for |�x

2 | is
hysteretic, suggesting that a first-order QPT takes place.

In Fig. 3, a typical value of 0.8 was used for the transverse
field Ez. To study the dependence of the QPT on Ez, we
calculate the phase diagram in the three-dimensional parameter
space (Ez,λ0,Jmin) and plot the result in Fig. 5. In this
calculation, still the l = 2 mode is picked for the superradiant
phase transition, and the modulating amplitude is fixed at
	J = 0.375Ez. It is seen that the basic structure of the phase
diagram remains the same as in Fig. 3 at different values of
Ez, although the critical value of λc

0 increases as Ez grows.

D. Magnetic orders in the ground states

The qubit part of our system is essentially a nonlocal Ising
chain subject to a transverse magnetic field dependent on the
state of the resonator field. In a homogeneous Ising chain
(J is position independent) with uniform transverse field,
the physics is dictated by the competition between the Ising
interaction and the transverse field, and it is well known that the
system has a critical point when the two are equally strong. In
our system, this mechanism continues to play a major role. In
addition, the state of the resonator field and its phase transition
has a nontrivial impact on the property and behavior of the
qubit chain, and we expect richer physics due to the interplay
between the qubit and resonator field.
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FIG. 6. (Color online) (a) Phase diagram of the system. All
parameters are the same as in Fig. 3(a). (b)–(f) Values of 〈σ̄ z

j 〉 and the
correlation length ξLR(j ) at points B–F in panel (a).

To study the properties of the qubit chain, we focus our
attention on the qubit correlation 〈σ̄ y

j σ̄
y

j+n〉 [see Eq. (C1)
in Appendix C], where σ̄

y

j is the Pauli matrix of the j th
qubit in the direction of the Ising interaction. Since this
correlation decreases with the qubit separation n, we can
use it to characterize the correlation properties of the qubit
chain. For the inhomogeneous Ising chain in our problem,
we define ξR(j ) as the right correlation length for the j th
qubit if 〈σ̄ y

j σ̄
y

j+ξR
〉 = e−1〈σ̄ y

j σ̄
y

j+1〉. Likewise, we define ξL(j )
as the left correlation length for the j th qubit if 〈σ̄ y

j σ̄
y

j−ξL
〉 =

e−1〈σ̄ y

j σ̄
y

j−1〉. ξRL(j ) = [ξR(j ) + ξL(j )]/2 is the average of the
left and right correlation length for the j th qubit.

In Fig. 6, we calculate and plot the mean spin σ̄ z
j and

correlation length ξRL(j ) for a few representative points in
the phase space of the system using methods developed in
Appendix C. These points are selected such that they span
both the normal and superradiant phase of the resonator field
and cover both the weak- and strong-Ising-interaction regime.
Information obtained from the plots of σ̄ z

j and ξRL(j ) can then
help us understand the impact of the resonator field and Ising
interaction on the qubit chain.

The situation when the resonator field is in the normal phase
regime with φ

g

2 = 0 is shown in Figs. 6(b), 6(d), and 6(f). Since
the resonator field is unpopulated, the transverse field is simply
Ez/2, and the state of the qubit chain is mainly determined
by its competition with the Ising interaction strength. It can
be seen in Fig. 6(b) that, when the Ising interaction is weak
(roughly speaking, Jmin < Ez/2 − 	J ), the ground state of
the system exhibits the normal-paramagnetic (NP) order with
a large 〈σ̄ z

j 〉 and a small correlation length ξLR(j ). In contrast,
when all local Ising interactions dominate the transverse field

(Jmin > Ez/2), the qubit chain is in a normal-ferromagnetic
(NF) state with a small 〈σ̄ z

j 〉 and a large correlation length
ξLR(j ), as shown in Fig. 6(f). In between these two cases
(Jmin < Ez/2 < Jmax), we have an interesting scenario where
the transverse field and Ising interaction is dominant in
different segments of the qubit chain. Consequently, both
the paramagnetic and ferromagnetic orders are present in the
system. This is evidenced by the oscillating behavior of 〈σ̄ z

j 〉
and ξLR(j ) along the qubit chain, as shown in Fig. 6(d). We
call it the normal-ferromagnetic-paramagnetic (NFP) order.

When the resonator field is in the superradiant-phase
regime, φ

g

2 �= 0, the effective transverse field for the j th qubit
is position and φ

g

2 dependent [see Eq. (B4) in Appendix B].
If the Ising interaction is weak, Jmax < Ez/2, the local
transverse field 
(j ) is always larger than J (j ) along the
qubit chain. This leads to the superradiant-paramagnetic (SP)
order with a large 〈σ̄ z

j 〉 and a small correlation length ξLR(j ),
as shown in Fig. 6(c). As the strength of the Ising interaction
increases, it is possible for the transverse field to dominate
[
(j ) > J (j )] in some segments and the Ising interaction to
dominate [J (j ) > 
(j )] in the rest of the qubit chain. As
shown in Fig. 6(e), the ground state of the system exhibits the
superradiant-ferromagnetic-paramagnetic (SFP) order charac-
terized by oscillating 〈σ̄ z

j 〉 and ξLR(j ). For the parameters we
calculated, there is no superradiant-ferromagnetic (SF) order
when the strength of the Ising interaction is increased further,
and φ

g

2 coexists with 〈σ̄ z
j 〉.

IV. EXPERIMENTAL CONSIDERATION

In solving the model Hamiltonian in Eq. (1) and investigat-
ing possible phase transitions in the system, we have explored
a large range for the values of relevant parameters in the
model. In reality, the reachable parameter space is limited by
the currently available technology. For the charge-box—TLR
system in Fig. 1, the TLR frequency and the Josephson energy
of the charge boxes are typically around a few gigahertz.
The coupling strength between a single qubit and the TLR
field can range from a few kHz to nearly 1 GHz [5,23].
Since the effective coupling strength λ0 is proportional to√

N , a larger number of charge boxes placed in the TLR
will result in a stronger coupling. However, the number of
qubits in the charge-box array is limited by decoherence and
the requirement for the two-state approximation to hold [24].

Figure 7 shows our numerical results with the following pa-
rameters: ω1 � 3 GHz, the second mode frequency ω2 = 2ω1,
Ez = 0.1ω1, N = 40, and λ0 ∈ [0,0.25ω1]. These parameters
are accessible in present experiments [15,23,25]. Considering
the challenge in realizing very strong Ising interaction [26],
we use experimentally accessible values Jmax = 0.26Ez and
Jmin = 0.01Ez [26,27]. As an example, we consider the case
where the Ising interaction strength is modulated according
to Eq. (11) and the second resonator mode undergoes the
superradiant transition. Since J (j ) < 0.26Ez is in the weak-
interaction regime, the qubit chain is restricted to the NP and
SP phases. Plotted in Figs. 7(b) and 7(c) are the correlation
lengths and 〈σ̄ z

j 〉 at point A (in the normal phase) and B (in
the superradiant phase) in Fig. 7(a). Because of the limited
Ising interaction strength, the main characteristics of these
two plots are similar. To achieve the NFP and SFP phases,
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FIG. 7. (Color online) (a) |φg

l | versus λ0 for different values of l

with Ez = 0.1 (in units of ω1), and Jmax = 0.26Ez, Jmin = 0.01Ez.
In the normal phase, the order parameter φ

g

l = 0. As λ0 crosses the
critical value, φg

l becomes nonzero, and the system enters superradiant
phase. Panels (b) and (c) show 〈σ̄ z(j )〉 and ξRL(j ) for the normal
phase (point A) and superradiant phase (point B). Both are in the
paramagnetic regime.

a stronger Ising interaction strength is needed, which is still
challenging experimentally.

V. SUMMARY

In summary, we have studied phase transitions in an Ising
chain with transverse field and coupled to a multimode res-
onator field beyond the long-wavelength approximation. We
find that the superradiant phase transition occurs when the cou-
pling between the qubit and resonator field is strong enough,
and we show that we can pick a particular field mode to undergo
the superradiant phase transition by properly modulating the
Ising interaction strength. We further studied the magnetic
properties of the Ising chain and discovered a rich set of
possible phases by calculating the qubit correlation functions.
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APPENDIX A: HAMILTONIAN OF
CHARGE-QUBIT-CHAIN—TLR SYSTEM

We derive the Hamiltonian for the circuit in Fig. 1 in this
section. First, the quantized TLR modes are described by the

Hamiltonian (� = 1)

HR =
∑

l

ωlb
†
l bl, (A1)

where b
(†)
l is the annihilation (creation) operator for the

lth mode, and ωl is its frequency. ωl is determined by
the physical parameters of the TLR, ωl = lπ/(d

√
L0C0),

where d is the length of the TLR, and C0 and L0 are the
capacitance and inductance per unit length. The voltage of the
resonator associated with the lth mode can be expressed as

Vl(x) =
√

ωl

dC0
cos(klx)(bl + b

†
l ), where kl = ωl

√
C0L0 is its

wave vector, and x ∈ [0,d] is the position along the TLR [15].
Now we consider a chain of N equally spaced Cooper-

pair boxes embedded in a TLR [15–17], as shown in Fig. 1.
Because of the capacitive coupling to the TLR, the total gate
voltage for the j th qubit is the sum of a dc bias value and
a quantum part due to the TLR voltage. Therefore, the total
gate voltage is Vg(xj ) = V dc

g + V̂ (xj ), with the quantum part

V̂ (xj ) = ∑
l V̂l(xj ). The Hamiltonian for the charge boxes [17]

reads

HC =
∑

j

{
4Ec

∑
n

(
n − nj

g

)2|n〉j 〈n|

−Ez/2
∑

n

(|n + 1〉j 〈n| + |n〉j 〈n + 1|)
}

, (A2)

where Ec = e2/(2C�) = e2/[2(Cg + CJ )] is the charging
energy (C� , Cg , and CJ are the total, gate, and Josephson
junction capacitance of the charge box, respectively), Ez is
the Josephson energy, and n

j
g = CgVg(xj )/(2e) is the excess

charge on the j th Cooper pair box. If we bias the charge
boxes at the degeneracy point CgV

dc
g /(2e) = 1/2, the charge

boxes effectively function as two-level qubits with the charge
states n = 0,1. In this case, the excess charge n

j
g = 1/2 +

CgV̂ (xj )/(2e). In the subspace {n = 0,1}, the qubit charging
energy is

4Ec

∑
j

∑
n=0,1

(
n − nj

g

)2|n〉j 〈n|

= 4Ec

∑
j

∑
n=0,1

[
n − 1

2
− CgV̂ (xj )/(2e)

]2

|n〉j 〈n|

= 4Ec

∑
j

∑
n=0,1

[(
n − 1

2

)2

− 2

(
n − 1

2

)
CgV̂ (xj )/(2e)

+ (CgV̂ (xj )/(2e))2
]
|n〉j 〈n|

=
∑

j

[
Ec − 4Ec

CgV̂ (xj )

2e
(|1〉j 〈1| − |0〉j 〈0|)

+ 4Ec

C2
gV̂

2(xj )

4e2

]
, (A3)
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where we have used |1〉j 〈1| + |0〉j 〈0| = 1. Recall that

V̂ (xj ) =
∑

l

√
ωl

dC0
cos(klxj )(bl + b

†
l ). (A4)

The second term in Eq. (A3) is the coupling between the TLR
and the qubit:

HQ-R = 4Ec

Cg

2e

∑
j

∑
l

[√
ωl

dC0
cos(klxj )

(bl + b
†
l )(|1〉j 〈1| − |0〉j 〈0|)

]
. (A5)

The third term gives rise to the self-energy of the TLR:

HR-R = 4Ec

C2
g

4e2

∑
j

∑
l

ωl

dC0
cos2(klxj )(bl + b

†
l )2, (A6)

where we have used
∑

j cos(klxj ) cos(kl′xj ) ∼ 0 for l �= l′ and
ignored the coupling between different resonator modes. The
Hamiltonian of the qubits is given by the Josephson energy
term in Eq. (A2):

HQ = −Ez

2

∑
j

(|1〉j 〈0| + |0〉j 〈1|). (A7)

In the qubit eigenstates {(|0〉 ± |1〉)/√2}, the total Hamiltonian
of the system then reads

H = HR + HQ + HQ-R + HR-R,

HQ = −Ez

2

∑
j

σ z
j ,

HQ-R = −
∑

j

∑
l

λl(j )√
N

σx
j (b†l + bl),

HR-R =
∑

l

Dl(bl + b
†
l )2, (A8)

where λl(j ) = λ0

√
l cos(lπj/N ), Dl = 1

N

∑
j

C�

2e2 λ
2
l (j ), with

λ0 = eCg

C�

√
Nω1
dC0

.
Furthermore, adjacent charge boxes can be coupled by

using an rf superconducting quantum interference device
(rf-SQUID) mediated tunable coupler as shown in Fig. 1.
The rf-SQUID acts as an inductive transformer leading to an
effective mutual inductive energy [28,29]:

HQ-Q = −
∑

j

Meff(j )Ij Ij+1, (A9)

where Meff(j ) is the effective mutual inductance, and Ij is
the total current through the j th junction. For charge qubits,
we have Ij = −Cg

2e
ϕ̈j and C�

2e
ϕ̈j + Icsin(ϕj ) = 0, where ϕj is

the junction phase, and Ic is the critical current. Then we have
Ij = Cg

C�
Icsin(ϕj ) and

HQ-Q = −
∑

j

J (j )sin(ϕj )sin(ϕj+1)

= −
∑

j

J (j )σy

j σ
y

j+1, (A10)

where J (j ) = [Meff(j )C2
gI

2
c ]/C2

� , and we have used sin(ϕ) =
σy . It is assumed that the coupler is placed far away from the
TLR and the coupling to TLR can be ignored.

In summary, the total Hamiltonian of the system is

H = HR + HQ + HQ-R + HR-R + HQ-Q, (A11)

where each component of the Hamiltonian is given in Eqs. (A8)
and (A10).

APPENDIX B: MEAN-FIELD SOLUTION

The Hamiltonian in Eq. (A11) can be solved in the mean-
field approximation for the resonator field. For simplicity of
presentation, we first consider only one single TLR mode l.
Under the mean-field approximation for HQ-R as in Eq. (8),
the total Hamiltonian reads

H = ωlb
†
l bl + Dl(b

†
l + bl)

2 −
√

N�x
l (b†l + bl)

−
∑

j

Ez

2
σ z

j −
∑

j

2λl(j )φlσ
x
j −

∑
j

J (j )σy

j σ
y

j+1

+ 2Nφl�
x
l , (B1)

where φl and �x
l are the mean values of the resonator field

and qubit chain, respectively. The first line of Eq. (B1) can be
diagonalized, and the Hamiltonian then becomes

H = ω̄l b̄
†
l b̄l − N

(
�x

l

)2

ω̄l(α + β)2
−
∑

j

Ez

2
σ z

j −
∑

j

2λl(j )φlσ
x
j

−
∑

j

J (j )σy

j σ
y

j+1 + 2Nφl�
x
l , (B2)

where b̄l = αbl + βb
†
l +

√
N�x

l

ω̄l (α+β) with ω̄l = (ω2
l + 4Dlωl)

1/2
,

α = [(ωl + 2Dl + ω̄l)/(2ωl)]1/2, and β = [(ωl + 2Dl − ω̄l)/
(2ωl)]1/2.

The second line of Eq. (B1) describes a nonlocal
Ising chain with nonuniform transverse field. To find
its spectrum, we first make a local rotation along the
y axis to introduce the Pauli matrices σ̄ z

j = cos(θj )σ z
j +

sin(θj )σx
j , σ̄ x

j = cos(θj )σx
j − sin(θj )σ z

j , and σ̄
y

j = σ
y

j , with
θj = arctan{[4λl(j )φl]/Ez}. Then the second line of Eq. (B1)
takes the form

HIsing = −
∑

j


(j )σ̄ z
j −

∑
j

J (j )σ̄ y

j σ̄
y

j+1, (B3)

where the effective transverse magnetic field


(j ) =
√(

Ez

2

)2

+ [2λl(j )φl]2. (B4)

We assume the periodic boundary condition for the qubit chain,
σ̄N+1 = σ̄1. Following the method given in Refs. [30–35], we
express the Pauli matrices using the creation and annihilation
operators in the spinor space:

σ̄ z
j = 1 − 2a

†
j aj , σ̄

y

j = a
†
j + aj , (B5)

and apply the Jordan–Wigner transformation

a
†
j = c

†
j e

−iπ
∑j−1

i=1 c
†
i ci , aj = e−iπ

∑j−1
i=1 c

†
i ci cj , (B6)
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to map the qubit chain to a collection of fermions described
by the creation and annihilation operators c† and c which
satisfy {ci,c

†
j } = δij and {ci,cj } = {c†i ,c†j } = 0. After this

transformation, we obtain a quadratic Hamiltonian in fermion
operators

HIsing = −
N∑

j=1


(j )(1 − 2c
†
j cj )

−
N−1∑
j=1

J (j )(c†j − cj )(c†j+1 + cj+1)

+ JN (c†N − cN )(c†1 + c1)eiπN

=
∑
i,j

c
†
i Aij cj +

∑
i,j

(c†i Bij c
†
j + ciBij cj ), (B7)

where

Aj,j = 
j, Aj,j+1 = −J (j )

2
, Aj+1,j = −J (j )

2
,

Bj,j+1 = J (j )

2
, Bj+1,j = −J (j )

2
,

(B8)

AN,1 = −J (N )

2
eiπN , A1,N = −J (N )

2
eiπN ,

BN,1 = J (N )

2
eiπN , B1,N = −J (N )

2
eiπN ,

and N = ∑N
j=1 c

†
j cj is the number of fermions. Although the

spin problem has a periodic boundary condition, the trans-
formed fermion problem could have a periodic or antiperiodic
boundary condition, depending on the fermion number N .
Specifically, the fermion problem has an antiperiodic boundary
condition if there is an even number of fermions, and periodic
boundary condition if there is an odd number of fermions.
The ground state is in the sector with antiperiodic boundary
condition [30].

The bilinear Hamiltonian in Eq. (B8) can be diagonalized
exactly. To do so, we perform the linear canonical transforma-
tion

ηk =
∑

j

(gkj cj + hkj c
†
j ), (B9)

η
†
k =

∑
j

(gkj c
†
j + hkj cj ), (B10)

where the ηks are a new set of fermionic quasiparticle
operators, {ηk,η

†
k′ } = δkk′, {ηk,ηk′ } = {η†

k,η
†
k′ } = 0, and the

coefficients are chosen to be real. In order to diagonalize the
Hamiltonian and express it in the form

HIsing =
N∑

k=1

�k

(
η
†
kηk − 1

2

)
, (B11)

the coefficients gki and hki must satisfy [35]

�2
k�k,j =

∑
i

�k,i(A − B)(A + B)i,j , (B12)

�2
k�k,j =

∑
i

�k,i(A + B)(A − B)i,j , (B13)

where �k,j and �k,j are linear combinations of gki , hki ,

�kj = gkj + hkj , (B14)

�kj = gkj − hkj . (B15)

By solving these equations, we can obtain the quasiparticle
spectrum �k and the coefficients gki and hki .

The total Hamiltonian then reads

H = ω̄l b̄
†
l b̄l −

N
(
�x

l

)2

ω̄l(α + β)2
+

N∑
k=1

�k

(
η
†
kηk − 1

2

)
+ 2Nφl�

x
l .

(B16)

The ground state |G〉 must satisfy

b̄l|G〉 = 0, ηk|G〉 = 0 (∀ k), (B17)

and the ground-state energy is

Eg = − N
(
�x

l

)2

ω̄l(α + β)2
−

N∑
k=1

1

2
�k + 2Nφl�

x
l . (B18)

From b̄l|G〉 = 0, we get

φl = 〈G| (b†l + bl)

2
√

N
|G〉 = �x

l

ωl + 4Dl

, (B19)

and therefore

Eg = N (ωl + 4Dl)φ
2
l −

N∑
k=1

1

2
�k. (B20)

Notice that 
(j ) = [(Ez

2 )2 + 4λ2
l (j )φ2

l ]1/2, and �k is also a
function of φl . The value of φl is determined by minimizing
Eg(φl). If Eg(φg

l ) is the minimum, we have ∂Eg(φl )
∂φl

|φg

l
= 0.

Notice

−
N∑

k=1

1

2
�k = 〈G| −

∑
j

Ez

2
σ z

j −
∑

j

2λl(j )φlσ
x
j

−
∑

j

J (j )σy

j σ
y

j+1|G〉, (B21)

and

∂

∂φl

〈G|
∑

j

Ez

2
σ z

j −
∑

j

2λl(j )φlσ
x
j −

∑
j

J (j )σy

j σ
y

j+1|G〉

= −〈G|
∑

j

2λl(j )σx
j |G〉. (B22)

Therefore, the condition ∂Eg(φl )
∂φl

|φg

l
= 0 leads to

�x
l = 〈G|∑j λl(j )σx

j |G〉
N

= φl(ωl + 4Dl),

which is consistent with the result in Eq. (B19).
We can similarly calculate the ground-state energy for

multiple field modes in the thermodynamic limit. The total
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Hamiltonian is

H =
∑

l

[ωlb
†
l bl + Dl(b

†
l + bl)

2 −
√

N�x
l (b†l + bl)]

−
∑

j

Ez

2
σ z

j −
∑
j,l

2λl(j )φlσ
x
j −

∑
j

J (j )σy

j σ
y

j+1

+
∑

l

(
2Nφl�

x
l

)
, (B23)

and we have �x
l = φ

g

l (ωl + 4Dl). The ground-state energy
now reads

Eg =
∑

l

[
N (ωl + 4Dl)φ

2
l

] −
N∑

k=1

1

2
�k, (B24)

and �k is the quasiparticle spectrum of Ising chain (B3) with
effective transverse magnetic field


(j ) =
√√√√(

Ez

2

)2

+
[

2
∑

l

λl(j )φl

]2

. (B25)

The order parameter φ
g

l is determined by minimizing
Eg(φ1,φ2, . . . ).

APPENDIX C: QUBIT CORRELATION FUNCTION

Now we show how to calculate the correlation functions.
The correlation of the qubit chain at ground state can be
calculated using the fermionic operators,

ρj,j+n = 〈
σ̄

y

j σ̄
y

j+n

〉
=
〈

(c†j+cj )

[ j+n−1∏
i=j

(c†i +ci)(c
†
i − ci)

]
(c†j+n + cj+n)

〉
.

(C1)

If we define

Cj = c
†
j + cj , Dj = c

†
j − cj , (C2)

then

ρj,j+n = 〈DjCj+1Dj+1 · · · Cj+n−1Dj+n−1Ci+n〉. (C3)

This expectation value can be evaluated by Wick’s theo-
rem [33,36] which relates it to a sum over products of
expectation values of pairs of operators. By making use of
the inverse transformation

Cj =
∑

k

�kj (η†
k + ηk), Dj =

∑
k

�kj (η†
k − ηk), (C4)

and ηk|G〉 = 0, the expectation value of any such pair is easily
calculated:

〈CiCj 〉 =
∑
k,k′

�ki�k′j 〈(η†
k − ηk)(η†

k′ + ηk′)〉

= δi,j ,

〈DiDj 〉 =
∑
k,k′

�ki�k′j 〈(η†
k − ηk)(η†

k + ηk′)〉

= −δi,j ,

〈DiCj 〉 =
∑
k,k′

�ki�k′j 〈(η†
k − ηk)(η†

k′ + ηk′)〉

= −(���)ij . (C5)

Defining

Gi,j = 〈DiCj 〉, (C6)

and collecting the terms in the Wick expansion, we find

ρj,j+n =

∣∣∣∣∣∣∣∣∣∣∣∣

Gj,j+1 Gj,j+2 · · · Gj,j+n

Gj+1,j+1 Gj+1,j+2 · · · ...

...
...

. . .
...

Gj+n−1,j+1 Gj+n−1,j+2 · · · Gj+n−1,j+n

∣∣∣∣∣∣∣∣∣∣∣∣
.

(C7)

〈σ̄ z
j 〉 and 〈σ̄ x

j 〉 can also be calculated in the same way:〈
σ̄ z

j

〉 = (���)j,j ,
〈
σ̄ x

j

〉 = 0. (C8)

We can rotate σ̄ back to σ ,〈
σ

y

j σ
y

j+n

〉 = 〈
σ̄

y

j σ̄
y

j+n

〉
,〈

σ z
j

〉 = cos(θj )
〈
σ̄ z

j

〉
, (C9)〈

σx
j

〉 = sin(θj )
〈
σ̄ z

j

〉
.
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