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Temporary cooling of quasiparticles and delay in voltage response of superconducting bridges after
abruptly switching on the supercritical current
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We revisit the problem of the dynamic response of a superconducting bridge after abruptly switching on the
supercritical current. In contrast to previous theoretical works we take into account spatial gradients and use both
the local temperature approach and the kinetic equation for the distribution function of quasiparticles. We find that
the temperature dependence of the finite delay time td in the voltage response is model dependent and relatively
large td is connected with temporary cooling of quasiparticles during decay of superconducting order parameter
|�| in time. It turns out that the presence of even small inhomogeneities in the bridge or finite length of the
homogenous bridge favors a local suppression of |�| during the dynamic response. It results in a decrease of the
delay time, in comparison with the spatially uniform model, due to the diffusion of nonequilibrium quasiparticles
from the region with locally suppressed |�|. In the case when the current density is maximal near the edge of a
not very wide bridge the delay time is mainly connected with the time needed for the nucleation (entrance) of the
first vortex and td could be tuned by a weak external magnetic field. We also find that a short alternating current
pulse (sinusoidlike) with zero time average may result in a nonzero time-averaged voltage response where its
sign depends on the phase of the ac current.
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I. INTRODUCTION

In 1979 Pals and Wolter [1] observed a long time delay
(about hundreds of nanoseconds) in the appearance of the
voltage response after the instant (on a time scale of 1 ns)
application of the supercritical current to an Al supercon-
ducting film. This work initiated a large number of studies
(both experimental and theoretical) which aimed to clarify
the physical origin of this effect [2–8]. The main conclusion
was that during transition the superconducting order parameter
� = |�|exp(iφ) decays in time and it provides some kind
of temporary “cooling” of quasiparticles [2,9]. Because the
critical current in superconductors increases, when the temper-
ature decreases, this effective cooling shifts the applied current
I > Ic(T ) closer to the nonequilibrium Ic (corresponding to
lower “temperature”) and it slows down the destruction of
superconductivity. It was experimentally observed that the
time delay td decreases fast with increasing amplitude of
the current and in some experiments a strong dependence of
td on temperature was found [4–7], while in other works td
practically did not depend on T [1,8].

In the majority of previous theoretical studies on this subject
authors assumed that superconductivity decays uniformly in
space [1–3] which considerably simplified the calculations.
Besides it was assumed that the inelastic electron-electron
relaxation time τe-e is much larger than the inelastic electron-
phonon relaxation time τe-ph, and the escape time of the
nonequilibrium phonons τesc to the substrate is smaller than
τe-ph. These assumptions lead to the nonthermal nonequilib-
rium quasiparticle distribution function f (ε) (i.e., it cannot
be described by the Fermi-Dirac distribution function with an
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effective temperature and chemical potential) and the phonons
being in equilibrium.

In the present work we extend the model of Tinkham [2] to
the spatially nonuniform case (to study the bridges with finite
length and with small inhomogeneities) and to the case when
the deviation from equilibrium could be described in terms
of a local temperature (which is valid when τe-e � τe-ph—the
so-called quasiequilibrium limit [10,11]). We find that the last
model predicts the temperature-independent delay time, which
was earlier observed in some experiments [1,8], and which
was not explained by previous theoretical works. We show
that the presence of the intrinsic defects in the bridge and/or
contacts with the wider/thicker superconductors decreases the
time delay, because in this case the order parameter decays
faster in some “weak” places and cooling of quasiparticles
becomes nonuniform in space.

Another important question which was not studied before
is how the nonuniform current density distribution in the
film/wire influences the time delay. Nonuniformity may come
from the Meissner (screening) effect which is important in
wide films/bridges with width w > λ2/d (λ is the London
penetration depth, d is the thickness of the film/bridge).
In narrow films/bridges (w � λ2/d) spatially nonuniform
current distribution may arise due to the current crowding
effect near edge/surface irregularities [12–14] or due to specific
geometry [15]. We demonstrate, that for not very wide bridges
and currents close to Ic, the delay in the voltage response
is mainly connected with the entrance of the first vortex
and qualitatively resembles the time delay of quasi-one-
dimensional (1D) bridges. We also offer to use the weak
magnetic field for tuning the time delay via change of the
current distribution in the film.

The third problem which we investigate is the response of
the superconducting bridge on a short alternating current pulse.
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Our interest in this problem arises from a recent experiment
where the nonzero time-averaged voltage response of a wide
yttrium barium copper oxide (YBCO) superconducting bridge
to a short pulse of synchrotron radiation was observed [16].
This experiment demonstrates the possibility to study the
resistive response of the superconducting bridge on a very
short time scale (approximately several picoseconds) when
the superconductor cannot be substantially heated and which is
hard to realize by other methods. Using our theoretical models
we also find the nonzero time-averaged voltage response on
the zero time-averaged ac current pulse which we explain
by the long delay time in the destruction of superconductivity
in the bridge by the supercritical current. Moreover we predict
that the time-averaged voltage changes the sign with the shift
of the phase of ac current pulse by π .

The structure of our paper is as follows. In Sec. II
we present our theoretical model that we use to study
the dynamic response of “dirty” superconductors near its
critical temperature Tc. In Sec. III we present the results
of our calculations for quasi-1D bridges in the nonthermal
(Sec. III A) and quasiequilibrium (Sec. III B) cases. Subse-
quently, in Sec. IV we present results for wide [w � ξ (T )]
superconducting bridges placed in a weak magnetic field
(which creates a nonuniform current distribution) and in
Sec. V we study the dynamic response of the superconducting
bridge on a sinusoidal-like current pulse. In Sec. VI we
discuss the applicability of our results to different physical
situations.

II. MODEL

To model the dynamical response of the “dirty” supercon-
ductor near Tc we use the simplified set of equations which
was derived in Refs. [17–21]. First of all near Tc one may
neglect the coupling between odd fL(ε) and even fT (ε) energy
parts of the quasiparticle distribution function f (ε) = (1 −
fL − fT )/2 [nonequilibrium fL(ε) describes effects connected
with heating/cooling of quasiparticles, while finite fT (ε) �=
0 describes effects connected with charge imbalance and
normal current in the superconductor]. Secondly, instead of
solving the kinetic equation for fT (ε) we use the following
expression:

fT = −eϕ
∂f 0

L

∂ε
, (1)

where ϕ is the electrical potential, f 0
L = tanh(ε/2kBT ), and

one assumes a small deviation from equilibrium δfL = fL −
f 0

L � f 0
L . Equation (1) satisfies the kinetic equation for fT

[see, for example, Eq. (7) in Ref. [19]] when one neglects the
second spatial derivative of fT and eϕ + �∂φ/∂t = 0. Both
these conditions are approximately valid during almost all of
the transition period when there is a small gradient of the
superconducting current and, hence, the small gradient of the
normal current. We also do not expect large changes in our
results (at temperatures not very close to Tc) at the last stage of
the transition period and during formation of the phase slip line
because Eq. (1) gives practically the same conversion length
of the normal current to the superconducting one [of about
coherence length ξ (T )] as one expects at T � 0.9Tc [22].

With these simplifications the equations for fL and � have
the following form:

N1
∂fL

∂t
= D∇[(

N2
1 − R2

2

)∇fL

] − N1

τin

(
fL − f 0

L

)

−R2
∂f 0

L

∂ε

∂|�|
∂t

, (2)

π�

8kBTc

(
∂

∂t
+ 2ieϕ

�

)
� = ξ 2

GL

(
∇ − i

2e

�c
A

)2

�

+
(

1 − T

Tc

+ �1 − |�|2
�2

GL

)
�,

(3)

where ξ 2
GL = π�D/8kBTc and �2

GL = 8π2(kBTc)2/7ζ (3) are
the zero temperature Ginzburg-Landau coherence length and
the order parameter, correspondingly, A is the vector potential,
and �1 = ∫ ∞

0 R2δfLdε/|�|. From Eq. (3) it follows that for
the uniform case and in equilibrium |�| = �eq = �GL(1 −
T/Tc)1/2.

To find the solution of Eq. (2) one should use the Usadel
equation for the normal α(ε) = cos � = N1(ε) + iR1(ε) and
anomalous β1 = βeiφ , β2 = βe−iφ [β(ε) = sin � = N2(ε) +
iR2(ε)] Green functions[(

2iε − �

τin

)
− D

�
q2

s cos �

]
sin � + 2|�| cos � = 0, (4)

where qs = mvs = (∇φ − 2eA/�c) is the superfluid momen-
tum. In Eq. (4) we skip the term with the spatial derivative. We
checked out that its presence weakly affects the time delay at
T � 0.9Tc. In contrast, we find that the term proportional to
q2

s leads to a considerable decrease of the time delay.
Within the same approximation the current density in the

superconductor may be written as

j = σn

e

π |�|2qs

4kBTc

+ σn

e

∫ ∞

0
jεδfLdε − σn∇ϕ

= js + δjs + jn, (5)

where the first term on the right-hand side (RHS) is the super-
conducting current density; jn = −σn∇ϕ (σn = 2e2DN0) is
the normal current density (N0 is the one spin density of states
at the Fermi level). In Eq. (5) we keep the nonequilibrium
contribution to the supercurrent (δjs) due to δfL �= 0. In
Ref. [3] it was argued that the presence of this term increases
td when I � Ic.

When the escape time of phonons to the substrate is shorter
than the inelastic electron-phonon relaxation time and at the
same time the electron-electron scattering is weaker than
the electron-phonon one, then the relaxation time in Eq. (2)
τin = τe−ph and the quasiparticle distribution function is
not a thermal one. In this case Eqs. (2)–(4) and the current
continuity equation divj = 0 are the equations that govern
the dynamic response of the superconducting bridge to a
supercritical current.

In the opposite limit the quasiparticles are thermalized
due to electron-electron inelastic scattering and f (ε) can
be described by the Fermi-Dirac distribution function with
a local temperature and chemical potentialthe so-called
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quasiequilibrium approach [10,11] [in this limit one has to
take into account the electron-electron collision integral in
Eq. (2), which is omitted there]. From Eqs. (2) and (4) one
may obtain (see Appendix) the heat conductance equation for
the local temperature of the quasiparticles Tloc = T + δTloc,

Cv

∂δTloc

∂t
= κ∇2δTloc + N0

T

Tc

∂|�|2
∂t

− Cv

δTloc

τin
, (6)

where Cv = 2π2k2
BN0T/3 is the electron heat capacity and

κ = 2π2k2
BDN0T/3 is the electron heat conductivity in the

normal state. In this limit τin = τe-ph or τesc, whatever is larger.
In Eq. (6) we neglect the heating effects due to Joule dissipation
which is valid for our problem near Tc (for discussion see
Appendix).

The time-dependent equation for � in this limiting case re-
sembles the ordinary time-dependent Ginzburg-Landau equa-
tion with time- and coordinate-dependent local temperature:

π�

8kBTc

(
∂

∂t
+ 2ieϕ

)
�

= ξ 2
GL

(
∇ − i

2e

�c
A

)2

� +
(

1 − Tloc

Tc

− |�|2
�2

GL

)
�. (7)

[in this form Eq. (7) was derived earlier in Ref. [23]].
Equations (6) and (7) and divj = 0 are the basic equations

that govern the transient response of the superconducting
bridge in the quasiequilibrium approach.

We define the time delay td as the time needed for
suppression of |�| from its equilibrium value |�| = �eq

(at t � 0, when the current is equal to zero) to |�| = 0
anywhere in the superconductor. In the analytic models there
are “forbidden” values of |�| (see Sec. III) and the time delay
is defined as the time needed for change of |�| from some
maximal up to a minimal “available” value.

For the 1D case we assume that the superconducting bridge
of finite length L is attached to massive superconducting
electrodes which are in equilibrium (physically it corresponds
to the variable thickness bridge). It imposes the following
boundary conditions: �(x = 0,L) = �eqexp [iϕ(x = 0,L)t],
Tloc(x = 0,L) = T , ϕ(0) = 0, ϕ(L) = V , and the voltage V

can be found from integrating Eq. (5) over the length of
the bridge. For fL more complicated boundary conditions
are used: fL(x = 0,L) = f 0

L when ε > �eq and ∂fL/∂x(x =
0,L) = 0 for smaller energies.

In the two-dimensional case we assume that the super-
conducting bridge of finite length L and finite width w is
attached to massive normal electrodes being in equilibrium.
Normal electrodes considerably simplify our calculation in
the current constant regime, which could be easily imple-
mented via boundary conditions for the electrostatic potential
−σn∂ϕ/∂x(x = 0,L) = j . The rest of the boundary conditions
are as follows: in the longitudinal (x) direction �(x = 0,L) =
0, Tloc(x = 0,L) = T , and fL(x = 0,L) = f 0

L , and in the

transverse (y) direction we use ordinary superconductor-
isolator boundary conditions. To diminish the influence of
nonequilibrium effects from normal-superconductor (NS)
boundaries we locally increase Tc near the ends of the bridge
(on the distance 5ξ0 from each end) by 20%.

In our calculations we use the following natural variables
as the units of the corresponding quantities: t0 = �/�0, �0 =
1.76kBTc, ξ0 = √

�D/�0, q0
s = �c/2eξ0, j0 = �0σn/(ξ0e),

and ϕ0 = �0/e. We use τin/t0 = 8–1000 which are typical
values for many superconductors (for example in MgB2

τe-ph/t0 � 20, in Nb τe-ph/t0 � 100, in Sn τe-ph/t0 � 200, and
in Al τe-ph/t0 � 1000).

In simulations the current increases linearly (from t = 0)
during the time interval δt = 5t0. Such a procedure provides
a better numerical stability of our calculations in comparison
with an instant application of the current. Time delay depends
weakly on the specific choice of δt while td � δt .

III. TRANSIENT RESPONSE IN THE 1D CASE

A. Nonthermal model

For simplicity we first neglect the nonequilibrium contribu-
tion δjs to the supercurrent. The effect of finite δjs on td will
be discussed at the end of this section.

In the spatially uniform case one may find from Eqs. (2)
and (3) the equation for the dynamics of the dimensionless
magnitude of the order parameter f = |�|/�eq ,

τGL

∂f

∂t
+ af Y (f,T )

∫ t

0

∂f

∂t ′
e−(t−t ′)/τindt ′

= f

(
1 − f 2 − Ĩs

2

f 4

)
, (8)

where a = π�GL/4kBT (1 − T/Tc)1/2 � 2.4/(1 − T/Tc)1/2,
τGL = π�/8kB(T − Tc),

Y (f,T ) = 2

π

∫ ∞

1

dε

ε(ε2 − 1)1/2cosh(εf �eq/2kBT )
, (9)

and Ĩs
2 = 4/27(Is/Idep)2 (Idep = jdepwd is the Ginzburg-

Landau depairing current, Is = jswd and we use the initial
condition fL = f 0

L at t = 0 when the current is turned
on). In the case when �eq/2kBT � 1/2 one has Y (f,T ) �
1 − bf [b = �eq/2kBT � 1.52(1 − T/Tc)1/2]. Note that in
Refs. [2,3] Y (f ) = 1, which is valid when b � 1. But b �
0.48 already at T = 0.9Tc and the term −bf in Y (f ) should
be taken into account.

In Eq. (8) one may neglect the first term on the left-hand
side (LHS) in comparison with the second term when τGL �
τin/(1 − T/Tc)1/2 [except the very beginning of the transition
period when the time integral in Eq. (8) is small]. With
this simplification from Eq. (8) one may find the differential
equation for f

τin
∂f

∂t
= 1 − f 2 − Ĩs

2
/f 4

aY (f,T ) + 2f − 4Ĩs
2
/f 4 + Y ′(f,T )

(
1 − f 2 − Ĩs

2
/f 4

)
/Y (f,T )

. (10)

094504-3



D. YU. VODOLAZOV AND F. M. PEETERS PHYSICAL REVIEW B 90, 094504 (2014)

In the limit Y (f,T ) = 1 Eq. (10) coincides with Eq. (64) of Ref. [2]. Equation (10) becomes invalid at f = fmin when the
denominator goes to zero

aY (fmin) + 2fmin − 4Ĩs
2
/f 4

min + Y ′(fmin)
(
1 − f 2

min − Ĩs
2
/f 4

min

)
/Y (fmin) = 0, (11)

and in the beginning of the transition period when f changes on a time scale ∼τGL from 1 to fmax < 1. fmax could be found from
the following equation:

Ĩs
2 = (1 − fmax)f 4

max [aY (fmax) + 1 + fmax] (12)

which results from Eq. (8) if one assumes a steplike (on a time scale τGL � τin) decrease of f from 1 to fmax [Eq. (12) transits
to Eq. (62) of Ref. [2] when Y (fmax) = 1].

From Eqs. (10)– (12) one can find the delay time

td

τin
=

∫ fmin

fmax

aY (f,T ) + 2f − 4Ĩ 2/f 4 + Y ′(f,T )(1 − f 2 − Ĩ 2/f 4)/Y (f,T )

1 − f 2 − Ĩ 2/f 4
df, (13)

where we replace the superconducting current Is by the full
current I because when f changes from fmax to fmin the normal
current in the wire is much smaller than I and Is � I .

In the spatially nonuniform case we solve the set of
Eqs. (2)–(5) numerically [in Eq. (5) we put δjs = 0] and we
find that even for a homogenous bridge, |�| decays faster near
the ends of the bridge. At first sight this result looks rather
unexpected, because at the ends |�| is maximal due to the
boundary conditions (which originate from the proximity with
the massive superconducting leads being in equilibrium). But
effective cooling of quasiparticles is weaker near the ends of
the bridge, because nonequilibrium quasiparticles with energy
ε > �eq can freely diffuse away from the bridge to the leads.
As a result |�| decreases faster near the ends of the bridge.

We checked that a similar effect exists (see also Ref. [24])
even in the so-called local equilibrium limit [when Lin =
(Dτin)1/2 � ξ (T ) [19,20]] and one can neglect the diffusion of
quasiparticles. But in that case the spatial gradient of |�| along
the bridge is considerably smaller and the effect appears only
in some range of currents and τin. This result shows that not
only diffusion of nonequilibrium quasiparticles may provide
this effect but also the gradient of |�| which appears near the
ends of the variable thickness bridge when I �= 0.

Real bridges are never homogenous. Variations of their
physical (mean free path length and/or Tc) and geometrical
(width or thickness) properties along the superconductor may
exist. For example we find that even a 2% suppression of Tc

on a length scale of ξ0 in the center of the bridge favors the
local suppression of |�| in comparison with its suppression
near the ends of the bridge (in the studied temperature interval
0.9–0.98Tc). We checked that the time delay td varies with a
change of local Tc (see Fig. 1) but the functional dependence
td (I/Ic) stays practically the same when the suppression of Ic

due to defects is not strong (Ic � Idep). Further we consider
the superconducting bridge with a defect in the center where
Tc is locally suppressed by 2%.

In Fig. 2 we present the time evolution of the order
parameter in the center of the superconducting bridge with
length 60ξ0 at T = 0.9Tc and two values of τin. One can see
that qualitatively the dynamics of |�| follows the predictions of
the spatially uniform model. At the beginning of the transition
there is a sudden drop in |�| (on a time scale ∼τGL) and the
value of this drop is close to the one predicted by Eq. (12) (note

that it does not depend on τin). Further decay of |�| strongly
depends on τin (see Fig. 2) until it reaches some minimal value
which is close to the one predicted by Eq. (11). After that
|�| varies fast in time (again on the time scale ∼τGL) and its
dynamics weakly depends on τin.

In Fig. 3 we present the dependence td (I/Ic) for different
values of τin. If one compares this result with Eq. (13) (solid
curve in the inset of Fig. 3) one can see that for the spatially
nonuniform case the time delay is much shorter (when τin �
τGL). Besides there is no “universal” curve (see the inset in
Fig. 3 for normalized variables) on which all curves drop as
in the case of the spatially uniform model. We explain these
deviations by the diffusion of nonequilibrium quasiparticles
from the point where |�| decreases faster. Indeed, the diffusion
decreases locally the cooling of quasiparticles and accelerates
the decay of |�|. This effect also results in a dependence of td
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τ
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/t
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τ
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I
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=0.76 I
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I
c
=0.51 I
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t d/
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I/Ic

FIG. 1. (Color online) Dependence of the time delay td on the
normalized current I/Ic in the superconducting bridge with locally
suppressed T loc

c (in the area with size ξ0 in the center of the bridge)
and two values of τin. Decrease of td with decreasing T loc

c is explained
by the locally smaller value of |�| in equilibrium and it takes less time
to suppress it to zero. In the case of a defect-free bridge (Ic = Idep)
the time delay is smaller than in the bridge with a weak defect (at the
same value of normalized current I/Ic) because |�| → 0 near the
ends of the homogenous bridge where the cooling effect is weaker
due to the diffusion of nonequilibrium quasiparticles to the leads.

094504-4



TEMPORARY COOLING OF QUASIPARTICLES AND DELAY . . . PHYSICAL REVIEW B 90, 094504 (2014)

0 1000 2000 3000 4000
0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1000 2000 3000 4000
-0.04

-0.03

-0.02

-0.01

0.00

T=0.9T
c

L=60ξ
0

I~1.08I
c

τ
GL

~7t
0

τ
in
/t

0
=500

τ
in
/t

0
=125

f
min

f
max

f=
|Δ

|/Δ
eq

t/t
0

Φ 1

t/t
0

FIG. 2. (Color online) Time evolution of normalized |�| in the
center of the bridge with a weak defect after the application of the
supercritical current at t = 0. Dashed lines show values of fmax and
fmin from Eqs. (11) and (12). In the inset we show the time dependence
of �1 in the center of the bridge. Dynamics of both |�| and �1 does
not depend on τin in the beginning and in the end of the transition
process.

on the position, where |�| locally decays, with respect to the
ends of the bridge (compare td for an uniform bridge and for
the bridge with a weak defect in Fig. 1) and on the length of
the bridge when L/2 � Lin = (Dτin)1/2 (see Fig. 4).

In the model described by Eq. (13) td → 0 when fmin =
fmax which occurs for some current Ic1 as given in Ref. [2].
Spatially nonuniform decay of |�| does not change this result
qualitatively—the time delay drops fast when I → Ic1 (but its
value is larger in the uniform model; see the inset in Fig. 3)
while at larger currents td is still finite and it does not depend on

FIG. 3. (Color online) Dependence of the time delay on the
normalized current for different τin (both comparable and much larger
than τGL). In the inset we show the same dependencies but with td
normalized in units of τin. The solid curve corresponds to Eq. (13),
the dotted curve to Eq. (13) with Y (f ) = 1 [Eq. (64) in Ref. [2]], and
the dashed curve from Eq. (60) of Ref. [2] (local equilibrium limit).

FIG. 4. (Color online) Dependence of the time delay on the
normalized current for bridges with different lengths. For chosen
τin/t0 = 500 and Lin/ξ0 � 22ξ0 there is a strong decrease of td
when L � 2Lin ∼ 40ξ0 which we explain by increased diffusion of
nonequilibrium quasiparticles to the leads. In the inset we show the
dependence of td on temperature for a long bridge L � 4.5Lin.

τin anymore. From a physical point of view for currents I > Ic1

“cooling” of quasiparticles (which is limited by a decrease of
|�| from �eq to zero) cannot compensate the depairing effect
of the current and the time delay does not depend on τin. Finite
delay time at I > Ic1 is explained by the finite time τJ =
τGL/u [u ∼ π4/14ζ (3)] [25] needed for the transformation
of the normal current to the superconducting one (assuming
that the normal current appears in the bridge on a time scale
much smaller than τJ ) and finite relaxation time of |�|, which
imposes a relatively weak dependence on the current td (I ) ∼
τGLIc/I .

Notice that not only diffusion of nonequilibrium quasipar-
ticles is responsible for the reduction of td . It turns out that
if we remove the term proportional to q2

s in Eq. (4) then the
time delay and the current Ic1 increases (but td will still be
smaller than in the uniform case). Finite qs smears out the
peak in the density of states N1 and in the spectral function R2

at ε = |�| [26] which results in a somewhat smaller value of
�1, in comparison with the case when qs = 0, and thus smaller
cooling effect.

Let us now discuss how the nonequilibrium contribution to
the supercurrent δjs influences the time delay. From Fig. 5
one can see that finite δjs �= 0 leads to larger td and Ic1.
In some respects finite δjs “compensates” the reduction of
td due to diffusion of quasiparticles and smearing of the
spectral functions near ε = |�| and shifts td closer to the result
expected from the uniform model. Originally the increase of td
due to finite δjs was predicted in Ref. [3] but the authors used a
spatially uniform model and their values of td were larger than
Tinkham’s result with δjs = 0 (see Fig. 5 in Ref. [2]) which is
shown in Fig. 5 by the dashed curve.

B. Quasiequilibrium model

In the uniform case, from Eqs. (6) and (7) follows the
equation for the time dependence of f = |�|/�eq which is
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FIG. 5. (Color online) Change in the time delay when one takes
into account the nonequilibrium contribution to the superconducting
current. From the inset one can see that at higher temperature the
effect of δjs �= 0 becomes smaller.

similar to Eq. (8),

τGL

∂f

∂t
+ aT f

∫ t

0

∂f 2

∂t ′
e−(t−t ′)/τindt ′ = f

(
1 − f 2 − Ĩs

2

f 4

)
,

(14)

where aT = 3�2
GL/2π2k2

BT 2
c � 1.42. Again, when τGL � τin

we neglect the first term on the LHS of Eq. (14) and we find
the differential equation

τin
∂f

∂t
= 1 − f 2 − Ĩs

2
/f 4

2f (1 + aT ) − 4Ĩs
2
/f 5

. (15)

Similar to the case which is considered in Sec. III A, Eq. (15)
is not valid at the very beginning and at the end of the transition
period when the denominator of Eq. (15) goes to zero. From
Eq. (15) one may find the time delay

td

τin
=

∫ fmin

fmax

2f (1 + aT ) − 4Ĩ 2/f 5

1 − f 2 − Ĩ 2/f 4
df, (16)

where fmin = [2Ĩ 2/(1 + aT )]1/6 and fmax should be found
from the equation

Ĩ 2 = f 4
max(1 + aT )

(
1 − f 2

max

)
. (17)

From Eq. (16) it follows that td depends only on
temperature via τin(T ). This is the main qualitative difference
with Eq. (13), where the strong temperature dependence
of td comes from a(T ) and Y (T ). As a consequence, in
the quasiequilibrium model the current Ic1 � 1.55Ic (when
fmax = fmin and td → 0).

In Fig. 6 we present the dependence td (I/Ic) for a bridge
with length L = 100ξ0 found from a numerical solution of
Eqs. (6) and (7) and divj = 0. As in the nonthermal model the
effect of quasiparticle diffusion is large and in the homogenous
bridge the order parameter decays faster near the leads.
Therefore we suppress Tc in the center of the bridge by 4% in
the region with size ξ0 and in Fig. 6 we show the time decay
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FIG. 6. (Color online) Dependence of the time delay on the
normalized current for a superconducting bridge (quasiequilibrium
model). The solid curve corresponds to Eq. (16) with τin/t0 = 500. In
the inset we show the dependence td (I/Ic) for different temperatures.

of the order parameter in this place. In the inset one can see
rather weak temperature dependence of td at currents near Ic

and strong temperature dependence at I � Ic1 ∼ 1.55Ic. The
latter occurs due to the strong temperature dependence of τGL

which mainly determines the time delay at I � Ic1.
From a comparison of Figs. 3 and 6 one can see that

the dependence of the time delay on current and τin in the
quasiequilibrium limit resembles the one in the nonthermal
limit but it is shorter for fixed I/Ic and τin. We can explain
this as follows. In the nonthermal model the cooling effect
comes from the term R2∂|�|/∂t in the kinetic equation which
is peaked at energies ε � |�| and it has a long tail ∼|�|/ε
at larger energies. It results in the largest deviation from
equilibrium at ε � |�| and this interval of energies gives a
relatively large contribution to �1. In the quasiequilibrium
model, due to the thermalization process this peak is smeared
out and it leads to a smaller value of �1 and a weaker cooling
effect.

IV. DYNAMIC RESPONSE IN A 2D BRIDGE

Now we study the dynamic response in a two-dimensional
bridge with nonuniform current distribution across the super-
conductor. In our case the nonuniformity arises due to the
application of a perpendicular magnetic field (see Fig. 7). We
consider only weak fields when there are no vortices in the
bridge at currents below Ic.

Due to the nonuniform current distribution the order
parameter decays first near the edge where the current density
and supervelocity are maximal. When near the edge |�| → 0
the vortex enters the film and passes through it (for our length of
the bridge only one vortex enters simultaneously). Behind the
moving vortex there is a wake—a region with suppressed order
parameter [see inset (b) in Fig. 8] which appears due to the large
recovery time of |�| (in the local equilibrium approximation,
when τin < τGL, this effect was studied in Refs. [27,28]). This
wake favors faster nucleation of the second and subsequent
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FIG. 7. (Color online) Distribution of the current density across
the superconducting bridge (along the dashed line in the sketch of the
bridge shown in the inset) at different magnetic fields and currents
just below Ic(H ). In the inset we show a sketch of the bridge contacted
to normal leads. To prevent the influence of nonequilibrium effects
from the NS boundaries we locally (on the distance 5ξ0 from each
end) increased the local Tc by 20%.

vortices [in Fig. 8 every minimum in |�|(t) corresponds to
the entrance of a new vortex] because of subsequent gradual
suppression of |�| (see Fig. 8). Passage of several vortices
nucleates a quasiphase slip line [28]—the region with width
∼2ξ where |�| is strongly suppressed but is still different
from zero [see insets (c) and (d) in Fig. 8]. This quasiphase
slip line (PSL) may convert or not to a normal domain which
then spreads over the superconductor if the current or τin is
large enough. Note that in the present model only partial Joule
dissipation is considered (via the dependence of the Green

FIG. 8. (Color online) Time dependence of |�| at the edge of
the bridge (marked as black spot in the inset in Fig. 7) and
voltage drop across the bridge at I/Ic(H ) � 1.38 and H = 0.03Hc2

(nonthermal model). In the inset we present snapshots of |�| in the
bridge at different moments in time: (a) t/t0 = 706, (b) t/t0 = 789,
(c) t/t0 = 863, and (d) t/t0 = 1500. Arrow in inset (a) shows the
direction of vortex motion. The narrow peak in the voltage at t � 0 is
connected with initially normal current In = I which transforms to
the superconducting one on the time scale τJ .

FIG. 9. (Color online) Dependence of the time delay (in the
appearance of the first vortex) on the applied current at different
magnetic fields (nonthermal model). In the inset we show the same
dependencies calculated in the quasiequilibrium model.

functions on the supervelocity; see Ref. [29]) and hence the
time for nucleation of the quasi-PSL is underestimated.

When the ratio jmin/jdep is small (for definition of jmin see
Fig. 7) the quasi-PSL may not appear at I ∼ Ic(H ) because in
the part of the film where j is small the vortices move slowly
and |�| has time to recover. Whether quasi-PSL appears or not
at I = Ic(H ) is controlled by τin—the larger τin the smaller
the current threshold value Ith(τin) when quasi-PSL appears
in the bridge [28]. If Ith > Ic(H ), then in the current interval
Ic(H ) < I < Ith there is slow vortex motion and the voltage
signal is small, while for I > Ith there will be a sudden jump
in the voltage connected with the appearance of the quasi-PSL.

Below we consider the situation when Ic(H ) > Ith. Due to
the nonuniform (over width of the bridge) decay of |�| there
is an uncertainty in the definition of the time delay. One of the
variants is to define it as the time needed for the nucleation of
the first vortex after the application of the supercritical current
(this time is shown in Fig. 9). From Fig. 8 it is clear that this
definition underestimates td because a large voltage response
appears only after the nucleation of the quasi-PSL. But a
noticeable difference arises only at relatively large currents
when these two times become comparable with each other (for
example, for the parameters of Fig. 8 the first vortex nucleation
time is ∼700t0, while the PSL nucleation time is ∼900t0).

Our simulations show that the delay in the appearance of
the quasiphase slip line after the nucleation of the first vortex is
mainly determined by the “flight” time of the first vortex across
the bridge. We find that the second, third, and so on vortices
enter the bridge before the first vortex exits. The number of
vortices simultaneously present in the bridge depends on the
width of the bridge, τin, and on the ratio jmin/jdep. For example,
in the bridge with w = 50ξ0 there are two vortices in the
quasiphase slip line [see insets (b) and (c) in Fig. 8], while in
the bridge with w = 120ξ0 there are already four vortices (for
the same τin and ratio jmin/jdep).

The flight time of the first vortex tf could be roughly
estimated using results for the time delay in quasi-1D bridges
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and the knowledge about the basic properties of the vortex.
First of all one should be reminded that next to the vortex
core the superconducting current density ∼jdep. From one
side of the vortex this current density and the transport current
density are summed up and it leads to a local destruction
of superconductivity and vortex motion in that direction. If
the sum of these current densities exceeds jc1 = Ic1/wd, then
the time decay of |�| is rather short (td ∼ τGLIdep/I ; see
Sec. III) and the first vortex moves fast. One can estimate
its average velocity as vaver ∼ ξ (T )/td . For our bridge with
w = 60ξ0 � 16ξ (T = 0.9Tc) the flight time of the first vortex
is about tf � w/vaver ∼ 16τGL ∼ 112t0 (for parameters of
Fig. 8 where Ic(H = 0.03Hc2) = 0.75Idep) which is not far
from the numerical value ∼83t0.

As the current approaches Ic the nucleation time of the first
vortex increases much faster than the first vortex flight time
and the time delay is mainly determined by the former time
(except for very wide films with w � ξ td/τGL ∼ ξτin/τGL).

The above rough estimations are valid if the sum of the
current densities from the vortex and the transport current
exceeds jc1. In the case of a small ratio jmin/jdep this condition
is not fulfilled and the first vortex moves with a much lower
velocity. As a limiting case the quasi-PSL is not nucleated and
at I ∼ Ic there is only slow vortex motion.

In the quasiequilibrium limit we have qualitatively the same
results for the dependence of td (time nucleation of the first
vortex) on the applied magnetic field (see inset in Fig. 9).
Note that in both models at I � Ic(H ) this time delay slightly
decreases with an increase of H (probably it is connected with
a stronger diffusion of the nonequilibrium quasiparticles in
the 2D case in comparison with 1D) while at larger currents td
increases [for the same ratio I/Ic(H )]. The last effect can be
connected with the current redistribution when |�| becomes
locally suppressed near one edge during the transition and the
superconducting current escapes that region which leads to a
locally smaller value of the current density.

V. DYNAMIC RESPONSE ON AN ALTERNATING
CURRENT PULSE

In this section we study the dynamic response of the
superconducting bridge on an alternating current pulse with
amplitude Iac larger than Ic and with a zero time average
[the ac current pulse is modeled as one period of the
sinusoid I = Iacsin(2πt/Tac)]. Our interest in this problem
arises from recent work [16] where the voltage response
of the superconducting YBCO bridge on a short pulse of
synchrotron radiation (with a duration of several picoseconds)
was experimentally observed even in the absence of dc
current. Due to the absence of a bolometric origin of the
resistive response authors supposed that the electric field of
the electromagnetic radiation accelerates the superconducting
electrons and when the radiation induced current exceeds the
critical current a finite voltage appears in the bridge.

Based on the results of Secs. III–IV we may give the
following rough criterion: At given amplitude Iac a resistive
response does exist when during the ac current pulse the
time interval when |I | > Ic exceeds td (Iac), where td (Iac)
corresponds to the time delay on the abrupt switching on of
the dc current with amplitude Iac. We numerically checked
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FIG. 10. (Color online) Time dependence of the voltage in the
2D superconducting bridge during an ac current pulse (marked as a
dotted line). In a relatively narrow range of amplitudes of the current
pulse the larger voltage appears only for one direction of the current.
In the inset we show the time dependence of the order parameter in
the center of the bridge. Calculations are made within the nonthermal
model.

and confirmed this idea on the example of a quasi-1D
superconducting bridge. We also find one interesting effect
which arises when the amplitude of the ac pulse approaches
some critical value. From Fig. 10 one can see that with
increasing Iac a large voltage appears first in the second half of
the ac current pulse and one needs to increase Iac to observe it
in the first half too. We explain this effect as follows. During the
first half of the pulse the order parameter is getting suppressed
and it does not recover its equilibrium value at t = Tac/2 [when
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FIG. 11. (Color online) Time dependence of the voltage across
the bridge and magnitude of order parameter in the center of
superconductor when ac current pulse (marked as a dotted line) is
applied. In the inset we show spatial distribution of |�| at t = 290t0 (a)
and at t = 800t0. In the second half of the pulse the order parameter
is suppressed strongly along the path of vortex motion which ensures
larger vortex velocity and higher value of the voltage than in the first
half of the current pulse. Calculations are made in quasiequilibrium
model.
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I (t) = 0] due to the finite relaxation time of |�| (see the inset
in Fig. 10 for I = 1.46Ic and I = 1.56Ic). At Tac/2 < t < Tac

there is further suppression of |�| and it goes to zero (when
Iac is sufficiently strong) and a highly resistive state appears
in the bridge (in the used 1D bridge it is realized as a phase
slip process). As a result the time-averaged voltage is not
equal to zero and its sign depends on the phase of the ac
current pulse—with change of the phase by π the sign of the
time-averaged voltage changes.

Dynamic response of a 2D bridge with nonuniform current
distribution is qualitatively similar to the case of a 1D bridge.
When the amplitude of the ac pulse exceeds some critical value
(at fixed period Tac) the vortices enter the bridge one by one
and they suppress |�| along their trajectory of motion (see
Fig. 11). At t = Tac/2 there are no vortices in the bridge (for
the chosen parameters in Fig. 11) but |�| is suppressed below
its equilibrium value and it facilitates the faster vortex motion
in the second half of the pulse. As a result the voltage is larger
in the second half of the pulse (see Fig. 11).

VI. DISCUSSION

In the first experiment on transient response it was found
that the time delay in Al films does not depend on tempera-
ture when 0.76 < T/Tc < 0.92 [1]. Subsequent experiments
on Al [5–7] and In [4] films found a strong temperature
dependence of td near Tc. A later experiment on a YBCO
bridge again did not reveal any temperature dependence of td in
a wide temperature interval 4.2–68 K [8]. Note that all previous
theories predicted a strong temperature dependence of td near
Tc [2,3] due to the coefficient a(T ) in Eq. (13). In Ref. [8]
authors tried to resolve this problem by the replacement of the
product a(T )τin ∼ τ|�| by a temperature-independent escape
time of nonequilibrium phonons τesc to the substrate. Our
results give physical and mathematical reasons for such a
replacement. In a case in which the escape time of phonons to
the substrate is the longest relaxation time the electrons and
phonons have one temperature which is different from the bath
temperature. In this case one should use the quasiequilibrium
model with τin = τesc and this model predicts a temperature-
independent td [I/Ic(T )] at currents relatively close to Ic [see
the inset in Fig. 6 and Eq. (16)].

In the case when there is good thermal connection between
the superconductor and the substrate and τesc � τe−ph � τe−e

the nonthermal model is more relevant. This model predicts
strong temperature dependence of td near Tc (see inset in
Fig. 4) which is even stronger than that following from
Refs. [2,3] because of the temperature-dependent Y (T ). In a
more complicated situation the times τe-ph, τe-e, and τesc could
be comparable with each other which brings a more complex
temperature dependence of td (T ) (it should be something in
between the two limiting cases considered here).

In our calculations we neglect the temperature dependence
of τin. It is approximately valid when τin = τesc and not
in the case when τin = τe-ph ∼ 1/T 3 (this temperature depen-
dence comes from the Debye model of phonons). However, if
one does not go far from Tc it gives only small corrections in
τe-ph [for example, τe−ph(0.9Tc) � 1.4τe-ph(Tc)].

How is the time delay modified when we consider low
temperatures? At low temperatures there is an exponential

decay of Y (T ) when kBT � �eq [which follows from the
general expression for Y (T ); see Eq. (9)] and it formally leads
to a fast decrease of td when T → 0 despite the increase of
τin = τe-ph (in the nonthermal model where the phonons are in
equilibrium). But one should remember that Eqs. (2)–(5) were
derived at T ∼ Tc (when �eq � kBT ) and many terms were
omitted, which can become important at low temperatures.
Therefore this question needs additional investigation both in
nonthermal and quasiequilibrium limits.

Our predictions for the dependence of the time delay of
narrow superconducitng bridges/films (with width ξ � w �
λ2/d) on the applied magnetic field could be checked by
an experiment. We predict that in relatively weak magnetic
fields 0 < H � �0/4πξw (when the superconductor is in the
Meissner state) the time delay depends weakly on H for I �
Ic(H ) and for larger currents I � Ic(H ), td should increase
with increasing H . The crucial effect for the observation of
long delay times at I ∼ Ic(H ) is the absence of trapped vortices
in the superconductor. Indeed, our calculations show that for
not very wide films w � ξ td/τGL ∼ ξτin/τGL the time delay
is determined mainly by the nucleation time of the first vortex
and the presence of trapped vortices should decrease td .

Our theoretical results for the dynamic response of a super-
conducting bridge on the short ac current pulse qualitatively
resembles some of the experimental results of Ref. [16].
Namely, we also find nonzero voltage response in the absence
of a dc current and a change of its sign when the phase of
the ac current changes by π . However, we use a very simple
shape of the ac current pulse (sinusoid) which is drastically
different from the asymmetric pulse in the experiment (see
Fig. 9 in Ref. [16]). If the pulse is asymmetric (the amplitude
of the current of one sign is much larger than the amplitude of
the current of the opposite sign), then the sign of the voltage
response is determined by the largest current in the pulse. This
makes it difficult to directly compare our results with those
of Ref. [16] but in any case we predict that the response may
appear only if the duration of the pulse is larger than the time
delay at the largest amplitude of the current pulse.

In Ref. [16] no external magnetic field was present but
the current distribution probably was nonuniform across the
bridge both due to current-crowding effect at the ends of
the bridge [15] and the small aspect ratio L/w ∼ 0.44 [30].
Indirectly it could be seen from the measured current-voltage
(IV ) characteristic which has a low voltage tail at currents
close to Ic and a sharp voltage jump at large currents (see
Fig. 4 in Ref. [16]) which resembles the IV curves of wide
superconducting bridges with w � λ2/d (see Fig. 2 in [31]).
The width of the used bridge (w = 4.5 μm) satisfies the
condition w � ξτin/τGL [where we use τin ∼ 1.7 × 10−11 s at
T = 0.9Tc [32] and ξ (T = 0.9Tc) ∼ 5 nm] which means that
the main contribution to the time delay comes from the forming
of a quasiphase slip line. It is clear that the last time depends
not only on the intrinsic parameters of the superconductor (τin)
but also on the width of the bridge.

VII. CONCLUSION

In our work we study the dynamic response of 1D and
2D superconducting bridges after the abrupt switching on
of the supercritical current. We present calculations near
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the critical temperature of the superconductor in two limits:
(i) nonthermal limit, when the energy relaxation time of
electrons due to electron-phonon interaction is the shortest
one and the phonons are assumed to be in equilibrium, and (ii)
quasiequilibrium limit when the energy relaxation time of elec-
trons is determined by the escape time of the nonequilibrium
phonons to the substrate and one can use the local temperature
approach. We find that in both limits the fastest decay of the
superconducitng order parameter occurs near the ends of the
homogenous bridge or, for a weakly inhomogenous bridge, in
defect places where the local critical current is smallest. We
find that the time decay of |�| is smaller than in the model
with spatially uniform suppression of |�| due to the diffusion
of nonequilibrium (“cooled”) quasiparticles from the region
where |�| decays faster. Smearing of the density of states
and the spectral functions at energies close to |�| (arising
from finite supervelocity) is another factor which leads to a
decrease of td . Time delay does not depend on the temperature
in the quasiequilibrium limit (at currents slightly exceeding Ic)
which is in strict contrast with the nonthermal model which
predicts a strong temperature dependence of td taken at the
same values I/Ic(T ).

Dynamic response of the 2D bridge with nonuniform
current distribution resembles the response of the bridge with
uniformly distributed current but it has also some qualitative
differences. The superconducting state in a 2D bridge is
destroyed by the appearance of vortices and the subsequent
nucleation of the quasiphase slip line across the bridge. For
not very wide films w/ξ � τin/τGL the nucleation time of the
first vortex and nucleation time of the quasiphase slip line are
close to each other at currents not far from Ic. By varying
the weak applied magnetic field one may change the level of
nonuniformity in the current distribution and tune the time
delay.

A voltage response of the superconducting bridge on an
alternating current pulse (sinusoidlike) is predicted if the
duration of the pulse is larger than the time delay after
the abrupt switching of the current with magnitude equal to the
amplitude of the ac current pulse. We also find that the time-
averaged voltage is not zero despite the zero time-averaged
current and its sign changes when the phase of the ac current
is changed by π .
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APPENDIX: DERIVATION OF THE HEAT
CONDUCTANCE EQUATION

Here we derive the heat conductance equation which gov-
erns the dynamics of the local temperature of the quasiparticles

in the quasiequilibrium limit when the electric field E is small
(or E is finite only during a short time interval �τGL) and
one may neglect the Joule heating. First of all from Eq. (4) it
follows that

∂N1

∂t
+ ∂|�|

∂t

∂R2

∂ε
− 4Dqs

�

∂qs

∂t

∂R2N2

∂ε
= 0. (A1)

In the next step we multiply Eq. (A1) by fL, add it to
the equation for fL [Eq. (2)], and then multiply the final
equation by N0ε and integrate over the energy. As a result
we obtain (with the help of the self-consistency equation
�/ν = 1/2

∫
R2fLdε, where ν is a coupling constant) the

equation for the energy balance (per unit volume)

∂

∂t

[
2N0

∫ ∞

−∞
εN1fLdε − |�|2/ν

]

= 2N0D∇
(∫ ∞

−∞
ε
(
N2

1 − R2
2

)∇fLdε

)

− 2N0

τin

∫ ∞

−∞
εN1

(
fL − f 0

L

)
dε. (A2)

In Eq. (A2) the term in brackets on the LHS corresponds to
the energy of the electrons per unit volume E = F + T S (S
is the entropy and F is the free energy per unit volume). This
equation [here with omitted terms which incorporate effects
of Joule dissipation and coupling between transverse fT and
longitudinal fL parts of f (ε)] was originally derived in [21]
[see Eq. (C.4) there]. We seek for the solution of this equation
in the form

fL(ε) = tanh(ε/2kBTloc), (A3)

and insert it in Eq. (A2). After integration over energy we find
the equation for the temperature of quasiparticles

∂

∂t

(
N0π

2k2
BT 2

loc

3
− N0|�|2 Tloc

Tc

)

= 2N0Dπ2k2
B

3
∇ (Tloc∇Tloc) − N0π

2k2
B

3

T 2
loc − T 2

τin
. (A4)

In the derivation of Eq. (A4) we used the Ginzburg-Landau
expression for the free energy F , the expression for the entropy
S of the superconductor near Tc [S = 2π2N (0)k2

BT /2 −
N (0)|�|2/Tc] and assume that � satisfies the time-dependent
Ginzburg-Landau equation [Eq. (3)]. We also neglect terms
∼|�|4 in E which leads to ∂|�|4/∂t ∼ �4

eq/τGL ∼ (1 −
T/Tc)3 in the RHS of Eq. (A4) and which is small near Tc [note
that it has the same smallness as the neglected Joule dissipation
jE ∼ σnj

2
dep ∼ (1 − T/Tc)3]. In the framework of Eq. (A4)

the cooling of quasiparticles due to a decreasing |�| has a
simple physical origin—because of energy conservation the
temperature of quasiparticles should go down to compensate
the energy increase due to the suppression of |�|.

When the deviation from the equilibrium temperature is
small, |Tloc − T | = |δTloc| � T , one may linearize Eq. (A4)
and we arrive at Eq. (6).
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