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Chiral magnets support topological skyrmion textures due to the Dzyaloshinskii-Moriya spin-orbit interaction.
In the presence of a sufficiently large applied magnetic field, such skyrmions are large-amplitude excitations of
the field-polarized magnetic state. We investigate analytically the interaction between such a skyrmion excitation
and its small-amplitude fluctuations, i.e., the magnons in a clean two-dimensional chiral magnet. The magnon
spectrum is found to include two magnon-skyrmion bound states corresponding to a breathing mode and, for
intermediate fields, a quadrupolar mode, which will give rise to subgap magnetic and electric resonances. Due
to the skyrmion topology, the magnons scatter from an Aharonov-Bohm flux density that leads to skew and
rainbow scattering, characterized by an asymmetric differential cross section with, in general, multiple peaks.
As a consequence of the skew scattering, a finite density of skyrmions will generate a topological magnon Hall
effect. Using the conservation law for the energy-momentum tensor, we demonstrate that the magnons also
transfer momentum to the skyrmion. As a consequence, a magnon current leads to magnon pressure reflected in a
momentum-transfer force in the Thiele equation of motion for the skyrmion. This force is reactive and governed
by the scattering cross sections of the skyrmion; it causes not only a finite skyrmion velocity but also a large
skyrmion Hall effect. Our results provide, in particular, the basis for a theory of skyrmion caloritronics for a
dilute skyrmion gas in clean insulating chiral magnets.
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I. INTRODUCTION

The discovery of a magnetic skyrmion lattice in cubic chiral
magnets by Mühlbauer et al. [1] has triggered a flurry of
interest in magnetic skyrmion textures. These magnets inherit
the chirality from their B20 chiral atomic crystal structure
allowing for a spin-orbit Dzyaloshinskii-Moriya interaction,
which energetically stabilizes twisted modulated magnetic
textures such as helices and skyrmions; see Fig. 1. The
possibility of magnetic skyrmion textures in B20 compounds
has been envisioned in early seminal work by Bogdanov and
collaborators [2–4]. They encompass a variety of materials
with different electronic characteristics, for example the metals
MnSi [1,5] and FeGe [6], the semiconductor Fe1−xCoxSi [7,8],
and the insulator Cu2OSeO3 [9,10], that nevertheless share the
same magnetic properties and possess similar magnetic phase
diagrams.

The excitement aroused by skyrmions is attributed to their
topological properties. They are characterized by a finite
topological winding number that is, e.g., at the origin of a
topological Hall effect [11,12], a skyrmion-flow Hall effect
[13], and a concomitant emergent electrodynamics [14,15]
in the metallic B20 compounds. Moreover, their topological
origin also results in a finite gyrocoupling vector in the Thiele
equation [16], which describes their magnetization dynamics,
and, as a consequence, the skyrmion motion is governed by
a strong spin-Magnus force [17–20]. This peculiar dynamics
combined with the smoothness of the skyrmion texture allows
for spin-transfer torque phenomena at ultralow threshold
currents [18,21–24], which makes magnetic skyrmion matter
interesting for spintronic applications [25]; see Ref. [26] for
a recent review. In insulating chiral magnets, skyrmions are
also associated with interesting thermal spin-transport effects.
A thermal gradient is predicted to induce a skyrmion motion
that, counterintuitively, is toward the heat source together with
a skyrmion Hall effect [27–29]. Moreover, a thermal skyrmion

ratchet has been realized with the help of the topological
magnon Hall effect that arises due to magnon skew scattering
off skyrmions in the material [30].

A prerequisite for a better understanding of such phenom-
ena, however, is a detailed analysis of the magnon-skyrmion
interaction. For the skyrmion lattice, it is known that apart from
the long-wavelength spin-wave excitations [31,32], there are
three magnetic resonances with finite excitation frequencies,
a single breathing mode, and two gyration modes [33–35].
A natural question arises whether a similar mode spectrum
exists for a single magnetic skyrmion within a spin-polarized
background. A numerical study of the magnon-skyrmion
bound states has been recently carried out by Lin et al. [36].
On the other hand, the scattering of magnons from a single
skyrmion has been investigated with the help of micromagnetic
simulations by Iwasaki et al. [37]. A characteristic skew
scattering was found that was attributed to an emergent Lorentz
force that is generated by the skyrmion topology. Moreover,
the simulations revealed that the skyrmion experiences a
magnon pressure pushing it toward the magnon source,
which was explained in terms of momentum conservation
[37].

FIG. 1. (Color online) Skyrmion texture of a chiral magnet.
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In the present work, we investigate the magnon fluctu-
ations in the presence of a skyrmion texture analytically.
Starting from the nonlinear sigma model description of a
two-dimensional chiral magnetic system, we derive in Sec. II
the magnon Hamiltonian by expanding around the skyrmionic
saddle-point solution. The spectrum of the magnon-skyrmion
bound states is obtained, and the magnon-skyrmion scattering
cross section is analyzed in Sec. III. A theory for the magnon
pressure, i.e., the momentum-transfer force exerted on the
skyrmion by a magnon current, is presented in Sec. IV,
which in particular explains previous numerical work. We
conclude with a summary and discussion of the results in
Sec. V.

II. THEORY FOR MAGNON-SKYRMION SCATTERING
IN A CHIRAL MAGNET

A. Action of a two-dimensional chiral magnet

Our starting point is the standard model of cubic chiral
magnets [38,39]. We limit ourselves, however, to an effective
two-dimensional magnetic system, thus restricting the spatial
coordinate r to a plane. The orientation of the magnetization
�M(r) = Mn̂(r) is parametrized by a unit vector n̂ that is

governed by the Euclidean action of the following nonlinear
sigma model:

S =
∫ β

0
dτ

∫
d2r L with L = Ldyn + Lstat, (1)

where β = 1/(kBT ) is the inverse temperature. The La-
grangian consists of two parts. The static part reads

Lstat = ε0

2
[(dαn̂i)

2 + 2Qεiαj n̂idαn̂j − 2κ2n̂B̂], (2)

where here and in the following we use greek indices for two-
dimensional real-space vectors, α = 1,2 with, e.g., d1 = d

dx
,

and latin indices for the magnetization vector, i,j,k = 1,2,3.
εikj is the totally antisymmetric tensor with ε123 = 1. The
spin-orbit Dzyaloshinskii-Moriya interaction is proportional
to Q > 0, which we choose to be positive, representing a
right-handed chiral magnetic system. ε0 is the energy scale
associated with the stiffness, and κ > 0 measures the strength
of the magnetic field. We will consider here only the situation
when the magnetic field is orthogonal to the two-dimensional
plane, B̂ = ẑ. In the following, cubic anisotropies [38,39] will
be neglected because they are assumed to be weak and of only
minor importance for the problem investigated here. We also
neglect for simplicity dipolar interactions, which are known
to give rise to quantitative and qualitative corrections though,
e.g., for the magnetic resonances [35].

The dynamic part is given by the Berry phase [40],

Ldyn = − �

a2
�A(n̂)idτ n̂, (3)

where a is a typical distance between the magnetic moments
and τ = it is the imaginary time. The gauge field satisfies
εijk∂ �Aj/∂n̂i = n̂k , and the Euler-Lagrange equations of the ac-
tion Eq. (1) reproduce the standard Landau-Lifshitz equations
for the magnetization. Note that we have chosen the sign of (3)
such that the magnetization vector, n̂, is antiparallel to the spin
vector, as is the case for the magnetic moments of electrons.

TABLE I. Parameters used throughout this work. The value of κ

can be tuned by the strength of the applied magnetic field.

Stiffness energy ε0

Dzyaloshinskii-Moriya momentum Q

Spin density �/a2

Skyrmion radius 1/κ

Dzyaloshinskii-Moriya energy εDM = ε0a
2Q2

Magnon gap energy εgap = ε0a
2κ2

Magnon mass Mmag = �
2/(2ε0a

2)

We neglect throughout this work additional degrees of freedom
that might give rise to dissipation usually represented by a
phenomenological Gilbert damping.

1. Length scales and parameters

The model (1) possesses three generally different length
scales: a, 1/κ , and 1/Q. We are interested here in the parameter
regime where a single skyrmion is a topologically stable
excitation of the magnetic system, which is the case for
intermediate values of the magnetic field, κ ∼ Q. Whereas
for small κ � Q the magnetic system becomes unstable
with respect to a proliferation of skyrmions, for very large
values κ � Q the energy density in the core of a skyrmion is
very high, so that amplitude fluctuations of the magnetization
become important, eventually destroying the skyrmion [41].
As we will see below, 1/κ can be identified with the skyrmion
radius. Moreover, we consider the limit of small spin-orbit
coupling implying Qa � 1 to be a small parameter. This
implies, in particular, that a single skyrmion is composed of
many individual spins.

The magnon excitations of the field-polarized ground state
are characterized by a gap and a mass that are given for later
convenience in Table I.

2. Topological charge

We now turn to the discussion of the conserved currents
associated with the Lagrangian (1). In the following, it will
be convenient to use (2 + 1)-dimensional space-time vectors,
for which we use the indices μ,ν,λ = 0,1,2 with the time
derivative d0 = idτ . However, we still reserve the indices
α,β = 1,2 for spatial vectors only; see Table II.

The order parameter n̂ is an element of the two-dimensional
sphere S2. Its second homotopy group is the group of integer
numbers π2(S2) = Z, and, as a result, the order parameter
allows for topological textures in two spatial dimensions. The
associated 2 + 1 topological current vector reads

j top
μ = 1

8π
εμνλ n̂(dνn̂ × dλn̂), (4)

TABLE II. Indices used, e.g., in the discussion of conserved
currents. For the time derivative, we also use the notation
d0 = dt = idτ .

Spin vector indices i,j,k = 1,2,3
Spatial indices α,β,γ = 1,2
Space-time indices μ,ν,λ = 0,1,2
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where ε012 = 1. In case the field configuration n̂ is nonsingular,
i.e., in the absence of hedgehog defects in 2 + 1 space-time,
this current is conserved,

dμj top
μ = 0, (5)

as n̂ is a unit vector and n̂ dνn̂ = 0. The topological charge
density reads explicitly

j
top
0 = 1

4π
n̂ (d1n̂ × d2n̂). (6)

The spatial integral over the charge density is quantized,∫
d2r j

top
0 ≡ W ∈ Z, (7)

and identifies the winding number W of the texture. In this
paper, we focus on the (baby)-skyrmion texture with W = −1.
For later convenience, we note that the topological current can
be expressed in terms of the spin-gauge field of Eq. (3) as
follows:

j top
μ = 1

4π
εμνλ(dν

�A)dλn̂. (8)

There are also important Noether currents of the Lagrangian
L related to momentum and angular momentum conservation
that are discussed in detail in the Appendix.

B. Saddle-point solution of the magnetic skyrmion

For sufficiently large magnetic fields and, thus, large values
of κ , the action (1) is minimized by the fully polarized
state n̂ = ẑ. A large-amplitude excitation of this state is the
magnetic-skyrmion texture with a winding number W = −1;
see Eq. (7). The skyrmion profile is parametrized by n̂T

s =
(sin θ cos ϕ, sin θ sin ϕ, cos θ ) with

ϕ = χ + π/2 and θ = θ (ρ), (9)

in terms of polar coordinates, ρ and χ , of the two-dimensional
spatial distance vector δrT = (ρ cos χ,ρ sin χ ). The Euler-
Lagrange equation deriving from Eq. (2) yields the differential
equation obeyed by the function θ (ρ) [2,3],

θ ′′ + θ ′

ρ
− sin θ cos θ

ρ2
+ 2Q sin2 θ

ρ
− κ2 sin θ = 0, (10)

with the boundary conditions θ (0) = π and limρ→∞ θ (ρ) = 0.
Its solution possesses the asymptotics

θ (ρ) ≈
{

π − c1κρ for ρ → 0,

c2√
κρ

e−κρ for ρ → ∞,
(11)

with positive coefficients c1 and c2, that, however, depend
on the ratio κ/Q. The exponential decay for large distances
identifies 1/κ as the skyrmion radius.

The boundary value problem (10) is easily numerically
solved with the help of the shooting method [42]. Here, the
constant value c1 of the short-distance asymptotics (11) is
varied until one obtains a monotonous function θ (ρ) with the
required exponentially decaying behavior at large distances.
Examples of the numerically obtained profiles are shown in
the inset of Fig. 2. The resulting skyrmion texture is illustrated
in Fig. 1.
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FIG. 2. (Color online) Energy dependence of the single skyrmion
solution as a function of the dimensionless parameter κ2/Q2. The
energy of the skyrmion is positive for κ2 > κ2

cr ≈ 0.8Q2. The negative
skyrmion energy for smaller κ signals an instability of the magnetic
systems toward a proliferation of skyrmions. The inset shows two
skyrmion profiles θ (ρ) for values of κ2/Q2 marked as dots in the
main panel.

Integrating the static skyrmion solution, one obtains for its
saddle-point action S(0)

s = β(εs + εFP), where εFP = −ε0κ
2V

is the energy of the field-polarized state, n̂FP ≡ ẑ, with the
volume V , and εs = ε0E(κ2/Q2) identifies the energy of the
skyrmion. The dimensionless function E is shown in Fig. 2.
The energy of the skyrmion is positive as long as κ > κcr,
where

κ2
cr ≈ 0.8Q2. (12)

For values smaller than the critical value κcr, the magnetic
system becomes unstable toward a proliferation of skyrmions
and, eventually, the formation of a skyrmion lattice. In the fol-
lowing, we concentrate on the regime with positive skyrmion
energy, κ > κcr, where the skyrmion is a large-amplitude
excitation of the field-polarized phase with a positive excitation
energy.

C. Effective theory for magnon excitations in
the presence of a skyrmion

We now consider spin-wave fluctuations, i.e., the magnon
modes in the presence of a single skyrmion in a chiral
magnet. A similar analysis for magnetic solitons and vortices
in ferromagnets has been carried out previously [43–46].
For the parametrization of the magnons, we introduce the
local orthogonal frame êi(r)êj (r) = δij with i,j = 1,2,3 and
ê1(r) × ê2(r) = ê3(r), where ê3(r) = n̂s(r) follows the static
skyrmion profile. We will use the following representation in
terms of polar and azimuthal angle, θ and ϕ, respectively,
introduced above:

êT
1 (r) = (− sin ϕ, cos ϕ,0),

êT
2 (r) = (− cos θ cos ϕ, − cos θ sin ϕ, sin θ ), (13)

êT
3 (r) = (sin θ cos ϕ, sin θ sin ϕ, cos θ ),
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where ϕ = χ + π/2 and θ = θ (ρ). Furthermore, it is conve-
nient to introduce the chiral vectors

ê± = 1√
2

(ê1 ± iê2) (14)

that have the property ê+ê+ = ê−ê− = 0 and ê+ê− =
ê−ê+ = 1.

Due to translation invariance, the energy of the skyrmion
is independent of its position giving rise to two zero modes
associated with translations of the skyrmion [47]. To treat
these zero modes, we introduce two time-dependent collective
coordinates RT (τ ) = (Rx(τ ),Ry(τ )). The remaining massive
fluctuation modes are represented by the dimensionless com-
plex field ψ(r,τ ). We use the parametrization

n̂(r,τ ) = ê3[r − R(τ )]
√

1 − 2|ψ(r − R(τ ),τ )|2

+ ê+[r − R(τ )]ψ(r − R(τ ),τ ) (15)

+ ê−[r − R(τ )]ψ∗(r − R(τ ),τ ).

The orthogonal frame êi depends on the radius ρ and the angle
χ that are associated here with the distance vector δrT =
(r − R)T = (ρ cos χ,ρ sin χ ).

It is clear that this parametrization is invariant under the
local transformation

ê+ → ê+e−iλ, ψ → ψeiλ, (16)

ê− → ê−eiλ, ψ∗ → ψ∗e−iλ, (17)

with λ = λ(r − R(τ ),τ ). In the limit of large distances from
the skyrmion, |r − R(τ )| → ∞, the parametrization assumes
the form

n̂(r,τ ) ≈ ẑ
√

1 − 2|ψ(r − R(τ ),τ )|2

+ 1√
2

(x̂ + iŷ)[−ie−iϕψ(r − R(τ ),τ )]

+ 1√
2

(x̂ − iŷ)[ieiϕψ∗(r − R(τ ),τ )]. (18)

The last two lines allow us to identify the magnon wave
function with respect to an orthogonal frame that becomes
the laboratory frame, x̂, ŷ, and ẑ, at large distances,

ψlab(r − R(τ ),τ ) = −ie−iϕψ(r − R(τ ),τ ). (19)

This will become important later for the discussion of magnon
scattering off the skyrmion. Expanding the action (1) in the
massive field ψ allows us to study their properties and their
influence on the skyrmion.

1. Zeroth order in the massive fluctuation field ψ

In zeroth order in the fluctuation field ψ , the Lagrangian is
given by

∫
d2r L(0) = εFP + εs + L(0), with

L(0) = −A(R)idτ R. (20)

This term originates from the expansion of the dynamical part
of the action (3) and has the form of a massless particle with
coordinate R in the presence of a gauge field A given by

Aα(R) = − �

a2

∫
d2r �A[ê3(r − R)]∂αê3(r − R). (21)

The electric field associated with this vector potential vanishes
as ∂τAα(R) = 0. The effective magnetic field, however, is
finite and determined by the skyrmion number

Beff ≡ εzαβ

∂

∂ Rα

Aβ(R)

= �

a2

∫
d2r n̂s(∂1n̂s × ∂2n̂s) = −4π�

a2
. (22)

Note that in zeroth order in the magnon field ψ , the gauge
field (21) just coincides with the total canonical momentum
[48],

− ∂L(0)

∂(idτ Rα)
= Aα(R) =

∫
d2r T0α

∣∣∣∣
ψ,ψ∗=0

, (23)

where the energy-momentum tensor, Tμν , is defined in
Eq. (A4). The classical equations of motion deriving from
the Lagrangian (20) have the form of a massless particle in a
magnetic field,

G × dt R = 0, (24)

with G = Beff ẑ. They are to be identified with the well-known
Thiele equations for magnetic textures in the absence of
a Gilbert damping, and G is the so-called gyrocoupling
vector [16]. At zeroth order in ψ , these equations of motion
also coincide with Eq. (A7) following from momentum
conservation, implying that the integrated topological current
vanishes.

2. Second order in the massive fluctuations ψ

We now turn to the magnon spectrum and its interaction
with the skyrmion. The scattering of magnons from the
skyrmion does not conserve the magnon number, which is
reflected in the presence of local, anomalous quadratic terms
ψψ and ψ∗ψ∗ in the Hamiltonian. It is therefore convenient
to use the spinor notation,

�ψ =
(

ψ

ψ∗

)
, �ψ† = (ψ∗,ψ). (25)

Expanding the Lagrangian density in second order in the
fluctuation field ψ , one finds after some algebra

L(2) = 1

2a2
�ψ†τ z

�∂τ
�ψ + 1

2a2
�ψ†H �ψ + L(2)

int , (26)

where τ z is a Pauli matrix and we used that the field ψ =
ψ(r − R(τ ),τ ) possesses an explicit and implicit time depen-
dence, dτψ = ∂τψ − (∂γ ψ)dτ Rγ . The bosonic Bogoliubov–
de Gennes Hamiltonian reads

H = ε0a
2

[
− 1∇2 + 2τ z

(
cos θ

ρ2
− Q

sin θ

ρ

)
i∂χ

+1V0 + τ xVx

]
. (27)

The potentials are given by

V0 = 1 + 3 cos(2θ )

4ρ2
− 3Q sin(2θ )

2ρ
+ κ2 cos θ − Qθ ′ − 1

2
θ ′2,

Vx = sin2(θ )

2ρ2
+ Q sin(2θ )

2ρ
− Qθ ′ − 1

2
θ ′2, (28)
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and they only depend on the distance ρ to the skyrmion center
as θ = θ (ρ). Here, ∇2 is the two-dimensional Laplace opera-
tor, which reads in polar coordinates ∇2 = ∂2

ρ + (1/ρ)∂ρ +
∂2
χ/ρ2. For later reference, we note that the derivative in

polar coordinates is given by ∂α = ρ̂α ∂ρ + χ̂α
∂χ

ρ
, with the unit

vectors

ρ̂T = (cos χ, sin χ ), χ̂T = (− sin χ, cos χ ). (29)

By completing the square, the Hamiltonian can also be written
in the form

H = ε0a
2[(−i∇ − τ z�a)2 + 1(V0 − �a2) + τ xVx], (30)

with the gauge field

�a =
(

cos θ

ρ
− Q sin θ

)
χ̂ . (31)

Note that �a assumes here the Coulomb gauge ∇�a = 0.
The interaction between the magnon field �ψ and the zero

mode is given by

L(2)
int = − �

2a2
�ψ†�γ �ψ idτ Rγ . (32)

The interaction vertex reads

�γ = −τ zi∂γ − 1
cos θ

ρ
χ̂γ . (33)

Whereas the first term just combines with the dynamic part
of the Lagrangian (26) to a total time derivative, the second
term derives from a spin connection attributed to the local
orthogonal frame (13).

If the skyrmion velocity vanishes, idτ R = 0, the La-
grangian reduces to the first two terms in Eq. (26). These
terms constitute a Bogoliubov–de Gennes scattering problem
and determine the spectrum of the magnons in the presence of
a skyrmion with idτ R = 0. It is important to note that these
terms and thus the spectrum do not depend on the position of
the skyrmion R itself, as the collective coordinate R can be
eliminated by a change of the integration variable r − R → r
(Ref. [49]).

III. MAGNON SPECTRUM AND SKYRMION
SCATTERING CROSS SECTION

In the following, we investigate the properties of the
magnons by analyzing the eigenvalues and eigenstates of the
Hamiltonian (27). It requires the solution of a Bogoliubov–de
Gennes scattering problem, which then allows us to determine
the magnon-skyrmion bound states and to address the magnon
scattering cross section for the case of a vanishing skyrmion
velocity, idτ R = 0.

A. Bogoliubov–de Gennes scattering problem

The magnons are obtained as eigenstates of the eigenvalue
problem,

H �ψ = ετ z �ψ, (34)

with the Hamiltonian H given in Eq. (27). The Hamiltonian
possesses the following particle-hole symmetry:

τ xKHτxK = H, (35)

where K is complex conjugation, which originates in the fact
that the magnetization is a real quantity. As a consequence,
the spectrum of H is characterized by pairs ±ε of eigenvalues.
In particular, if �ψ is an eigenvector with eigenvalue ε, then
τ xK �ψ is an eigenvector with eigenvalue −ε.

Setting �ψ = eimχ �ηm(ρ) with the angular momentum quan-
tum number m and using H = H (−i∂χ ), the eigenvalue
equation reduces to

H (m)�ηm = ετ z �ηm. (36)

The spectrum of H contains discrete bound states labeled by
the quantum number n and eigenfunctions �ηm,n as well as
scattering states labeled by the energy ε and eigenfunctions
�ηm,ε. These eigenfunctions will be normalized such that∫ ∞

0
dρ ρ �η†

m,nτ
z �ηm,n′ = δn,n′ , (37)

∫ ∞

0
dρ ρ �η†

m,ετ
z �ηm,ε′ = δ(ε − ε′). (38)

Stability of the theory (26) then requires the energy to be
positive, ε � 0. The eigenvectors with negative eigenenergies,
−ε � 0, are then given by τ xKeimχ �ηm = e−imχ �ζ−m, where
�ζ−m = τ x �η∗

m and

H (−m)�ζ−m = −ετ z�ζ−m. (39)

1. Definition of the skyrmion scattering problem

The skyrmion profile decays exponentially, and its scatter-
ing potential is thus well-localized. We recast the Hamiltonian
in terms of a scattering problem H (m) = H0m + Vm. Here H0m

describes the magnons in the absence of the skyrmion,

H0m = ε0a
2

[
1

(
−∂2

ρ − ∂ρ

ρ
+ m2 + 1

ρ2
+ κ2

)
− τ z 2m

ρ2

]
,

(40)

and the skyrmion matrix scattering potential Vm = Vm(ρ) is
given by

Vm(ρ) = ε0a
2[vz(ρ)τ z + v0(ρ)1 + vx(ρ)τ x] (41)

with

vz(ρ) = −2m

(
cos θ − 1

ρ2
− Q sin θ

ρ

)
,

v0(ρ) = 3[cos(2θ ) − 1]

4ρ2
− 3Q sin(2θ )

2ρ
+ κ2(cos θ − 1)

(42)

−Qθ ′ − θ ′2

2
,

vx(ρ) = sin2(θ )

2ρ2
+ Q sin(2θ )

2ρ
− Qθ ′ − θ ′2

2
.

The potential Vm vanishes exponentially for κρ � 1 as illus-
trated in Fig. 3. The anomalous potential vx that couples the
two components of the wave function �η vanishes quadratically
for κρ → 0 and exponentially for κρ → ∞.
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FIG. 3. (Color online) The potentials v0, vx , and vz of Eqs. (42)
in units of εgap plotted as functions of the dimensionless parameter
κρ for a value of κ = Q. All three potentials vanish exponentially for
κρ � 1.

Solutions of the free problem H0m�η(0)
m = ετ z �η(0)

m only exist
for energies

ε = ε0a
2(κ2 + k2) ≡ εgap + �

2k2

2Mmag
(43)

with the radial momentum k � 0. This identifies the magnon
gap εgap = ε0a

2κ2 and the magnon mass �
2/(2Mmag) = ε0a

2;
see Table I. The eigenfunctions are given by

�η(0)
m,ε =

(
1

0

)
1√

2ε0a2
Jm−1(kρ), (44)

where Jν are Bessel functions of the first kind. They are
normalized such that∫ ∞

0
dρ ρ �η(0)†

m,ετ
z �η(0)

m,ε′ = 1

2ε0a2

∫ ∞

0
dρ ρJm−1(kρ)Jm−1(k′ρ)

= δ(ε − ε′), (45)

where we used the completeness relation of the Bessel
functions

δ(k − k′) = k

∫ ∞

0
dρ ρJν(kρ)Jν(k′ρ). (46)

2. Asymptotics of eigenfunctions and scattering phase shifts

For small distances ρκ � 1, the Hamiltonian reduces to

H (m) ≈ ε0a
2

[
1

(
−∂2

ρ − ∂ρ

ρ
+ m2 + 1

ρ2

)
+ 2τ z m

ρ2

]
, (47)

where we have omitted all terms of order O[1/(κρ)]. Note
that the presence of the skyrmion inverts the sign of the linear
m-term for κρ � 1 as compared to the free Hamiltonian (40).
From Eq. (47) follows the asymptotics of the eigenfunction at
small distances,

�ηm ≈
(

c3(κρ)|m+1|

c4(κρ)|m−1|

)
for κρ � 1, (48)

with constant coefficients c3 and c4.
The large-distance asymptotics is governed by the free

Hamiltonian (40) and depends on the energy ε. For energies

below the magnon gap, ε < εgap, the wave function decays
exponentially in κρ. For energies ε = εgap + ε0a

2k2 with
k � 0, the large-distance asymptotics, κρ � 1, is given by

�ηm ≈
(

1

0

)
1√

2ε0a2
[cos(δm)Jm−1(kρ) − sin(δm)Ym−1(kρ)],

(49)

where Yν are the Bessel functions of the second kind, and
we introduced the phase shift δm. The second component is
exponentially small and has been set to zero.

B. Magnon-skyrmion bound states

In the following, we discuss the magnon bound states to be
found within the energy range 0 � ε < εgap.

1. Cross-check: Zero modes

Before turning to a discussion of the bound states, however,
we first perform an important cross-check. Although we
are only interested here in the massive modes with finite
energy, the spectrum of the Hamiltonian must also possess
the zero modes corresponding to infinitesimal translations
of the skyrmion, i.e., ê3[r − R(τ )] ≈ ê3(r) − ∂γ ê3(r)Rγ (τ ).
With the help of Eqs. (13), we find

∂γ ê3 = −θ ′ρ̂γ ê2 + sin θ

ρ
χ̂γ ê1. (50)

This allows us to identify a zero mode with angular momentum
m = −1,

�η zm
−1 = 1√

8

(
sin θ
ρ

− θ ′

sin θ
ρ

+ θ ′

)
, (51)

normalized according to Eq. (37), and the corresponding
partner �ζ zm

1 = τ x(�η zm
−1 )∗. Using the differential equation

(10) obeyed by θ (ρ), one can check explicitly that in-
deed H (−1)�η zm

−1 = H (1)�ζ zm
1 = 0. Translations are then de-

scribed by the wave function ��zm = a �η zm
−1 e−iχ + a∗�ζ zm

1 eiχ ,
where the real and imaginary parts of the coefficient a ∈ C

parametrize translations in the y and x direction, respectively.
Although there are two translational zero modes, it should be
kept in mind that they are represented by a single zero mode in
the spectrum obtained from the eigenvalue equation (36) for
the �ηm wave functions.

2. Massive magnon-skyrmion bound states

The massive bound states with finite energy are determined
by solving the eigenvalue equation (36) numerically using
again the shooting method [42]. This is done by first choosing
a value for the ratio c3/c4 in Eq. (48) as well as the energy
ε and afterward checking whether the numerical solution
of the differential equation allows for a bound state that is
exponentially decaying at large distances. This is iteratively
repeated until a bound state is found. The absolute value for
c3 is fixed afterward by the normalization condition (37).

The resulting energy spectrum is shown in Fig. 4. In the
regime of a stable field-polarized state, κ2 > κ2

cr ≈ 0.8Q2,
see Fig. 2, we find two bound states in addition to the zero
mode that is not shown. There exists a bound breathing mode
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FIG. 4. (Color online) Energy spectrum of magnons in the pres-
ence of a single skyrmion excitation of the field-polarized ground
state. The latter becomes thermodynamically unstable for κ2 < κ2

cr ≈
0.8Q2 (dashed-dotted vertical line); see Eq. (12). In addition to the
continuous magnon spectrum for ε > εgap = εDMκ2/Q2, one obtains
in-gap bound states for smaller energies. The dashed vertical line
signals the local bimeron instability identified by the vanishing of the
quadrupolar eigenfrequency; see the text. The images show snapshots
of the corresponding excitation modes; see also Fig. 5.

with m = 0 for all κ , and an additional bound quadrupolar
mode with m = −2 appears below κ2 � 0.93Q2. The eigen-
frequency of this m = −2 mode decreases with decreasing κ

and eventually turns negative for values of κ2 smaller than

κ2
bimeron ≈ 0.56Q2. (52)

This negative energy eigenvalue corresponds to a local
instability of the theory (26), and it translates to an instability
of the single skyrmion with respect to a static quadrupolar
deformation. Such a deformed skyrmion can also be identified
as a bimeron, and this bimeron instability was previously
pointed out by Ezawa [50]. An additional m = −3 mode ma-
terializes in the intermediate, thermodynamically metastable
regime, κ2

bimeron < κ2 < κ2
cr, and bound states with higher |m|

do not exist in the locally stable regime κ2 > κ2
bimeron. Figure 5

illustrates the space-time dependence of the relevant bound
magnon modes; for movies, see Ref. [51]. All wave functions
�ηm(ρ) for the bound states we have found numerically do not
possess any nodes, i.e., they do not have any zeros for some
finite value of ρ. We were not able to find bound states with a
single or more nodes.

The magnon spectrum of Fig. 4 agrees nicely with recent
results of finite-size diagonalization of the Landau-Lifshitz-
Gilbert equation by Lin et al. [36]. The only qualitative
difference seems to be a hybridization of the m = 0 and
−2 modes close to their crossing at κ2 ≈ 0.875Q2 for the
finite-size system investigated in Ref. [36].

C. Magnon scattering states

Magnon scattering states are obtained for energies ε � εgap.
The corresponding wave functions are also obtained numeri-
cally with the help of the shooting method. For a fixed energy
ε one first finds a value for the ratio c3/c4 of the small-distance

FIG. 5. (Color online) Time dependence of the skyrmion profile
for the bound magnon modes with oscillation period T = �/ε, where
ε is the corresponding eigenenergy. The color code reflects the z

component of the local magnetization. Corresponding movies can be
found in Ref. [51].

asymptotics, Eq. (48), so that the numerical solution for the
wave function �ηm possesses a second component decaying
exponentially with distance, in agreement with Eq. (49). In
a second step, the absolute value of, e.g., c3 is then fixed so
that the large-distance asymptotics of the first component is
consistent with Eq. (49), which ensures that the scattering wave
functions are normalized according to Eq. (38).

The energy dependence of the numerically obtained phase
shifts, δm, is shown for the lowest angular momenta as solid
lines in Fig. 6 for κ = Q.

1. WKB approximation for the phase shift

For the discussion of the WKB approximation, we follow
Langer [52] (see also Ref. [53]), and first substitute for the
radius ρ = ex/κ and �u(x) = �ηm(ex/κ) so that the eigenvalue

0 1 5 10 15
-1

-0.5

0

0.5

1

FIG. 6. (Color online) Phase shifts of the scattering states for
various angular momenta m for κ = Q; numerically exact values
are shown as solid lines, and the dashed lines are obtained within the
WKB approximation. For large angular momenta or high energies,
the WKB approximation provides satisfying results.

094423-7
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FIG. 7. (Color online) Effective WKB potential UWKB, Eq. (57),
of the magnon scattering states for various values of angular
momentum m for κ = Q. In the classically allowed regimes, the
energy of the scattering states obeys ε > UWKB. In the left panel,
classical turning points, ρ0, for the energy ε = 2εgap are indicated by
dots. For certain values of m, the potential develops a local maximum
giving rise to resonances that are reflected in a pronounced energy
dependence of the phase shift.

equation (36) simplifies for any x ∈ (−∞,∞) to[−∂2
x − �(x)

]�u(x) = 0, (53)

where the matrix � is defined by

�(x) = −(m1 − τ z)2 − e2x

(
1 − τ z ε

εgap
+ 1

εgap
Vm(ex/κ)

)
.

(54)

Equation (51) has the form of a two-component Schrödinger
equation. The semiclassical approximation for such a problem
is discussed, for example, in Ref. [54]. With the help of the
WKB ansatz �u(x) = �u0(x)eiS(x) and neglecting derivatives of
�u0(x), the above differential equation is converted into an
algebraic one,

[[S ′(x)]21 − �(x)]�u0(x) = 0. (55)

This equation can be locally diagonalized for each position x.
The interesting eigenvector is the one that becomes propor-
tional to �uT

0 (x) ∝ (1,0) for large distances. The corresponding
eigenvalue denoted as λ(x) then determines the function S ′(x)
with the help of which the phase of the wave function can be
evaluated in the lowest-order WKB approximation,

S(x) =
∫ x

dx ′√λ(x ′) =
∫ ρ

dρ ′
√

λ[log(κρ ′)]
ρ ′ . (56)

The evolution of the eigenvectors with x gives rise to Berry
phases that, however, contribute only in next-to-leading order.
The effective WKB potential

UWKB(ρ) = ε − εgap
λ[log(κρ)]

ρ2κ2
, (57)

is shown in Fig. 7 for κ = Q. This potential possesses a
single classical turning point for angular momenta m � −5
and m � 2. For other values of m, the potential develops
a local maximum, and for certain energies three classical
turning points then appear. Neglecting corrections due to those
additional classical turning points, the scattering phase shift in

the WKB approximation is given by [53]

δWKB
m = lim

ρ̃→∞

∫ ρ̃

ρ0

(√
k2 + κ2 − κ2

UWKB(ρ)

εgap
− k

)
dρ

+ π

2
|m − 1| − kρ0, (58)

where k = κ
√

ε/εgap − 1. The distance ρ0 corresponds here to
the first classical turning point when approaching the potential
from large distances.

The results for δWKB
m are shown in Fig. 6 as dashed lines. It

provides a good approximation to the numerically exact values
(solid lines) for high energies and higher angular momenta
|m|. The sharp resonances for m = −3 and −4 are attributed
to quasibound states of the effective potential (57).

2. Scattering cross section

The scattering amplitude f is defined in terms of the long-
distance asymptotic behavior of the magnon wave function but
in the laboratory orthogonal frame as defined in Eq. (19),

�ψ scatter
lab (r − R) =

(
1

0

)(
eik(r−R) + f (χ )

eikρ

√
ρ

)
, (59)

where (r − R)T = ρ(cos χ, sin χ ). Comparison with Eq. (49)
yields for the scattering amplitude f ,

f (χ ) = e−i π
4√

2πk

∞∑
m=−∞

eimχ (ei2δm+1 − 1), (60)

with the momentum k = κ
√

ε/εgap − 1. Note that the phase
shift δm+1 as defined in the local orthogonal frame (49) enters
the sum with the angular momentum m + 1. The differential
scattering cross section is then given by

dσ (ε)

dχ
= |f (χ )|2. (61)

The total scattering cross section finally reads

σ (ε) = 4

k

∞∑
m=−∞

sin2 δm+1. (62)

An evaluation of the differential scattering cross section
within the WKB approximation is shown in Fig. 8. More
precisely, we calculated the scattering amplitude (60) entering
(61) using the WKB approximation for the phase shifts
(58), and the sum over angular momentum was cut off for
|m| > 30. The cross section exhibits a pronounced asymmetry
with respect to forward scattering, χ = 0, with characteristic
multiple peaks whose positions shift with energy. Note that
a peak in dσ/dχ at a negative angle χ corresponds to a
pronounced scattering in the clockwise direction, i.e., to the
right-hand side from the perspective of the incoming wave.
This so-called skew scattering is also illustrated in Fig. 9,
where we show the scattering wave function in the same WKB
approximation.

We consider here only the elastic scattering of magnons.
There are also inelastic scattering processes, for example when
the magnons excite the breathing bound state with m = 0 in
Fig. 4. The inelastic-scattering cross section of the skyrmion
is beyond the scope of the present work.
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FIG. 8. (Color online) Differential cross section (61) evaluated
within the WKB approximation for various energies ε at magnetic
fields (a) κ2 = Q2 and (b) κ2 = 2Q2. Skew scattering results in a
pronounced asymmetry with respect to forward scattering χ = 0 with
characteristic multiple peaks at high energies.

D. Discussion of the magnon-skyrmion scattering

The skew scattering of magnons was recently observed
in micromagnetic simulations by Iwasaki et al. [37]. These
authors also present a theory for the differential cross section
and explain that the skew scattering arises from an effective
Lorentz force that emerges from the topological skyrmion
texture. The theory of Ref. [37] for dσ/dχ differs from ours,
however, in two aspects. First, the effective gauge potential for
the magnons was assumed to decay algebraically in Ref. [37],
giving rise to a finite total effective flux, whereas ours decreases
exponentially with distance, resulting in a vanishing total
effective flux. Secondly, the resulting effective flux density
that we obtain possesses a singularity at the skyrmion center.
In the following, we explain in detail that this peculiar flux
density profile not only leads to skew scattering but is also at
the origin of rainbow scattering, resulting in multiple peaks in
the differential cross section of Fig. 8.

1. Scattering from an effective magnetic flux

For high energies, ε � εgap, the scattering potential is
essentially governed by vz(ρ) of Eqs. (42), see Fig. 3, which
in particular determines the position of the classical turning
point. As vz(ρ) is proportional to the angular momentum m,
this corresponds to scattering from an effective magnetic flux.
Indeed, the effective gauge potential for the magnons within
the laboratory orthogonal frame is obtained from Eq. (31)

10(a)

(b)

5
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0 4

0 40

FIG. 9. (Color online) Scattering wave function in the WKB
approximation for the energy ε = 20εgap at κ = Q for an incoming
wave with k̂ = x̂. The arrows indicate the position of peaks in the
differential scattering cross section; see Fig. 8. The skyrmion at the
origin is represented by the circle with radius 1/κ . Panel (a) shows
only the scattered wave Re{(1,0) �ψ scatter

lab (r) − eikr} and panel (b)
displays Re{(1,0) �ψ scatter

lab (r)} of Eq. (59) that exhibits the interference
between the incoming and the scattered wave.

with the help of the singular gauge transformation Eq. (19),
ψ → ψlab = −ie−iϕψ , and Eq. (9),

�alab = �a − ∇χ = a
χ

labχ̂ =
(

cos θ − 1

ρ
− Q sin θ

)
χ̂ , (63)

and vz(ρ) = −2ma
χ

lab(ρ)/ρ. This gauge potential �alab is ex-
ponentially confined to the skyrmion area, which according
to Stokes’ theorem implies a vanishing total flux. The
corresponding flux density, however, possesses an interesting
structure. The first term on the right-hand side of Eq. (63)
diverges for small radii as −2/ρ for θ → π giving rise to a
singular flux density,

beff(r − R) ≡ εzαβ∂α�alab,β = −4πδ(r − R) + bsmth
eff (ρ).

(64)

The smooth part reads explicitly

bsmth
eff (ρ) = ∂ρ

(
cos θ − 1

ρ
− Q sin θ

)

+ 1

ρ

(
cos θ − 1

ρ
− Q sin θ

)
. (65)
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FIG. 10. (Color online) Smooth part of the effective magnetic
flux density (65) for various values of κ .

It integrates to

2π

∫ ∞

0
dρ ρ bsmth

eff (ρ) = 2π (cos θ − Qρ sin θ )

∣∣∣∣
∞

0

= 4π

(66)

and thus exactly cancels the singular part. The dependence of
bsmth

eff (ρ) on the radius ρ is shown in Fig. 10 for various values
of κ . For κ2/Q2 � 1.7, it possesses a local maximum, and it
even changes sign as a function of ρ for κ2/Q2 � 1.3.

Why is the flux density singular? Consider the orthogonal
frame after the singular gauge transformation (19) [see
Eq. (16)], e.g., ê+

lab = ieiϕ ê+, as a function of distance from the
skyrmion center. For large distances, θ → 0, and we recover
ê+

lab = 1√
2
(x̂ + iŷ) for θ = 0. On the other hand, very close

to the skyrmion center, θ ≈ π , and ê+
lab ≈ 1√

2
(x̂ − iŷ)ei2χ

becomes dependent on the polar angle χ . It corresponds to
an effectively rotating frame that rotates twice upon encircling
the core once, resulting in the singular flux of −4π in Eq. (64).

Keeping only the effective magnetic scattering potential,
the WKB potential of Eq. (57) simplifies to

UWKB(ρ)

εgap
≈ 1 + (m − 1)2 − 2mρa

χ

lab(ρ)

κ2ρ2
. (67)

At high energies, the classical turning point of this potential is
asymptotically determined by the limiting value ρa

χ

lab(ρ) →
−2 for ρ → 0 corresponding to the scattering off a singular
magnetic string with flux −4π . In this limit, the WKB
scattering phase shift (58) assumes the Aharonov-Bohm form
[55] δWKB

m → δAB
m with

δAB
m = −π

2
|m + 1| + π

2
|m − 1| =

⎧⎪⎨
⎪⎩

−π if m > 0,

0 if m = 0,

π if m < 0.

(68)

This explains the asymptotic values obtained for the phase
shifts in Fig. 6 in the limit of high energies.

In the limit of low energies, ε → εgap, on the other hand,
one expects the phase shifts to obey Levinson’s theorem

generalized to the case of Aharonov-Bohm scattering [56],

δm(εgap) − δm(∞) = πNbound
m − δAB

m , (69)

where Nbound
m is the number of bound states with angular

momentum number m. For our definition of the phase shift,
δm(∞) = δAB

m , and one obtains δm(εgap)/π = Nbound
m . For the

specific value κ2 = Q2 there are two magnon bound states
present; see Fig. 4: the breathing mode with m = 0 and the zero
mode with m = −1. Consequently, one expects all phase shifts
to vanish at the threshold εgap except δ0(εgap) = δ−1(εgap) = π

for κ2 = Q2. This is in agreement with the numerically
obtained values for the phase shifts presented in Fig. 6.
Furthermore, the sharp drop of δ−2(ε) close to the magnon
gap can be attributed to the bound state with m = −2 that
materializes for slightly smaller values of κ .

2. Classical deflection function & rainbow scattering

At fixed energies but in the limit of large angular momentum
|m| � 1, i.e., large impact parameter, the phase shifts δm are
eventually expected to vanish. Combined with the Aharonov-
Bohm constraint, Eq. (68), this has the consequence that δm as a
function of increasing but negative m has to increase toward π ,
and for positive and increasing m it again must increase toward
zero; see the inset of Fig. 11. Treating the phase shift δm as a
continuous function of m (except close to m = 0), it follows
that this function should change curvature. Equivalently, its
derivative, the classical deflection function [57–59]

�m = 2
∂δm

∂m
, (70)

possesses at least one stationary point with �′
m = 0. This is

illustrated in Fig. 11. Note that the positive values obtained for
�m translate to a skew scattering at a mathematically negative
angle χ , which labels the vertical axes of Fig. 8.

Generally, at such a stationary point, multiple classical
trajectories contribute to the scattering cross section, resulting
in so-called rainbow scattering [57]. For a single stationary
point, the scattering amplitude in the classical limit is then
described by the Airy function, resulting in a differential
cross section with a sharp falloff on the dark side and an
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FIG. 11. (Color online) Classical deflection function �m = 2δ′
m

of Eq. (70) for the energy ε = 20εgap for various values of κ . As
a function of increasing κ , the three stationary points merge into
a single maximum. The inset shows the corresponding phase shifts
evaluated within the WKB approximation.
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oscillatory behavior on the bright side of the rainbow angle
�mst for which �′

mst
= 0. Interestingly, the deflection function

in Fig. 11 exhibits for κ2 = Q2 three stationary points whose
contributions will interfere in dσ/dχ , as shown in Fig. 8(a),
with a weight determined by their curvature �′′

m. For increasing
κ , the three stationary points merge into a single maximum,
which in the classical limit governs dσ/dχ at κ2 = 2Q2, as
shown in Fig. 8(b). The change in the number of stationary
points of �m is related to the smooth part of the effective flux
density, see Fig. 10, which substantially alters its profile on a
similar scale of κ .

IV. MAGNON PRESSURE ON THE SKYRMION

Consider a plane wave of magnons impinging on the
skyrmion as in Fig. 9(b). What is the pressure on the skyrmion,
and will it be moving with a finite velocity Ṙ?

A skyrmion motion in a corresponding numerical exper-
iment was recently observed by Iwasaki et al. [37]. It was
suggested by these authors that this motion can be explained in
terms of total momentum conservation, implying, in particular,
that the skyrmion can be considered as a particle with
well-defined momentum. However, the notion of a conserved
momentum for the field theory (1) is subtle [48,60–62]. We
have recognized in Sec. IIC1 that in zeroth order in the massive
modes ψ the skyrmion coordinate, R, obeys the equation of
motion of a massless particle in a magnetic field, Eq. (24).
Its canonical momentum (23) is spin-gauge-dependent, and in
general neither well-defined nor conserved. Nevertheless, it
was argued in Ref. [61] that the coordinates Rα with α = 1,2
are conjugate to each other and, therefore, can be interpreted
as a momentum of the skyrmion texture, as further discussed
in the Appendix.

We explain below that magnons indeed transfer momentum
to the skyrmion. Using the conservation law associated with
translation invariance, we show that a magnon current gives
rise to a magnon pressure in the form of a momentum-transfer
force on the skyrmion. This force enters the Thiele equation of
motion for the skyrmion, which can be interpreted as a constant
flow of momentum from the magnons to the skyrmion, leading
to a constant skyrmion velocity. Evaluating the corresponding
force explicitly, we arrive at an expression for the skyrmion
velocity Ṙ and the skyrmion Hall angle �.

A. Effective skyrmion equation of motion

1. Effective Thiele equation

As shown in the Appendix, the conservation law deriving
from space-time translation invariance reads [see Eq. (A5)]

dμT stat
μν = 4π�

a2
εα0νj

top
α , (71)

where T stat
μν is the energy-momentum tensor obtained from the

static part of the Lagrangian only [see Eq. (A4)], and j
top
α is

the spatial part of the topological current as defined in Eq. (4).
Expanding the topological current up to second order in the

magnon fields, we obtain

j top
α = j

top(0)
0 d0 Rα − 1

8π
εα0β [d0( �ψ†�β �ψ) + dβ( �ψ†τ zid0 �ψ)]

(72)

with the topological charge density of the static skyrmion,

j
top(0)
0 = 1

4π
n̂s(∂1n̂s × ∂2n̂s) = 1

4π

θ ′ sin θ

ρ
. (73)

The vertex �β is just the interaction vertex of Eq. (33).
Integrating the spatial component of Eq. (73) over space, we
arrive at an equation of motion for the skyrmion given at this
order by

G × d0 R = F, (74)

with G = − 4π�

a2 ẑ. It is just the Thiele equation of Eq. (24)
but in the presence of an additional force F, which is
given by

Fα =−
∫

d2r
[
dβT stat

βα + �

2a2
(d0( �ψ†�α �ψ) + dα( �ψ†τ zid0 �ψ))

]
.

(75)

We would like to determine the skyrmion velocity only in
linear response, so that we can limit ourselves to evaluate
the force F in zeroth order in d0 R. In a stationary scattering
situation, the second term on the right-hand side in Eq. (75)
vanishes, and we neglect it in the following. The integrand
then reduces to a total derivative, and the force is given by
a surface integral. Choosing the surface to be a circle with
radius ρL ≫ 1/κ centered around the skyrmion, we finally
obtain

Fα = −ρL

∫ 2π

0
dχ

[
ρ̂βT stat

βα + �

2a2
ρ̂α( �ψ†τ zid0 �ψ)

]
ρL

= −ρL

∫ 2π

0
dχ ρ̂βT

mag
βα

∣∣∣∣
ρL

. (76)

One can verify that for large radii ρL, the integrand is just given
by the spatial component of the energy-momentum tensor of
free magnons,

T mag
μν = ∂Lmag

∂(dμ
�ψlab)

dν
�ψlab + H.c. − δμνLmag, (77)

with the Lagrangian

Lmag = 1

2a2

{
�

2
( �ψ†

labτ
zdτ

�ψlab − (dτ
�ψ†

lab)τ z �ψlab)

+ �
2

2Mmag
(dα

�ψ†
lab)(dα

�ψlab) + κ2 �ψ†
lab

�ψlab

}
(78)

but with the magnon field defined within the laboratory
orthogonal frame, see Eq. (19), and we have used the
expression for the magnon mass Mmag = �

2/(2ε0a
2).

So we arrive at the result that the force, F, is just determined
by the net current of momentum, T mag

βα , carried by the magnons
through the surface of the sample. This net momentum is
transfered to the skyrmion. Indeed, using the results of the
Appendix, we can associate with the skyrmion a momentum
P skyr

α = 4π�

a2 ε0αβ Rβ [61,63,64]. The Thiele equation (74) can
then be rewritten in the following form:

d0 P skyr = F, (79)

which explicitly describes the flow of momentum between the
magnon subsystem and the skyrmion.
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2. Momentum-transfer force on the skyrmion

The force (76) only depends on the magnon wave function
far away from the skyrmion so that we can use its asymptotic
scattering form. We consider a magnon plane wave impinging
from the left-hand side with fixed wave vector k = kx̂ and
on-shell energy ε,

�ψlab(r − R,t) =
√

δ e−iεt/� �ψ scatter
lab (r − R), (80)

as a function of real time t = −iτ . The amplitude is
√

δ, and
�ψ scatter

lab was specified already in Eq. (59). For the on-shell wave
function �ψlab, the Lagrangian Lmag vanishes, and the force is
determined by

Fα = −ρL

∫ 2π

0
dχ ρ̂β

1

2a2

�
2

2Mmag
[(∂β

�ψ†
LAB)(∂α

�ψLAB)

+ H.c.]ρL
. (81)

With the help of the optical theorem

σ = 2

√
2π

k
Im{−ieiπ/4f (χ = 0)}, (82)

we find for the force the explicit expression

F = δ

a2

�
2k2

2Mmag

(
σ‖(ε)

σ⊥(ε)

)
. (83)

It depends on the energy-dependent longitudinal and transver-
sal cross sections,(

σ‖(ε)

σ⊥(ε)

)
=

∫ 2π

0
dχ

(
1 − cos χ

− sin χ

)
dσ (ε)

dχ
. (84)

The force along the magnon wave vector k̂T = (1,0) is
determined by σ‖, which is an angular integral that weights
the factor 1 − cos χ with the differential cross section. This
structure is familiar from transport theory, and it signals that
the flow of magnon momentum remains unaltered for forward
scattering, resulting in a vanishing contribution to the force.
The component of F perpendicular to the wave vector, on the
other hand, is governed by σ⊥ and is here only finite due to the
asymmetric skew scattering.

B. Skyrmion velocity and Hall angle �

The equation of motion (74) is easily solved, and we obtain
a constant skyrmion velocity dt R = d0 R given by

dt Rα = − a2

4π�
ε0αβ Fβ. (85)

The skyrmion velocity reads explicitly

dt R = δ

8π

�k2

Mmag

(
−σ⊥(ε)

σ‖(ε)

)
. (86)

The skyrmion velocity depends on its differential cross section,
and its orientation is governed by σ⊥ and σ‖. In the linear-
response approximation, we can use the differential cross
section evaluated in zeroth order in the velocity interaction
(32), and we can apply the results of the previous section
for dσ/dχ . At higher energies, the skyrmion velocity dt R
is approximately opposed to the direction into which the

FIG. 12. (Color online) Illustration of the magnon pressure and
the resulting skyrmion velocity, dt R. The magnons are emitted from
a source on the left-hand side, see also Fig. 9, and scatter from the
skyrmion which is represented by the circle with radius 1/κ . The
skyrmion experiences the force F given in Eq. (83), which results
in a finite skyrmion velocity dt R of Eq. (86), with a skyrmion Hall
angle � given in Eq. (87). The arrows only illustrate the orientation
but not the length of the corresponding vectors.

magnons are preferentially scattered as σ‖(ε) > 0 and σ⊥(ε) >

0; see the illustration in Fig. 12. Such a direction for the
skyrmion velocity was numerically observed in Ref. [37].

To be more precise, we define the skyrmion Hall angle (see
Fig. 12),

� ≡ arctan
dt Ry

−dt Rx

= arctan
σ‖(ε)

σ⊥(ε)
. (87)

An evaluation of � as a function of energy for various values
of κ is shown in Fig. 13. The Hall angle � for values
κ2/Q2 = 1.25, 1.5, 1.75, and 2 is evaluated here within

FIG. 13. (Color online) The skyrmion Hall angle � as defined
in Eq. (87) as a function of energy for various values of κ; see the
text for details. The inset shows the ratio −�/〈χ〉ε. The Hall angle
is maximal � = π/2 in the limit ε → εgap where magnon s-wave
scattering prevails.
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the WKB approximation and therefore presented only for
energies ε/εgap > 10. The behavior of � for lower energies
is shown for κ2 = Q2, for which we calculated the cross
sections by using the exact phase shifts for angular momenta
−4 � m � 3, while the remaining phase shifts up to |m| � 30
are again evaluated within the WKB approximation and higher
angular momenta are neglected. The scattering at low energies,
ε → εgap, is governed by s-wave scattering corresponding to
the phase shift δm with m = 1 in Eq. (60); see also Fig. 6.
In this limit, the magnon skew scattering is negligible, σ⊥
approximately vanishes, and the force (83) is practically
longitudinal to the incoming magnon momentum, F ∝ x̂. This
results in a maximum Hall angle of � = π/2 for ε → εgap.
For larger energies ε/εgap � 1, on the other hand, there is
substantial magnon skew scattering giving rise to a finite σ⊥
and thus a finite transversal force F⊥ ∝ σ⊥ that reduces �. The
peak in the Hall angle at around ε/εgap ≈ 2.5 for κ2 = Q2

can be attributed to the resonance of the m = −3 mode;
see Fig. 6.

The inset of Fig. 13 compares the skyrmion Hall
angle � with the first moment 〈χ〉ε, with 〈O(χ )〉ε =
1
σ

∫ 2π

0 dχ O(χ )dσ/dχ . It was suggested in Ref. [37] that
the ratio −�/〈χ〉ε assumes the value of 1/2, which we
cannot confirm. This discrepancy is probably attributed to an
insufficient precision in the numerical experiment of Ref. [37].
Inspection of Eq. (87) reveals that a ratio of 1/2 would only
be obtained for a differential cross section with vanishing
higher cumulants so that, e.g., 〈sin χ〉ε = sin〈χ〉ε. In the limit
ε → εgap, the ratio −�/〈χ〉ε even diverges as 〈χ〉ε → 0 in the
limit of s-wave scattering.

V. SUMMARY AND DISCUSSION

A two-dimensional chiral magnet adopts a field-polarized
ground state for a sufficiently large magnetic field perpendicu-
lar to the film corresponding to κ > κcr in Fig. 2. The magnetic
skyrmion then corresponds to a large-amplitude excitation
with positive energy εs . Such topological skyrmion excitations
are always present in an experimental system. Their density
might either be given by a thermal distribution reducing to a
Boltzmann factor e−βεs at lowest temperatures, or depend on
the history of the sample because the topological protection of
skyrmions results in long equilibration times.

In any case, the presence of a skyrmion will modify
the properties of the small-amplitude fluctuations, i.e., the
magnon excitations. We investigated the basic aspects of this
magnon-skyrmion interaction in the present work. Starting
from the nonlinear sigma model for chiral magnets (1), we
first derived the magnon Hamiltonian (27) by expanding
around the skyrmionic saddle-point solution. As the skyrmion
scattering potential does not preserve the magnon number, this
Hamiltonian was found to possess a (bosonic) Bogoliubov–de
Gennes form. The Hamiltonian also includes a term that
explicitly depends on the skyrmion velocity (32), whose
consequences, however, have not been investigated yet in this
work

Solving the Bogoliubov–de Gennes scattering problem, we
first determined the magnon spectrum. In the magnetic field
regime where the field-polarized state is stable, we found
two magnon-skyrmion bound states: the breathing mode with

TABLE III. Moments that are excited by the magnon-skyrmion
bound state m = 0 and −2. Mi , Qij , and Ti are the dipole,
quadrupolar, and toroidal moments, respectively; see Eq. (88).

Breathing mode m = 0 M3,Q11,Q22,Q33,T3

Quadrupolar mode m = −2 Q11,Q22,Q12,Q21

m = 0 and the quadrupolar mode with m = −2; see Figs. 4
and 5. For a visualization of these modes, see also Ref. [51].
For a smaller but finite magnetic field, the quadrupolar
eigenfrequency eventually vanishes signaling a local bimeron
instability of the single skyrmion. Our results are in good
agreement with a recent numerical diagonalization study [36].

The bound magnon modes will give rise to weak subgap
resonances in magnetic or electric resonance experiments
whose weight will be proportional to the skyrmion density
in the sample. To determine their selection rules, we consider
here the magnetic dipole, Mi , quadrupolar, Qij , and toroidal
moment, Ti [65], defined as follows:

Mi =
∫

d r n̂i(r),

Qij =
∫

d r
(

n̂i(r)n̂j (r) − 1

3
δij

)
, (88)

Ti =
∫

d r εiαj rαn̂j (r).

In the field-polarized state without a skyrmion, only the
components M3 and Qii with i = 1,2,3 are finite and
proportional to the volume V , whereas all other components
vanish. The skyrmion not only leads to a modification of
these finite components of order O(V0), but it also induces
a finite toroidal moment T3 that scales as the third power of
the skyrmion radius, 1/κ ,

T3 = 2π

∫ ∞

0
dρ ρ2 sin θ = 1

κ3
T (κ2/Q2), (89)

where T is a dimensionless function. If the skyrmion is
excited either with the breathing mode or the quadrupolar
mode, oscillations of certain moments arise that are listed in
Table III. An ac magnetic or electric field could couple to these
moments and thus excite the corresponding magnon-skyrmion
bound state. An ac magnetic field perpendicular to the film
directly couples to M3, and will therefore excite, similar to
the skyrmion lattice [33], the breathing mode of the skyrmion.
A perpendicular ac electric field, on the other hand, couples
to the polarization P3, which for the insulating chiral magnet
Cu2OSeO3 is in general given by [66,67] P ∝ (Q23,Q31,Q12),
so that it will excite the quadrupolar mode. As the toroidal
moment couples to the cross product of the electric and
magnetic field, T ∼ E × H [65], in-plane ac electric and
magnetic fields might also be able to excite the breathing
mode.

Apart from the spectrum of magnon bound states, we also
discussed the differential cross section dσ/dχ for magnon
scattering off the skyrmion. The scattering potential, in par-
ticular, includes an Aharonov-Bohm flux density that governs
the scattering characteristics at large magnon energies. While
the total flux vanishes, the density possesses a singularity
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at the skyrmion core that is related to the nontrivial skyrmion
topology. As explained in detail in Sec. III D, this specific flux
density profile is at the origin of rainbow scattering, giving
rise to an asymmetric differential cross section with oscillating
behavior as a function of the scattering angle; see Fig. 8. Our
results for dσ/dχ differ from the theory presented in Ref. [37],
which did not find oscillations of dσ/dχ characteristic for
rainbow scattering. Importantly, the magnons skew scatter
from the skyrmion (see Fig. 9), as previously pointed out
in Ref. [37]. This skew scattering generates a topological
magnon Hall effect [30] that is proportional to the skyrmion
density.

The magnons not only scatter off but also transfer mo-
mentum to the skyrmion. The resulting magnon pressure
on the skyrmion due to a constant magnon current was
determined in Sec. IV. Starting from the conservation law
associated with translation invariance of the action (1), which
is discussed in detail in the Appendix, we demonstrated that
the magnon pressure enters as an effective force in the Thiele
equation of motion (74) for the skyrmion. This effective force
is determined by the net transfer of magnon momentum.
It depends, in particular, on the magnon differential cross
section, and it is thus a reactive momentum-transfer force. The
solution of the resulting Thiele equation predicts a skyrmion
velocity with a component longitudinal and transverse to the
magnon current. The transverse component is attributed to
the longitudinal scattering cross section σ‖, giving rise to
a large skyrmion Hall effect. Due to the asymmetric skew
scattering, there is also a finite transversal cross section σ⊥,
which determines the longitudinal motion. This longitudinal
motion is, interestingly, antiparallel to the magnon current,
i.e., it is toward the magnon source. Our theory provides an
explanation of the numerical experiment in Ref. [37] where a
corresponding skyrmion motion was observed.

We note that our result for the magnon pressure due to
momentum transfer is distinctly different from the conclusion
drawn from the mode-decomposition theory of Ref. [68],
which has been invoked to explain the skyrmion motion in
Refs. [27–29]. The latter theory, in particular, predicts in the
limit of vanishing Gilbert damping a vanishing skyrmion Hall
effect and a universal longitudinal skyrmion motion antiparal-
lel to the magnon current that is independent of the differential
magnon scattering cross section in contrast to our findings,
Eq. (86). We believe that our results for the magnon scattering
cross section as well as for the magnon pressure pave the
way for a genuine theory of skyrmion caloritronics [69],
i.e., thermal spin-transport phenomena for a dilute gas of
skyrmions in clean insulating chiral magnets.

There are several interesting open issues to be explored
in future work. Most importantly, the interaction between
the magnons and the skyrmion velocity, Eq. (32), naturally
produces in second-order perturbation theory an effective
retarded skyrmion mass. It is an important open question
whether such a retarded mass allows for an additional
collective magnon-skyrmion bound state corresponding to
a cyclotron mode of the massive Thiele equation [70,71].
Such a mode would be reminiscent of the gyration modes
observed as magnetic resonances in the skyrmion lattice phase
[33–35].
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APPENDIX: CONSERVED NOETHER CURRENTS

We present a discussion of important Noether currents
of the Lagrangian L of Eq. (1), i.e., the conservation laws
deriving from translation and rotation invariance. Whereas
these conservation laws are manifest spin-gauge-invariant,
the corresponding canonical energy-momentum tensor and
angular momentum vector current themselves depend on the
spin-gauge potential [48,60–62]. In general, this precludes
the definition of a conserved total canonical momentum and
angular momentum. However, in case the topological charge
is preserved within the sample, a definition of a conserved
total momentum and angular momentum becomes possible,
in agreement with previous findings by Papanicolaou and
Tomaras [61]. For the indices, we use the conventions of
Table II.

1. Canonical energy-momentum tensor

The theory (1) is translationally invariant so that the
canonical energy momentum tensor

Tμν = ∂L
∂(dμn̂)

dνn̂ − δμνL (A1)

is conserved,

dμTμν = 0. (A2)

The tensor Tμν depends on the spin-gauge field �A of Eq. (3).
For example, the canonical momentum density

T0α = − �

a2
�Adαn̂ (A3)

is determined by �A [48]. Nevertheless, the conservation law
(A2) itself is gauge-invariant. This is best seen by first
defining the energy-momentum tensor deriving from the static
Lagrangian Lstat only,

T stat
μν = ∂Lstat

∂(dμn̂)
dνn̂ − δμνLstat. (A4)

The conservation law (A2) can then be written in the manifest
spin-gauge invariant form

dμT stat
μν − 4π�

a2
εμ0νj

top
μ = 0, (A5)

where we have used the identity of Eq. (8). So we arrive at the
result that the divergence of T stat

μν is given by the topological
current of Eq. (4).

Assuming that the integral over the spatial divergence∫
d2r dαT stat

αμ = 0, i.e., that T stat
αμ vanishes on the surface of the

two-dimensional sample, it follows from the time-component
of Eq. (A5) the conservation of total energy, d0E = 0, with

E ≡ −
∫

d2r T stat
00 =

∫
d2r Lstat. (A6)
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Due to the anomalous form of the conservation law, however,
we are in general not able to define a conserved total
momentum. Instead, it follows from the spatial component of
(A5) with T stat

0α = 0 that the spatial integral over the topological
current vanishes,

− 4π�

a2
εα0β

∫
d2r j top

α = 0. (A7)

However, with the additional assumption that the conservation
law for the topological current of Eq. (5) holds and that the
product rαj

top
β vanishes on the surface, we can write∫

d2rj top
α =

∫
d2r

[ − dβ

(
rαj

top
β

) + j top
α

]
= −

∫
d2r rαdβj

top
β = d0

∫
d2r rαj

top
0 . (A8)

In this case, following Ref. [61] we can identify a total
conserved momentum,

Pα = −4π�

a2
ε0αβ

∫
d2r rβj

top
0 (A9)

with the first moment of the topological charge distribution.
In Ref. [61], this result for the conserved momentum was

obtained by starting directly from the equation for the time
derivative of the topological charge density,

4π�

a2
d0j

top
0 = ε0αβdαdγ T stat

γβ , (A10)

which can be derived from Eq. (A5) by applying the derivative
εα0νdα with α = 1,2, summing over ν, and using the conser-
vation law for the topological current Eq. (5).

2. Angular momentum

For completeness, we also discuss the conservation law
deriving from rotational invariance. Due to the spin-orbit
coupling Q, only the total angular momentum vector current
obeys a conservation law. In the following, we first discuss
the spin angular momentum, afterward the orbital angular
momentum, and finally the total angular momentum.

a. Spin angular momentum

From the rotations by an infinitesimal angle ω of the
magnetization around the magnetic field direction B̂ = ẑ,
n̂i → n̂i + δn̂i with

δn̂i = ωεizkn̂k, (A11)

it follows that

dμSμ = −∂Lstat

∂ni

εizkn̂k − ∂Lstat

∂dμn̂i

εizkdμn̂k

= −ε0Q(n̂zdαn̂α − n̂αdαn̂z). (A12)

The 2 + 1 spin angular momentum current,

S0 = − �

a2
n̂z, (A13)

Sα = − ∂Lstat

∂dαn̂i

εizkn̂k

= −ε0[εizkn̂kdαn̂i + Q(n̂zn̂α − δzα)], (A14)

is not conserved as the right-hand side of Eq. (A12) is finite
due to the spin-orbit coupling Q. Note that according to our
sign convention in Eq. (3), the magnetization vector points
antiparallel to the spin vector, as in the case for electrons.

b. Orbital angular momentum

Performing an infinitesimal orbital rotation around the z

axis,

δn̂i = −ωεα0β rβdαn̂i , (A15)

we obtain

dμLμ = εβ0αTαβ. (A16)

The angular momentum

Lμ = εβ0γ rγ Tμβ (A17)

is not conserved because the energy-momentum tensor is not
symmetric due to the spin-orbit coupling Q.

c. Total angular momentum

The theory (1) is invariant with respect to a combined
rotation of spin and real space around the magnetic field
direction. As a result, the total angular momentum

Jμ = Sμ + Lμ (A18)

is conserved,

dμJμ = 0, (A19)

which follows from Eqs. (A12) and (A16). Similarly as for
the energy-momentum tensor, the conservation law (A19) is
spin-gauge-invariant, whereas Jμ itself is not. Introducing the
part of the angular momentum current

J̃μ = Sμ + εβ0γ rγ T stat
μβ (A20)

that is manifest-invariant, the conservation law assumes the
form

dμJ̃μ + 4π�

a2
rαj top

α = 0. (A21)

With the assumption that the current J̃α vanishes on the
surface of the two-dimensional sample

∫
d2r dαJ̃α = 0, we

find

d0

∫
d2r J̃0 + 4π�

a2

∫
d2r rαj top

α = 0. (A22)

The time dependence of the spatial integral over the density,
J̃0 = − �

a2 n̂z, is thus determined by the integrated scalar prod-
uct of the position vector r with the spatial topological current
j

top
α . With the additional assumption that the topological

current is conserved, Eq. (5), and that the product r2j
top
α

vanishes on the surface, we can rewrite the last term as a
time derivative,∫

d2r rαj top
α =

∫
d2r

1

2

(
dα

(
r2j top

α

) − r2dαj top
α

)

= d0

∫
d2r

1

2
r2j

top
0 . (A23)
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As a result, we finally obtain

J =
∫

d2r
(

− �

a2
n̂z + 2π�

a2
r2j

top
0

)
(A24)

for the conserved total angular momentum, d0J = 0 [61].

3. Momentum and angular momentum of the skyrmion

It is instructive to compute the momentum and the angular
momentum attributed to the magnetic skyrmion solution of
Sec. II B. Neglecting the massive fluctuations, ψ , we obtain
for the momentum (A9)

P skyr
α = −4π�

a2
ε0αβ

∫
d2r rβj

top
0 (r − R)

∣∣∣∣
ψ,ψ∗=0

= 4π�

a2
ε0αβ Rβ. (A25)

On this level of approximation, the conservation of P skyr
α

directly follows from the equation of motion (24),

d0 P skyr
α = 4π�

a2
ε0αβd0 Rβ = (G × d0 R)α = 0. (A26)

The angular momentum (A24) of the fully field-polarized
state, n̂ = ẑ, is already nonzero and given by the total spin
of the sample, JFP = −V�/a2, where V is the volume.
Neglecting again the massive fluctuations, we find for the
angular momentum attributed to the skyrmion

Jskyr = J
∣∣∣∣
ψ,ψ∗=0

− JFP

=
∫

d2r
(

− �

a2
(n̂z − 1) + 2π�

a2
r2j

top
0

)∣∣∣∣
ψ,ψ∗=0

=
∫

d2r
(

− �

a2
(n̂z − 1) + 2π�

a2
(r − R)2j

top
0

)∣∣∣∣
ψ,ψ∗=0

+
∫

d2r
(

2π�

a2
(2r R − R2)j top

0

)∣∣∣∣
ψ,ψ∗=0

. (A27)

It turns out that the first line in the last equation exactly
vanishes,∫

d2r
(

− �

a2
(n̂z − 1) + 2π�

a2
(r − R)2j

top
0

)∣∣∣∣
ψ,ψ∗=0

= 2π�

a2

∫ ∞

0
dρ ρ

(
−(cos θ − 1) + ρ

2
θ ′ sin θ

)

= 2π�

a2
ρ2 sin2 θ

2

∣∣∣∣
∞

ρ=0

= 0, (A28)

due to the exponentially fast approach of the polar angle θ to
its boundary value at large distances, θ → 0. The change of
spin angular momentum due to the spatial dependence of n̂z(r)
is thus exactly compensated by the orbital angular momentum
that is carried by the skyrmion texture. The skyrmion angular
momentum then reduces to

Jskyr = −2π�

a2

∫
d2r (2r R − R2)j top

0

∣∣∣∣
ψ,ψ∗=0

= −2π�

a2
R2. (A29)

The time derivative of Jskyr, i.e., the torque, assumes with the
help of Eq. (A26) the following intuitive form:

d0Jskyr = (R × d0 P skyr)z. (A30)
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