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The physics of strongly correlated quantum particles within a flat band was originally explored as a route to
itinerant ferromagnetism and, indeed, a celebrated theorem by Lieb rigorously establishes that the ground state
of the repulsive Hubbard model on a bipartite lattice with an unequal number of sites in each sublattice must
have nonzero spin S at half filling. Recently, there has been interest in Lieb geometries due to the possibility
of topological insulator, nematic, and Bose-Einstein condensed (BEC) phases. In this paper, we extend the
understanding of the attractive Hubbard model on the Lieb lattice by using determinant quantum Monte Carlo
to study real space charge and pair correlation functions not addressed by the Lieb theorems. Specifically, our
results show unusual charge and charge transfer signatures within the flat band, and a reduction in pairing order at
ρ = 2/3 and ρ = 4/3, the points at which the flat band is first occupied and then completely filled. We compare
our results to the case of flat bands in the Kagome lattice and demonstrate that the behavior observed in the two
cases is rather different.
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I. INTRODUCTION

The form of the electronic dispersion relation ε(k) in
the absence of interactions plays a fundamental role in how
correlations drive the formation of ordered phases. Qualitative
pictures like the Stoner criterion for ferromagnetism simplify
the input from ε(k) and focus on the density of states at
the Fermi level N (EF ) = ∑

k δ[EF − ε(k)]. More refined
treatments like the random phase approximation (RPA) capture
phenomena such as the degree of Fermi surface nesting and
provide insight into how the noninteracting susceptibility de-
termines the renormalized response of the system. Both density
of states and nesting issues come into play in cuprate super-
conductivity: Nearest-neighbor hopping on a two-dimensional
square lattice such as that occupied by the copper atoms of the
CuO2 sheets has a van Hove singularity in the density of states
at half filling which was suggested to lead to an enhanced
superconducting critical temperature [1]. Likewise nesting of
the Fermi surface with wave vector q = (π,π ) provides a
natural weak-coupling explanation for the antiferromagnetic
phase of the undoped parent compounds, complementing the
strong-coupling Heisenberg picture. Nesting can also further
increase the pairing transition temperature [2].

While the single-band Hubbard model on a square lattice
has received the most attention in modeling the cuprates,
considerable interest has also focused on the more accurate
three-band picture which includes not only the square lattice
of copper d orbitals but also the intervening oxygen p

orbitals [3–8]. If hopping is restricted to nearest neighbors, this
arrangement of sites is bipartite, with, however, unequal num-
bers Np = 2Nd . In such situations, Lieb showed [9] that, at half
filling and with repulsive interaction, the hopping Hamiltonian
T̂ has a ground state with nonzero spin, S = (Np − Nd )/2.
The key element of the physics of such “Lieb lattices” is that

the spectrum of T̂ consists of 2Nd eigenvalues in +/− pairs,
separated by a flat electronic band ε(k) = 0 with Np − Nd

levels. Figure 1(a) shows an example of a Lieb geometry
(Np = 2Nd ). While this structure is similar to the CuO2 planes
of the high temperature superconductors, in a realistic cuprate
model there is an energy difference between the copper d

and oxygen p orbitals. The zero energy modes of T̂ can be
easily understood: A one particle state formed by creating
fermions on the four oxygen sites surrounding the center of
any copper plaquette, |ψ〉 = (c†1 − c

†
2 + c

†
3 − c

†
4)|vac〉, satisfies

T̂ |ψ〉 = 0 because hops from the oxygens onto the coppers
cancel. This “topological” localization was emphasized earlier
by Sutherland [10].

The Lieb lattice, as realized in CuO2 planes of the cuprate
superconductors, was investigated by Varma for possible
staggered current phases which might explain pseudogap
behavior [11]. Behavior tied to the presence of a flat band
[12–20] includes a quantum spin Hall effect driven by spin-
orbit coupling and topological phase transitions, e.g., caused
by next-nearest-neighbor hopping [21]. Other “decorated”
geometries exhibit flat bands, e.g., the Kagome lattice, and are
similarly under investigation [22,23], a key difference being
the frustrated nature of the Kagome lattice. We compare results
obtained for the Lieb lattice to the Kagome lattice and show the
results we find are not generic to arbitrary flat-band systems.

In this paper we address two important questions left
open by Lieb’s theorems [1]: What are the natures of the
charge and superconducting response functions [2]? What are
the implications of the absence of a minimum in ε(k) for
superconductivity (SC) or BEC in a flat band? It has been
suggested that the presence of interactions renormalizes the
flat band and induces an effective minimum so that BEC
can still occur [24] or that the infinite density of states in
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FIG. 1. (Color online) An example of a Lieb lattice, a bipartite
geometry with unequal numbers of sites in the two sublattices.
(a) The three-band model of the CuO2 planes of the cuprate. In
the case of attractive interactions CDW patterns emerge at two-thirds
(b) and four-thirds (c) fillings by doubly occupying the copper or
oxygen sublattices, respectively. Localized states form from linear
combinations of creation operators on sites 1,2,3,4 (panel a) with
alternating phases.

the flat band favors the emergence of SC or other kinds of
order [25–27], however no exact numerical work has addressed
these issues. Next-generation optical lattice emulation (OLE)
experiments have generated Lieb lattice geometries [28,29]
and might be able to study this question for bosonic atoms [30].
The attractive fermion Hubbard model (AHM) considered
here develops superconducting phases at low temperatures—a
BCS phase at weak coupling and BEC pairing at strong
coupling [31], with a crossover between these two extreme
cases. On lattices which do not have special features in
their densities of states [25,26], and in sufficiently high
dimension, the BCS limit is characterized by pairs with large
sizes ξ and a transition temperature Tc ∼ t exp[ −at/|U |] ∼
t exp[ −b/UN (Efermi) ]. In the BEC limit, ξ is of the order of
a few lattice spacings and Tc ∼ t2/|U |, the effective hopping
of the tightly bound pairs. We will concentrate on intermediate
and large coupling cases (|U | � 4). This is closer to the BEC
limit, and hence to possible experiments on bosonic atoms.
Furthermore, it is easier to reach the condensation temperature
in this case.

II. CALCULATIONAL APPROACH

We consider the AHM on a CuO2 geometry [Fig. 1(a)].

H = −t
∑
iασ

(
d
†
iσ p α

iσ + d
†
i+α σ p α

iσ + H.c.
)

− |U |
∑
iα

[(
nd

i↑ − 1/2
)(

nd
i↓ − 1/2

)

+ (
n

pα

i↑ − 1/2
)(

n
pα

i↓ − 1/2
)]

(1)

We have adopted the notation of the three-band model of
the cuprates where the operators d

†
iσ (diσ ) create (destroy)

fermions on site i of spin σ in a square lattice of copper
d orbitals and p

α†
iσ (pα

iσ ) do the same for oxygen p orbitals
on the intervening links in the α = x̂,ŷ directions. Number
operators are denoted by n

pα

iσ and nd
iσ . t is the scale of kinetic

energy which we set to unity and |U | is the magnitude of the
on-site attraction. N denotes the total number of sites of the
lattice [32].

In order to determine the properties of the AHM on a
Lieb lattice, Eq. (1), we use determinant quantum Monte

Carlo (DQMC) [34,35]. The approach exactly solves the
Hamiltonian on lattices of finite size [36]. We present results
for up to 6 × 6 unit cells (108 sites). The absence of the sign
problem in the attractive case, U < 0, allows simulations over
a wide range of fillings. We focus our attention on the densities
on the d and p orbitals, nd and npx = npy , and on intra-
unit-cell (i.e., nearest-neighbor and next-nearest-neighbor)
density-density correlations, 〈ndnpx〉 and 〈npxnpy〉. The total
density per site ρ = 1

3 (nd + npx + npy). We also report data
for the local moment 〈m2〉 = ∑

iν〈 ( niν↑ − niν↓)2 〉 and s-
wave pair structure factor Ps = 1/N2 ∑

i,j,μ,ν〈BiμB
†
jν〉. Here

B
†
jν creates a pair of up/down spin fermions on site j and orbital

ν = d,px,py . In the definitions of 〈m2〉 and Ps the sums are
over all N lattice sites (i.e., over both d and p orbitals).

We complement these DQMC calculation with mean field
theory (MFT). In this approach, on each site, the attractive
interaction is written in term of the operators

�x = 1

2
(c†↑c

†
↓ + c↓c↑) �y = 1

2i
(c†↑c

†
↓ − c↓c↑)

�z = 1

2
(n↑ + n↓ − 1), (2)

−|U |(n↑ − 1/2)(n↓ − 1/2) = −2|U | �� · ��/3 + |U |/4.

The vector �� = (�x,�y,�z) is obtained from the usual spin
operator by a particle-hole transformation for the down spin.
The mean field decoupling corresponds to approximating, on
each site, the interaction term �� · �� by 2〈 ��〉 · ��, leading to
three mean field parameters 〈 ��〉. For repulsive interaction,
this decoupling is the analog of the usual SU(2) decoupling
in the spin channels [37]. The values 〈 ��i〉 are determined by
minimizing the free energy.

Both techniques work in the grand canonical ensemble,
which could cause a problem when trying to access a given
density in the partially filled flat band. This is not the case
as the flat band acquires a width due to interactions in the
exact DQMC treatment and as the SU(2) symmetry allows
us to circumvent this problem in the MF approximation (see
below).

III. NUMERICAL RESULTS

A. Local density response

We begin by showing the changes in the occupations
〈 nd 〉 and 〈 npx 〉 = 〈 npy 〉 on the individual orbitals as the
total density ρ increases (Fig. 2). In the noninteracting
limit, ∂〈 nα 〉/∂ρ must be nonnegative, and we observe this.
However, for U �= 0 we see that the d occupation decreases
with increasing ρ. We interpret this in terms of a transition
from the ρ = 2/3 CDW [Fig. 1(b)] to the ρ = 4/3 CDW
[Fig. 1(c)]. U favors doubly occupied sites, but to second order
in perturbation theory such paired sites are lower in energy
by 2t2/|U | for each empty adjacent site. At low densities
(double) occupation of the four-fold coordinated d orbitals
is favored, but as ρ exceeds 2/3 it becomes advantageous
to occupy the more numerous p orbitals and empty the d

band.
We emphasize an important feature of CDW patterns on

this lattice: Because the d and p sites are inequivalent, there
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FIG. 2. (Color online) Occupations of the copper (nd ) and oxy-
gen (npα) orbitals as a function of density ρ for U = 0, −4, −8.
Nonzero attractive interactions induce an unusual charge transfer
effect in which the copper occupation decreases even while the overall
lattice density increases, with cusps at the endpoint of the filling of
the flat band, ρ = 4/3. Here and in subsequent figures we show only
densities ρ � 1 since our model Eq. (1) is particle-hole symmetric.

is a “trivial” difference in charge densities which does not
reflect any spontaneous symmetry breaking. However, CDW
order is also present due to correlations, and the fact that it is
energetically favorable, δ2E ∼ t2/U , to have doubly occupied
and empty sites adjacent.

Additional interest in the orbital occupation evolution con-
cerns its possible implications for charge transfer processes in
cuprate pairing. Because they favor d-wave pairing symmetry,
it is generally accepted that spin fluctuations provide the
majority of the “pairing glue” in high Tc materials [38].
However, arguments have been made [3–8] in favor of a
possible role of charge fluctuations between the copper and
oxygen orbitals driven by a repulsive interaction Vpd . Such
fluctuations would be reflected in a large response of np − nd

to the orbital energy difference εp − εd . Figure 2 emphasizes
that, even in the absence of Vpd , there is nontrivial structure
in the orbital occupations. Thus, much as the large U = 0
antiferromagnetic susceptibility highlights spin fluctuations on
the square lattice, the observation of unusual charge transfer
in the Lieb lattice at Vpd = 0 might indicate a role for charge
fluctuations there.

Because it probes the double occupancy D (local pair
formation), the local moment can also provide interesting
insight. 〈m2〉 = ρ − 2D is shown in Fig. 3. It is evident that
〈m2〉 does not change as the density is increased in the range
2/3 < ρ < 4/3, i.e., as the flat band is being filled. This result
can be understood within MFT: for chemical potential μ = 0,
the SU(2) invariance implies that the mean field ground state
energy is invariant under a global rotation of the mean field
pseudospins 〈 ��i〉. More precisely, in the ground state, 〈 ��i〉
shows a ferromagnetic order in the (X,Y ) plane (pairing order)
and an antiferromagnetic order along the Z axis (CDW order).

FIG. 3. (Color online) The local magnetic moment 〈m2〉 versus
density. 〈m2〉 is constant within the flat band, and then drops for
densities ρ > 4/3. Here U = −4t and β = 36. The constant value of
〈m2〉 can be explained within MFT to be a consequence of the SU(2)
invariance at μ = 0, see the text for more details.

This SU(2) symmetry implies

Ps

a
+

(
ρ − 1

b

)2

= 1, (3)

where 9a = (2�p + �d )2 and 3b = 4�p − 2�d , and �i =
|〈 ��i〉| is the norm of the pseudospin. The maximum value
for Ps is a and occurs at half filling; Ps vanishes when the
density reaches ρ = 1 ± b. At U = −4, the numerical MFT
values are �d = 0.1876 and �p = 0.3438, with a ≈ 0.09 and
b = 1/3. Although the maximum value of Ps depends on U ,
we have found that the value of b is always 1/3. Hence, for
μ = 0, the mean field Ps always vanishes at fillings ρ = 1 ±
1/3, i.e., the endpoints of the flat band, in agreement with the
QMC results [39] depicted in Fig. 5. Finally, one has (n↑ −
n↓)2 = 1 − 4 �� · ��/3. Since, at the mean-field level, |〈 ��〉|2 is
independent of the density within the range 2/3 < ρ < 4/3,
this explains the plateau in Fig. 3. It is remarkable that this
behavior is observed in the QMC results (Fig. 3) as, in the exact
Hamiltonian, the SU(2) symmetry is only present at ρ = 1 or
μ = 0 and not in the whole range of densities 2/3 < ρ < 4/3.

B. Competition between pairing and charge order

Nearest-neighbor density-density correlations (Fig. 4) in-
volving a copper site occupation 〈ndnpx〉 decrease with
increasing ρ in the flat band, reflecting the transfer of charge
to the oxygen sites. The density correlations between the
two oxygen sites of a unit cell, 〈npxnpy〉, grow with filling.
The anomalous charge response is strengthened as the on-site
interaction strength |U | becomes larger.

The pair structure factor in the intermediate coupling
regime, U = −4, is given in Fig. 5 (top). Ps is greatest when
the bands are half filled, i.e., for ρ = 1 and ρ = 5/3. These
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FIG. 4. (Color online) Near-neighbor and next near-neighbor
density-density correlations as functions of ρ for U = 0, −4, −8,

−10. As with the site occupations, these short range density
correlations exhibit an anomalous decrease even as the total density
ρ grows.

densities are furthest from the fillings ρ = 2/3 and ρ = 4/3
which most favor competing CDW phases [Figs. 1(b) and 1(c)]
and, therefore, vanishing Ps . (Ps also vanishes at full filling,
ρ = 2.) Data for Ps do not show much size dependence

FIG. 5. (Color online) Pair structure factor Ps versus ρ for U =
−4t (top) and U = −8t (bottom). Data for four lattice sizes are
shown. Ps has a minimum at ρ = 4/3 where the superconducting
phase must compete with charge order and a maximum when ρ = 1
and ρ = 5/3. In the weaker coupling case U = −4t , at half filling
(inset a) Ps extrapolates to a nonzero value in the thermodynamic
limit. However, at U = −8t , the extrapolation is to zero (inset b). For
1 � ρ � 4/3, the mean field pair structure factor is given by Ps =
P max

s (1 − [3(ρ − 1)]2), where P max
s = 0.09, in very good agreement

with the QMC results. For 4/3 � ρ � 2, the mean field calculations
depict a similar dome-shape behavior, with a maximum around the
center, a behavior quite similar to a single-band situation.

for U = −4t . Inset (a) to Fig. 5 gives a finite size scaling
analysis [40] and supports the existence of pairing LRO in the
thermodynamic limit 1/L → 0 as expected in two dimensions
in the zero temperature limit. For the finite size systems we are
using this limit is reached when the coherence length becomes
larger than the system’s size. This result is in agreement with
the mean field results: For 1 � ρ � 4/3, the mean field pair
structure factor is given by Ps = P max

s (1 − [3(ρ − 1)]2), where
P max

s = 0.09, in very good agreement with the QMC. For
4/3 � ρ � 2, the mean field results also depict a dome-shape
behavior, with a maximum around the center, a behavior quite
similar to a single-band situation. The agreement between
MFT and DQMC is less good at larger |U |.

C. BEC within a flat band

The bottom panel of Fig. 5 shows DQMC data at larger
U = −8t , approaching the small pair size regime of the AHM.
Ps decreases much more as the lattice size is increased than
for U = −4t , and a finite size scaling analysis [inset (b)]
suggests the absence of LRO at β = 36. We thus have local
pair formation with no clear long range coherence. While LRO
pair order is likely to develop at a yet lower energy scale,
it is suggestive that it is absent at temperatures for which
superconductivity would be readily visible in dispersing band
geometries like the 2D square lattice: The flat band appears to
be impeding the bosons (locally formed pairs) from forming a
BEC. For U = −8t , pairing LRO is well established at β = 12
on a square lattice. In the flat-band model considered here,
β = 36 is insufficiently cold. This factor of three, or more,
reduction in the ordering temperature is much larger than one

FIG. 6. (Color online) Local magnetic moment versus ρ for the
Kagome lattice at U = −4. Dashed lines show the noninteracting
limit between the three bands, the lowest energy band being flat.
The magnetic moment is approximately proportional to the density
ρ in the flat band. Unlike the Lieb case, there is no signature in this
quantity as the boundary from the flat band to the second, dispersing,
band is crossed.
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FIG. 7. (Color online) Pair structure factor Ps versus ρ for the
Kagome lattice at U = −4. As for the magnetic moment (Fig. 6), we
do not observe a peculiar behavior in the flat-band region.

would expect simply by the lower coordination number (4 for
the square lattice and 8/3, on average, for the CuO2 lattice).

D. Comparison with the Kagome lattice

In order to assess if these phenomena are generic to all
flat-band geometries, we compare our results with the case
of the Kagome lattice. We choose the sign of the hopping
term so that the dispersionless band is the lowest of the three
Kagome bands. This is the case of interest to proposed optical
lattice experiments on BEC in Kagome lattices [30], since
condensation occurs at the lowest energy levels.

Figures 6 and 7 shows the evolution of the local magnetic
moment 〈m2〉 and the pair structure factor Ps for U = −4
and different lattice sizes. In the noninteracting limit, the
flat band is occupied for density ρ < 2/3. We see that the
features that were observed in the Lieb lattice (Figs. 3 and 5)
are no longer present. Specifically, the local moment 〈m2〉
is not constant, nor does the pair structure factor Ps become
zero at the edge of the flat band. This reflects the absence of
competition between CDW and SC order in the Kagome case.
Moreover, we do not observe a sharp change in the behavior
of either of these observables when the system transitions
from the first to the second band. There are, however,

signatures as the density takes the Fermi level from the second
to the third band, both of which have nonzero width. This
occurs at ρ � 4/3. The evolution of Ps and 〈m2〉 at low density
is not peculiar; indeed it is the one observed in most cases, with
Ps and 〈m2〉 roughly proportional to ρ. We observe a similar
behavior in the low or high density limit for the Lieb lattice
(see Figs. 3 and 5).

This comparison between the Lieb and Kagome lattices
emphasizes that peculiar behavior, like constant magnetiza-
tion, observed in the Lieb case cannot be ascribed solely to a
flat band. In the presence of interactions, there is no generic
evolution of magnetic and pairing correlations within a flat
band. Instead, other features of the geometry, such as the
presence or absence of frustration, of particle-hole symmetry,
or the existence of distinct types of sites in the unit cell, also
come into play.

IV. CONCLUSIONS

Charge and pair correlations in the AHM in the Lieb
lattice, which has a flat band, have been computed. As the
flat band is filled, the density on the minority (“copper”) sites
declines even though the total density grows, demonstrating a
specific model in which charge transfer signatures are strong.
Such behavior has attracted interest in the context of cuprate
superconductivity and materials like BaPbBiO3, where it has
been proposed that the exchange of charge fluctuations can
mediate pairing in a way analogous to the exchange of spin
fluctuations [41]. We have also presented detailed data on
the competition between the pairing and CDW response as
the density is tuned. At stronger values of the attraction,
pairing correlations decrease significantly as the lattice size
increases, suggesting that LRO is inhibited by the flat-band
dispersion relative to strongly dispersing bands. Finally we
compared our results to the Kagome lattice, another example
of a flat-band geometry, and showed that the phenomena
observed are not generically present in all flat-band systems.
Together, these results characterize “traditional” charge and
pairing correlations, forming a useful context to attempts to
explore more exotic topological phases in flat-band systems.

ACKNOWLEDGMENTS

Work supported by the UCOP, by NNSA-DE-NA0001842-
0, by NSF-PIF-1005503, by the CNRS(France)-UC Davis
EPOCAL LIA joint research grant and by the CNRS-CQT
LIA FSQL.

[1] J. E. Hirsch and D. J. Scalapino, Phys. Rev. Lett. 56, 2732
(1986).

[2] D. J. Scalapino, E. Loh, and J. E. Hirsch, Phys. Rev. B 35, 6694
(1987).

[3] V. J. Emery, Phys. Rev. Lett. 58, 2794 (1987).
[4] C. M. Varma, S. Schmitt-Rink, and E. Abrahams, Solid State

Commun. 62, 681 (1987).
[5] J. Zaanen, G. A. Sawatzky, and J. W. Allen, Phys. Rev. Lett. 55,

418 (1985).
[6] A. M. Olés and J. Zaanen, Phys. Rev. B 39, 9175 (1989).

[7] R. T. Scalettar, D. J. Scalapino, R. L. Sugar, and S. R. White,
Phys. Rev. B 44, 770 (1991).

[8] M. H. Fischer and E.-A. Kim, Phys. Rev. B 84, 144502 (2011).
[9] E. H. Lieb, Phys. Rev. Lett. 62, 1201 (1989).

[10] Bill Sutherland, Phys. Rev. B 34, 5208 (1986).
[11] C. M. Varma, Phys. Rev. B 73, 155113 (2006).
[12] N. Goldman, D. F. Urban, and D. Bercioux, Phys. Rev. A 83,

063601 (2011).
[13] M. Nita, B. Ostahie, and A. Aldea, Phys. Rev. B 87, 125428

(2013).

094506-5

http://dx.doi.org/10.1103/PhysRevLett.56.2732
http://dx.doi.org/10.1103/PhysRevLett.56.2732
http://dx.doi.org/10.1103/PhysRevLett.56.2732
http://dx.doi.org/10.1103/PhysRevLett.56.2732
http://dx.doi.org/10.1103/PhysRevB.35.6694
http://dx.doi.org/10.1103/PhysRevB.35.6694
http://dx.doi.org/10.1103/PhysRevB.35.6694
http://dx.doi.org/10.1103/PhysRevB.35.6694
http://dx.doi.org/10.1103/PhysRevLett.58.2794
http://dx.doi.org/10.1103/PhysRevLett.58.2794
http://dx.doi.org/10.1103/PhysRevLett.58.2794
http://dx.doi.org/10.1103/PhysRevLett.58.2794
http://dx.doi.org/10.1016/0038-1098(87)90407-8
http://dx.doi.org/10.1016/0038-1098(87)90407-8
http://dx.doi.org/10.1016/0038-1098(87)90407-8
http://dx.doi.org/10.1016/0038-1098(87)90407-8
http://dx.doi.org/10.1103/PhysRevLett.55.418
http://dx.doi.org/10.1103/PhysRevLett.55.418
http://dx.doi.org/10.1103/PhysRevLett.55.418
http://dx.doi.org/10.1103/PhysRevLett.55.418
http://dx.doi.org/10.1103/PhysRevB.39.9175
http://dx.doi.org/10.1103/PhysRevB.39.9175
http://dx.doi.org/10.1103/PhysRevB.39.9175
http://dx.doi.org/10.1103/PhysRevB.39.9175
http://dx.doi.org/10.1103/PhysRevB.44.770
http://dx.doi.org/10.1103/PhysRevB.44.770
http://dx.doi.org/10.1103/PhysRevB.44.770
http://dx.doi.org/10.1103/PhysRevB.44.770
http://dx.doi.org/10.1103/PhysRevB.84.144502
http://dx.doi.org/10.1103/PhysRevB.84.144502
http://dx.doi.org/10.1103/PhysRevB.84.144502
http://dx.doi.org/10.1103/PhysRevB.84.144502
http://dx.doi.org/10.1103/PhysRevLett.62.1201
http://dx.doi.org/10.1103/PhysRevLett.62.1201
http://dx.doi.org/10.1103/PhysRevLett.62.1201
http://dx.doi.org/10.1103/PhysRevLett.62.1201
http://dx.doi.org/10.1103/PhysRevB.34.5208
http://dx.doi.org/10.1103/PhysRevB.34.5208
http://dx.doi.org/10.1103/PhysRevB.34.5208
http://dx.doi.org/10.1103/PhysRevB.34.5208
http://dx.doi.org/10.1103/PhysRevB.73.155113
http://dx.doi.org/10.1103/PhysRevB.73.155113
http://dx.doi.org/10.1103/PhysRevB.73.155113
http://dx.doi.org/10.1103/PhysRevB.73.155113
http://dx.doi.org/10.1103/PhysRevA.83.063601
http://dx.doi.org/10.1103/PhysRevA.83.063601
http://dx.doi.org/10.1103/PhysRevA.83.063601
http://dx.doi.org/10.1103/PhysRevA.83.063601
http://dx.doi.org/10.1103/PhysRevB.87.125428
http://dx.doi.org/10.1103/PhysRevB.87.125428
http://dx.doi.org/10.1103/PhysRevB.87.125428
http://dx.doi.org/10.1103/PhysRevB.87.125428


V. I. IGLOVIKOV et al. PHYSICAL REVIEW B 90, 094506 (2014)

[14] C. Weeks and M. Franz, Phys. Rev. B 82, 085310 (2010).
[15] W.-F. Tsai, C. Fang, H. Yao, and J. P. Hu, arXiv:1112.5789.
[16] D. Leykam, O. Bahat-Treidel, and A. S. Desyatnikov, Phys. Rev.

A 86, 031805(R) (2012).
[17] K. Sun, Z.-C. Gu, H. Katsura, and S. Das Sarma, Phys. Rev.

Lett. 106, 236803 (2011).
[18] S. Yang, Z.-C. Gu, K. Sun, and S. Das Sarma, Phys. Rev. B 86,

241112(R) (2012).
[19] C. Wu and S. Das Sarma, Phys. Rev. B 77, 235107 (2008).
[20] C. Wu, D. Bergman, L. Balents, and S. Das Sarma, Phys. Rev.

Lett. 99, 070401 (2007).
[21] J. Everts, M.S. thesis, Utrecht University, 2012 and references

cited therein.
[22] A. Yamada, K. Seki, R. Eder, and Y. Ohta, Phys. Rev. B 83,

195127 (2011).
[23] Kai Sun, Hong Yao, Eduardo Fradkin, and Steven A. Kivelson,

Phys. Rev. Lett 103, 046811 (2009).
[24] S. D. Huber and E. Altman, Phys. Rev. B 82, 184502 (2010).
[25] N. B. Kopnin, T. T. Heikkilä, and G. E. Volovik, Phys. Rev. B
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