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Spin waves in ferromagnetic insulators coupled via a normal metal
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Herein, we study spin-wave dispersion and dissipation in a ferromagnetic insulator–normal metal–
ferromagnetic insulator system. Long-range dynamic coupling because of spin pumping and spin transfer
lead to collective magnetic excitations in the two thin-film ferromagnets. In addition, the dynamic dipolar
field contributes to the interlayer coupling. By solving the Landau-Lifshitz-Gilbert-Slonczewski equation for
macrospin excitations and the exchange-dipole volume as well as surface spin waves, we compute the effect of
the dynamic coupling on the resonance frequencies and linewidths of the various modes. The long-wavelength
modes may couple acoustically or optically. In the absence of spin-memory loss in the normal metal, the
spin-pumping-induced Gilbert damping enhancement of the acoustic mode vanishes, whereas the optical mode
acquires a significant Gilbert damping enhancement, comparable to that of a system attached to a perfect spin
sink. The dynamic coupling is reduced for short-wavelength spin waves, and there is no synchronization. For
intermediate wavelengths, the coupling can be increased by the dipolar field such that the modes in the two
ferromagnetic insulators can couple despite possible small frequency asymmetries. The surface waves induced
by an easy-axis surface anisotropy exhibit much greater Gilbert damping enhancement. These modes also may
acoustically or optically couple, but they are unaffected by thickness asymmetries.
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I. INTRODUCTION

The dynamic magnetic properties of thin-film ferromagnets
have been extensively studied for several decades [1,2].
Thin-film ferromagnets exhibit a rich variety of spin-wave
modes because of the intricate interplay among the exchange
and dipole interactions and the material anisotropies. In
ferromagnetic insulators (FIs), these modes are especially
visible; the absence of disturbing electric currents leads to
a clear separation of the magnetic behavior. Furthermore,
the dissipation rates in insulators are orders of magnitude
lower than those in their metallic counterparts; these low
dissipation rates enable superior control of traveling spin
waves and facilitate the design of magnonic devices [3].
In spintronics, there has long been considerable interest
in giant magnetoresistance, spin-transfer torques, and spin
pumping in hybrid systems of normal metals and metallic
ferromagnets (MFs) [4–7]. The experimental demonstration
that spin transfer and spin pumping are also active in normal
metals in contact with insulating ferromagnets has generated
a renewed interest in and refocused attention on insulating
ferromagnets, of which yttrium iron garnet (YIG) continues
to be the prime example [8–19]. In ferromagnetic insulators,
current-induced spin-transfer torques from a neighboring
normal metal (NM) that exhibits out-of-equilibrium spin ac-
cumulation may manipulate the magnetization of the insulator
and excite spin waves [8,20,21,22]. The out-of-equilibrium
spin accumulation of the normal metal may be induced via
the spin Hall effect or by currents passing through other
adjacent conducting ferromagnets. Conversely, excited spin
waves pump spins into adjacent NMs, and this spin current
may be measured in terms of the inverse spin Hall voltages or
by other conducting ferromagnets [8–14]. The magnetic state
may also be measured via the spin Hall magnetoresistance
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[16–19,24,25]. Because of these developments, magnetic
information in ferromagnetic insulators may be electrically
injected, manipulated, and detected. Importantly, an FI-based
spintronic device may efficiently transport electric information
carried by spin waves over long distances [15] without any
excessive heating. The spin-wave decay length can be as
long as centimeters in YIG films [23]. These properties make
FI-NM systems ideal devices for the exploration of novel
spintronic phenomena and possibly also important for future
spintronic applications. Magnonic devices also offer advan-
tages such as rapid spin-wave propagation, frequencies ranging
from GHz to THz, and the feasibility of creating spin-wave
logic devices and magnonic crystals with tailored spin-wave
dispersions [26]. To utilize the desirable properties of FI-NM
systems, such as the exceptionally low magnetization-damping
rate of FIs, it is necessary to understand how the magnetization
dynamics couple to spin transport in adjacent normal metals.
The effective damping of the uniform magnetic mode of a
thin-film FI is known to significantly increase when the FI is
placed in contact with an NM. This damping enhancement
is caused by the loss of angular momentum through spin
pumping [27–31]. Recent theoretical work has also predicted
the manner in which the Gilbert damping for other spin-wave
modes should become renormalized [32]. For long-wavelength
spin waves, the Gilbert damping enhancement is twice as
large for transverse volume waves as for the macrospin mode,
and for surface modes, the enhancement can be ten times
stronger or more. Spin pumping has been demonstrated, both
experimentally [9] and theoretically [32], to be suppressed
for short-wavelength exchange spin waves. A natural next
step is to investigate the magnetization dynamics of more
complicated FI-NM heterostructures. In ferromagnetic metals,
it is known that spin pumping and spin-transfer torques
generate a long-range dynamic interaction between magnetic
films separated by normal-metal layers [33]. The effect of this
long-range dynamic interaction on homogeneous macrospin
excitations can be measured by ferromagnetic resonance. The
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combined effects of spin pumping and spin-transfer torque lead
to an appreciable increase in the resonant linewidth when the
resonance fields of the two films are far apart and to a dramatic
narrowing of the linewidth when the resonant fields approach
each other [33]. This behavior occurs because the excitations
in the two films couple acoustically (in phase) or optically
(out of phase). We will demonstrate that similar, though richer
because of the complex magnetic modes, phenomena exist
in magnetic insulators. In the present paper, we investigate
the magnetization dynamics in a thin-film stack consisting
of two FIs that are in contact via an NM. The macrospin
dynamics in a similar system with metallic ferromagnets
have been studied both theoretically and experimentally [33].
We expand on that work by focusing on inhomogeneous
magnetization excitations in FIs. For long-wavelength spin
waves traveling in-plane in a ferromagnetic thin film, the
frequency as a function of the in-plane wave number Q

strongly depends on the direction of the external magnetic
field with respect to the propagation direction. If the external
field is in-plane and the spin waves are traveling parallel
to this direction, the waves have a negative group velocity.
Because the magnetization precession amplitudes are usually
evenly distributed across the film in this geometry, these
modes are known as backward volume magnetostatic spin
waves (BVMSW). Similarly, spin waves that correspond to
out-of-plane external fields are known as forward volume
magnetostatic spin waves (FVMSW); i.e., the group velocity is
positive, and the precession amplitudes are evenly distributed
across the film. When the external field is in-plane and
perpendicular to the propagation direction, the precession
amplitudes of the spin waves become inhomogeneous across
the film, experiencing localization to one of the interfaces.
These spin waves are thus known as magnetostatic surface
spin waves (MSSW) [34,35]. When two ferromagnetic films
are coupled via a normal metal, the spin waves in the two films
become coupled through two different mechanisms. First,
the dynamic, nonlocal dipole-dipole interaction causes an
interlayer coupling to arise that is independent of the properties
of the normal metal. This coupling is weaker for larger
thicknesses of the normal metal. Second, spin pumping from
one ferromagnetic insulator induces a spin accumulation in the
normal metal, which in turn gives rise to a spin-transfer torque
on the other ferromagnetic insulator, and vice versa. In contrast
to the static exchange coupling [36], this dynamic coupling is
rather long-ranged and is limited only by the spin-diffusion
length. This type of coupling is known to strongly couple
the macrospin modes. When two ferromagnetic films become
coupled, the characterization of the spin waves in terms of
FVMSW, BVMSW, and MSSW still holds, but the dispersion
relations are modified. It is also clear that the damping
renormalization caused by spin pumping into the NM may
differ greatly from that in a simpler FI|N bilayer system. To
understand this phenomenon, we perform a detailed analytical
and numerical analysis of a trilayer system, with the hope that
our findings may be used as a guide for experimentalists. This
paper is organized as follows. Section II introduces the model.
The details of the dynamic dipolar field are discussed, and
the boundary conditions associated with spin pumping and
spin transfer at the FI|N interfaces are calculated. Section III
provides the analytical solutions of these equations in the
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FIG. 1. (Color online) (a) A cross section of the FI1|N|FI2
heterostructure. The ferromagnetic insulators FI1 and FI2 are in
contact via the normal metal N. The transverse coordinate ξ is
indicated along with the thicknesses L1, dN, and L2 of FI1, N, and
FI2, respectively. (b) The coordinate system of the internal field (blue)
with respect to the coordinate system of the FI1| N|FI2 structure (red).
θ denotes the angle between the film normal and the internal field,
and φ is the angle between the in-plane component of the magnetic
field and the in-plane wave vector.

long-wavelength regime dominated by the dynamic coupling
attributable to spin pumping and spin transfer. To create a more
complete picture of the dynamic behavior of this system, we
perform a numerical analysis for the entire spin-wave spectrum
of this system, which is presented in Sec. IV. We conclude our
work in Sec. V.

II. EQUATIONS OF MOTION

Consider a thin-film heterostructure composed of two
ferromagnetic insulators (FI1 and FI2) that are in electrical
contact via an NM layer. The ferromagnetic insulators FI1 and
FI2 may have different thicknesses and material properties.
We denote the thicknesses by L1, dN, and L2 for the FI1,
NM, and FI2 layers, respectively [see Fig. 1(a)]. The in-plane
coordinates are ζ,η, and the transverse coordinate is ξ [see
Fig. 1(b)]. We will first discuss the magnetization dynamics in
isolated FIs and will then incorporate the spin-memory losses
and the coupling between the FIs via spin currents passing
through the NM.

A. Magnetization dynamics in isolated FIs

The magnetization dynamics in the ferromagnetic insula-
tors can be described using the Landau-Lifshitz-Gilbert (LLG)
equation,

Ṁi = −γ Mi × Heff + αMi × Ṁi , (1)

where Mi is the unit vector in the direction of the magnetization
in layer i = 1,2, γ is the gyromagnetic ratio, α is the
dimensionless damping parameter, and Heff is the space-time-
dependent effective magnetic field. The effective magnetic
field is

Heff = Hint + hex + hd + hsurface, (2)

where Hint is the internal field attributable to an external
magnetic field and the static demagnetization field, hex =
2A∇2M/MS is the exchange field (A is the exchange constant),
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FIG. 2. (Color online) Two coupled spin waves with amplitude
m1Q in ferromagnet FI1 and amplitude m2Q in ferromagnet FI2. The
spin waves inject a spin current into the normal metal (NM) via spin
pumping. In the NM, the spins diffuse and partially relax, inducing
a spin accumulation therein. In turn, the spin accumulation causes
spin-transfer torques to arise on FI1 and FI2. The combined effect of
spin transfer and spin pumping leads to a dynamic exchange coupling
that, together with the dynamic demagnetization field, couples the
spin waves in the two FIs.

hd is the dynamic demagnetization field, and

hsurface = 2KS

MS

(Mi · n̂)δ(ξ − ξi)n̂ (3)

is the surface anisotropy field located at the FI|N interfaces. In
this work, hsurface is assumed to exist only at the FI|N interfaces
and not at the interfaces between the FIs and the substrate or
vacuum. It is straightforward to generalize the discussion to
include these surface anisotropies as well. We consider two
scenarios: one with an surface anisotropy (KS �= 0) and one
with no surface anisotropy (KS = 0). Note that a negative value
of KS ∼ −0.03 erg/cm2, which implies an easy-plane surface
anisotropy, has also been observed for sputtered YIG|Au
bilayers [37]. In general, the effective field Heff may differ
in the two FIs. We assume the two FIs consist of the same
material and consider external fields that are either in-plane or
out-of-plane. Furthermore, we consider devices in which the
internal magnetic fields in the two FI layers are aligned and of
equal magnitude. In equilibrium, the magnetization inside the
FIs is oriented along the internal magnetic field, Mi = M0.
In the linear response regime, Mi = M0 + mi , where the
first-order correction mi is small and perpendicular to M0.
The magnetization vanishes outside of the FIs. Because the
system is translationally invariant in the η and ζ directions,
we may, without loss of generality, assume that m consists of
plane waves traveling in the ζ direction (see Fig. 2),

mi(ζ,η,ξ ) = miQ(ξ )ei(ωt−Qζ ). (4)

Linearizing Maxwell’s equations in mi implies that the
dynamic dipolar field must be of the same form,

hd(ζ,η,ξ ) = hdQ(ξ )ei(ωt−Qζ ). (5)

Furthermore, the total dipolar field (the sum of the static and
the dynamic dipolar fields) must satisfy Maxwell’s equations,
which, in the magnetostatic limit, are

∇ · (hd + 4πMSm) = 0, (6a)

∇ × hd = 0, (6b)

with the boundary equations

(hd + 4πMSm)⊥,in = (hd)⊥,out, (7a)

(hd)‖,in = (hd)‖,out, (7b)

where the subscript in (out) denotes the value on the FI
(NM, vacuum or substrate) side of the FI interface and ⊥
(‖) denotes the component(s) perpendicular (parallel) to the
FI-NM interfaces. Solving Maxwell’s equations (6) with the
boundary conditions of Eq. (7) yields [34]

hdQ(ξ ) = 4πMS

∫
dξ ′Ĝ(ξ − ξ ′)mQ(ξ ′), (8)

where Ĝ(r − r′) is a 3×3 matrix acting on m in the (η,ζ,ξ )
basis,

Ĝ(ξ ) =
⎛
⎝GP(ξ ) − δ(ξ ) 0 −iGQ(ξ )

0 0 0
−iGQ(ξ ) 0 −GP(ξ )

⎞
⎠ . (9)

Here, GP(ξ ) = Qe−Q|ξ |/2, and GQ(ξ ) = −sgn(ξ )GP. Note
that the dynamic dipolar field of Eq. (8) accounts for
both the interlayer and intralayer dipole-dipole couplings
because the magnetization varies across the two magnetic
insulator bilayers and vanishes outside these materials. It is
now convenient to perform a transformation from the ζ -η-ξ
coordinate system defined by the sample geometry to the x-y-z
coordinate system defined by the internal field [see Fig. 1(b)].
In the linear response regime, the dynamic magnetization mi

lies in the x-y plane, and the linearized equations of motion
become [34]{

iω

(
α −1
1 α

)
+ 1

(
ωH + 2A

MS

[
Q2 − d2

dξ 2

])}
miQxy(ξ )

=
2∑

i=1

∫
dξ ′Ĝxy(ξ − ξ ′)miQxy(ξ ′). (10)

Here, miQxy = (miQx,miQy) is the Fourier transform of the
dynamic component of the magnetization in the x-y plane and
Ĝxy(ξ ) is the 2×2 matrix that results from rotating Ĝ(ξ ) into
the x-y-z coordinate system (see Appendix A), considering
only the xx, xy, yx, and yy components.

B. Boundary conditions and spin accumulation

The linearized equations of motion (10) must be supple-
mented with boundary conditions for the dynamic magnetiza-
tion at the FI|N interfaces. A precessing magnetization at the
FI|N boundaries injects a spin-polarized current, jSP, into the
NM, an effect known as spin pumping [8,29–31]. The emitted
spin currents at the lower and upper interfaces (i = 1,2) in
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units of charge current per area are

jSP
i = �

e
g⊥Mi × Ṁi

∣∣∣∣
ξ=ξi

, (11)

where ξi = ∓dN/2 at the lower and upper interfaces, respec-
tively, and g⊥ is the real part of the transverse spin-mixing
conductance per unit area [38]. We disregard the imaginary
part of the spin-mixing conductance because it has been
found to be small at FI|N interfaces [39]. The reciprocal
effect of spin pumping is spin transfer into the FIs because
of a spin accumulation μS in the NM. In the normal metal
at the lower and upper interfaces (i = 1,2), the associated
spin-accumulation-induced spin current is

jST
i = −1

e
g⊥Mi × (Mi × μS)

∣∣∣∣
ξ=ξi

. (12)

The signs of the pumped and spin-accumulation-induced spin
currents in Eqs. (11) and (12) were chosen such that they are
positive when there is a flow of spins from the NM toward the
FIs. The pumped and spin-accumulation-induced spin currents

of Eqs. (11) and (12) lead to magnetic torques acting on the
FI interfaces. The torques that correspond to the spin pumping
and spin transfer localized at the FI|N interfaces are

τ SP
i = γ �

2

2e2MS

g⊥δ(ξ − ξi)Mi × Ṁi , (13a)

τ ST
i = − γ �

2e2MS

g⊥Mi × (Mi × μS)δ(ξ − ξi), (13b)

respectively. In the presence of spin currents to and from
the normal metal, the magnetization dynamics in the FIs
is then governed by the modified Landau-Lifshitz-Gilbert-
Slonczewski (LLGS) equation,

Ṁ = −γ Mi × Heff + αMi × Ṁi +
∑
i=1,2

τ SP
i + τ ST

i . (14)

By integrating Eq. (14) over the FI|N interfaces and the
interfaces between the FI and vacuum/substrate, we find that
mi must satisfy the boundary conditions [21,32]

(
±Li

dmi

dξ
+ χi

[
ṁi − 1

�
M0 × μ

]
+ LiKS

A
cos(2θ )mi

)
x

∣∣∣∣
ξ=∓dN/2

= 0, (15a)

(
±Li

dmi

dξ
+ χi

[
ṁi − 1

�
M0 × μ

]
+ LiKs

A
cos2(θ )mi

)
y

∣∣∣∣∣
ξ=∓dN/2

= 0, (15b)

dm1

dξ

∣∣∣∣
ξ=−dN/2−L1

= 0,
dm2

dξ

∣∣∣∣
ξ=dN/2+L2

= 0. (15c)

Here, we have introduced the time scale χi =
Li�

2g⊥/4Ae2. The subscripts x and y in Eqs. (15a) and (15b)
denote the x and y components, respectively. In our ex-
pressions for the boundary conditions (15), we have also
accounted for the possibility of a surface anisotropy arising
from the effective field described by Eq. (3), where KS >

0 indicates an easy-axis surface anisotropy (EASA). The
boundary conditions of Eq. (15), in combination with the
transport equations in the NM, which we will discuss next,
determine the spin accumulation in the NM and the subsequent
torques caused by spin transfer. In the normal metal, the
spins diffuse, creating a spatially dependent spin-accumulation
potential μQ, and they relax on the spin-diffusion length
scale lsf . The spin accumulation for an FI|N|FI system has
been calculated in the macrospin model [40]. The result of
this calculation can be directly generalized to the present
situation of spatially inhomogeneous spin waves by replacing
the macrospin magnetization in each layer with the interface
magnetization and substituting the spin-diffusion length with
a wave-vector-dependent effective spin-diffusion length lsf →
l̃sf(Q) such that

μQ = −�

2
M0 × {[ṁQ(ξ1) + ṁQ(ξ2)]1 (ξ )

− [ṁQ(ξ1) − ṁQ(ξ2)]2 (ξ )}. (16)

See Appendix B for the details of the functions 1 and 2.
The effective spin-diffusion length is determined by Fourier-
transforming the spin-diffusion equation (see Appendix C):

l̃sf = lsf/
√

1 + (Qlsf)2. (17)

We thus have all the necessary equations to describe the linear
response dynamics of spin waves in the FI1| N|FI2 system. We
now provide analytical solutions of the spin-wave modes in the
long-wavelength limit and then complement these solutions
with an extensive numerical analysis that is valid for any
wavelength.

III. ANALYTIC SOLUTIONS FOR THE SPIN
WAVE SPECTRUM

The effect that the exchange and dipolar fields have on the
spin-wave spectrum depends on the in-plane wave number Q.
When QLi 
 1, the dipolar field dominates over the exchange
field. In the opposite regime, when QLi � 1, the exchange
field dominates over the dipolar field. The intermediate regime
is the dipole-exchange regime. Another length scale is set
by the spin-diffusion length. When Qlsf � 1, the effective
spin-relaxation length l̃sf of Eq. (17) becomes small, and
the NM acts as a perfect spin sink. In this case, only the
relatively short-ranged dipolar field couples the FIs. We
therefore focus our attention on the dipole-dominated regime,
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in which the interchange of spin information between the two FIs remains active. In the limit QLi 
 1, the magnetization is
homogeneous in the in-plane direction. We may then use the ansatz that the deviation from equilibrium is a sum of transverse
traveling waves. Using the boundary conditions on the outer boundaries of the stack, Eq. (15c), we find

miQxy(ξ ) =
(

Xi

Yi

)
cos

{
ki

[
ξ ±

(
Li + dN

2

)]}
, (18)

where i = 1 when ξ is inside FI1 and i = 2 when ξ is inside FI2. k1 and k2 are the out-of-plane wave vectors of the lower and
upper films, respectively. The eigenfrequencies of Eq. (10) depend on ki . To first order in the damping parameter α, we have

ω(ki) = ωM

[
±

√(
ωH

ωM

+ A

2πM2
S

k2
i

) (
ωH

ωM

+ A

2πM2
S

k2
i + sin2 θ

)
+ iα

(
ωH

ωM

+ A

2πM2
S

k2
i + 1

2
sin2 θ

)]
. (19)

We can, without loss of generality, consider only those
frequencies that have a positive real part. The eigenfrequency
ω is a characteristic feature of the entire system, so we must
require ω(k1) = ω(k2), which implies that k1 = ±k2. We will
discuss the cases of symmetric (L1 = L2) and asymmetric
(L1 �= L2) geometries separately.

A. Symmetric FI films without surface anisotropy

Consider a symmetric system in which the FIs are of
identical thickness and material properties. We assume that
the effect of surface anisotropy is negligible, which is the case
for thin films and/or weak surface anisotropy energies such that
|KS |L/A 
 1, where L = L1 = L2. The other two boundary
conditions, (15a) and (15b), couple the amplitude vectors
(X1 Y1)T and (X2 Y2)T of Eq. (18). A nontrivial solution
implies that the determinant containing the coefficients of the
resulting 4 × 4 matrix equation vanishes. Solving the secular
equation, we find the following constraints on k,

iχAωA = kL tan(kL), (20a)

iχOωO = kL tan(kL), (20b)

where

χA = χ

(
1 −

[
1 + 2g⊥lsf

σ
tanh(dN/2lsf)

]−1 )
, (21a)

χO = χ

(
1 −

[
1 + 2g⊥lsf

σ
coth(dN/2lsf)

]−1 )
, (21b)

and χ = L�
2g⊥/4Ae2. The two solutions correspond to

a symmetric mode (acoustic) and an antisymmetric mode
(optical). This result can be understood in terms of the
eigenvectors that correspond to the eigenvalues of Eqs. (20),
which are m1 = +m2 and m1 = −m2 for the acoustic and
optical modes, respectively. Typically, because spin pumping
only weakly affects the magnetization dynamics, the time
scale χ that is proportional to the mixing conductance g⊥
is much smaller than the FMR precession period. In this limit,
kL tan(kL) 
 1. This result allows us to expand the secular
equations (20) around kL = nπ , where n is an integral number,
which yields

iχνων,n ≈ (kL + πn)kL, (22)

where ν = A,O. This result can be reinserted into the bulk dis-
persion relation of Eq. (19), from which we can determine the
renormalization of the Gilbert damping coefficient attributable

to spin pumping, �α. We define

�α = α(Im[ω(SP)] − Im[ω(0)])/Im[ω(0)] (23)

as a measure of the spin-pumping-enhanced Gilbert damping,
where ω(0) and ω(SP) are the frequencies of the same system
without and with spin pumping, respectively. Similar to the
case of a single-layer ferromagnetic insulator [32], we find
that all higher transverse volume modes exhibit an enhanced
magnetization dissipation that is twice that of the macrospin
mode. The enhancement of the Gilbert damping for the
macrospin mode (n = 0) is

�αν,macro = γ �
2g⊥

2LMSe2

χν

χ
, (24)

and for the other modes, we obtain

�αν,n�=0 = 2�αν,macro. (25)

Compared with single-FI systems, the additional feature of
systems with two FIs is that the spin-pumping-enhanced
Gilbert damping differs significantly between the acoustic
and optical modes via the mode-dependent ratio χν/χ . This
phenomenon has been explored both experimentally and
theoretically in Ref. [33] for the macrospin modes n = 0 when
there is no loss of spin transfer between the FIs, lsf → ∞. Our
results represented by Eqs. (24) and (25) are generalizations
of these results for the case of other transverse volume modes
and account for spin-memory loss. Furthermore, in Sec. IV, we
present the numerical results for the various spin-wave modes
when the in-plane momentum Q is finite. When the NM is a
perfect spin sink, there is no transfer of spins between the two
FIs, and we recover the result for a single FI|N system with
vanishing back flow, χν → χ [32]. Naturally, in this case, the
FI| N|FI system acts as two independent FI|N systems with
respect to magnetization dissipation. The dynamic interlayer
dipole coupling is negligible in the limit that is considered
in this section (QL 
 1). In the opposite regime, when the
NM film is much thinner than the spin-diffusion length and
the spin conductivity of the NM is sufficiently large such that
g⊥dN/σ 
 1, then χA → 0 and χO → χ . This result implies
that for the optical mode, the damping is the same as for
a single FI in contact with a perfect spin sink, even though
the spin-diffusion length is very large. The reason for this
phenomenon is that when the optical mode is excited, the
magnetizations of the two films oscillate out of phase such
that one layer acts as a perfect spin sink for the other layer.
By contrast, there is no enhancement of the Gilbert damping
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SKARSVÅG, KAPELRUD, AND BRATAAS PHYSICAL REVIEW B 90, 094418 (2014)

coefficient for the acoustic mode; when the film is very thin and
the magnetizations of the two layers are in phase, there is no net
spin flow or loss in the NM film and no spin-transfer-induced
losses in the ferromagnets. Finally, when the NM is a poor
conductor despite exhibiting low spin-memory loss such that
g⊥dN/σ � (lsf/dN) � 1, then χν → 0 because there is no
exchange of spin information. For the macrospin modes in
the absence of spin-memory loss, these results are in exact
agreement with Ref. [33]. Beyond these results, we find that
regardless of how much spin memory is lost, it is also the
case that in trilayer systems, all higher transverse modes
experience a doubling of the spin-pumping-induced damping.
Furthermore, these modes can still be classified as optical and
acoustic modes with different damping coefficients.

B. Symmetric films with surface anisotropy

Magnetic surface anisotropy is important when the spin-
orbit interaction at the interfaces is strong. In this case, the
excited mode with the lowest energy becomes inhomogeneous
in the transverse direction. We first consider the FVMSW
geometry before discussing the general case. A finite KS

introduces new terms into the boundary condition (15). For
the ansatz

miQxy(ξ ) =
(

Xi cos[kξ ± k(L + dN/2)]

Yi cos[kξ ± k(L + dN/2)]

)
, (26)

the boundary equation (15b) is satisfied, and Eqs. (15a)
and (15b) yield

iχνων + LKS

A
= kL tan(kL) , (27a)

iχνων + LKS

A
= kL tan(kL) , (27b)

where ν continues to denote an acoustic (A) or optical (O)
mode, ν = A,O. Depending on the sign of KS and the
angle θ , the resulting solutions for k can become complex,
which implies that the modes are evanescent. For a negative
anisotropy constant and a thick FIs −LKS/A � 1, we find
that κ = ik = −KS/A − iχνων/L, such that

miQxy(ξ ) =
(

Xi cosh[κξ ± κ(L + dN/2)]
Yi cosh[κξ ± κ(L + dN/2)]

)
. (28)

The dynamic part of the magnetization is exponentially
localized at the FI|N surfaces. Following the same procedure
as in Sec. III A for the KS = 0 case, we insert this solution into
the dispersion relation (19) and extract the renormalization of
the effective Gilbert damping:

�αSA,FVMSW
ν = γ �

2g⊥
2LMSe2

χν

χ
2
KSL

A
. (29)

This Gilbert damping enhancement may become orders of
magnitude larger than the �αmacro of Eq. (24). For thick films,
�αmacro ∼ L−1, whereas �αSA,FVMSW

ν reaches a constant
value that is inversely proportional to the localization length
at the FI|N interface. Note that for large surface anisotropy,
the equilibrium magnetization is no longer oriented along
the external field, and Eq. (29) for �α becomes invalid.
For in-plane field geometries (BVMSW and MSSW), an

easy axis surface anisotropy (KS > 0) leads to a similar
localization. For in-plane static magnetization, only one of
the two dynamic components points out-of-plane, thereby
introducing an asymmetry between the two components in
the boundary conditions. Thus, the ansatz of Eq. (26) has to be
modified, resulting in a surface localization that is governed by
the length scale A/KS but with a geometric renormalization
that is attributable to the component asymmetry. This aspect
has been treated in Refs. [22,41] for a FI|N bilayer system.
For m1 = ±m2, the boundary conditions (15) take the same
form as the corresponding equations for the bilayer, except for
a renormalized factor χ → χν . The effective mode-dependent
damping that is induced by spin pumping for any geometry
and an arbitrary value of KS is then

�αSA
ν = χν

χ
�αFI|N(spin sink). (30)

In this way, this result for �α is considered relative to
the equivalent FI|N(spin sink) bilayer system. Thus, the
effect of the coupling of the layers is clearly evident in the
renormalization factor χν/χ , where χ = A,O [see Eq. (21)].

Exciting the acoustic modes require a torque which acts
symmetrically on the two layers. This can be achieved with a
radio strip antenna. Conversely, excitation of the optical modes
require an antisymmetric torque. We suggest that this can
be achieved by the use of spin torque FMR (ST-FMR), where
an ac spin current is induced via the spin Hall effect, by
applying an ac charge current. The resulting spin Hall induced
torque acts with opposite sign on the two layers [40]. By letting
a strip of the NM spacer consist of a high spin Hall angle NM
(e.g., Pt or Ta), finite Q optical modes can be excited.

C. Asymmetric FI films

Let us now consider an asymmetric system in which
L1 �= L2. In this configuration, we will first consider KS = 0,
but we will also comment on the case of a finite KS at the
end of the section. Because the analytical expressions for
the eigenfrequencies and damping coefficients are lengthy,
we focus on the most interesting case: that in which the
spin-relaxation rate is slow. As in the case of the symmetric
films, the dispersion relation of Eq. (10) dictates that the wave
numbers in the two layers must be the same. To satisfy the
boundary equations (15), we construct the ansatz

miQxy(ξ ) =
(

Xi cos[kξ ± k(L + dN/2)]

Yi cos[kξ ± k(L + dN/2)]

)
. (31)

The difference between this ansatz and that for the symmetric
case represented by Eq. (26) is that the magnitudes of the
amplitudes, Xi and Yi , of the two layers, i = 1,2, that appear in
Eq. (31) no longer have to be equal to each other. When the two
ferromagnets FI(L1) and FI(L2) are completely disconnected,
the transverse wave vectors must be equivalent to standing
waves, qn,1 = πn/L1 and qm,2 = πm/L2 in the two films,
respectively, where n and m may be any integral numbers.
Because spin pumping is weak, the eigenfrequencies of the
coupled system are close to the eigenfrequencies of the isolated
FIs. This finding implies that the wave vector k of the coupled
system is close to either qn,1 or qm,2. The solutions of the
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linearized equations of motion are then

k = kn,1 = qn,1 + δkn,1 or (32a)

k = km,2 = qm,2 + δkm,2, (32b)

where δkn,1 and δkm,2 are small corrections attributable to spin
pumping and spin transfer, respectively. Here, the indices 1 and
2 represent the different modes rather than the layers. However,
one should still expect that mode 1 (2) is predominantly
localized in film 1 (2). In this manner, we map the solutions
of the wave vectors in the coupled system to the solutions of
the wave vectors in the isolated FIs. Next, we will present
solutions that correspond to the qn,1 of Eq. (32a). The other
family of solutions, corresponding to qm,2, is determined by
interchanging L1 ↔ L2 and making the replacement n → m.
Inserting Eq. (32a) into the boundary conditions of Eq. (15) and
linearizing the resulting expression in the weak spin-pumping-
induced coupling, we find, for the macrospin modes,

iωχ̃
A,O
1,macro = (L1δk0,1)2, (33)

where

χ̃A
1,macro ≈ 1

2

dN

lsf

σ

g⊥lsf

L1

L1 + L2
χ1, (34a)

χ̃O
1,macro ≈ 1

2

L1 + L2

L2
χ1. (34b)

Here, χ1 = L1�
2g⊥/4Ae2. Inserting this parameter into

the dispersion relation of Eq. (19), we obtain the following
damping renormalizations:

�αA
macro = γ �

2g⊥
2MSe2

1

2

dN

lsf

σ

g⊥lsf

1

L1 + L2
, (35a)

�αO
macro = γ �

2g⊥
2MSe2

1

2

(
1

L1
+ 1

L2

)
. (35b)

These two solutions correspond to an acoustic mode and
an optical mode, respectively. The corresponding eigenvectors
are m1 = m2 for the acoustic mode and L1m1 = −L2m2 for
the optical mode. As in the symmetric case, the damping
enhancement of the acoustic mode vanishes in the thin-NM
limit. In this limit, the behavior of the acoustic mode resembles
that of a single FI of thickness L1 + L2. The total thickness
determines the leading-order contribution of the damping
renormalization. The optical mode, however, experiences
substantial damping enhancement. For this mode, the damping
renormalization is the average of two separate FIs that are in
contact with a perfect spin sink. The cause of this result is
as follows. When there is no spin-memory loss in the NM,
half of the spins that are pumped out from one side return and
rectify half of the angular-momentum loss attributable to spin
pumping. Because the magnetization precessions of the two
films are completely out of phase, the other half of the spin
current causes a dissipative torque on the opposite layer. In
effect, spin pumping leads to a loss of angular momentum,
and the net sum of the spin pumping across the NM and the
back flow is zero. The total dissipation is not affected by spin
transfer, and thus, the result resembles a system in which the
NM is a perfect spin sink. For the higher excited transverse
modes, there are two scenarios, which we treat separately.

(I) The allowed wave number for one layer matches a wave
number for the other layer. Then, for some integer n > 0,
qn,1 = qm,2 for some integer m. In this case, we expect a
coupling of the two layers. (II) The allowed wave number
for one layer does not match any of the wave numbers for
the other layer, and thus, for some integer n > 0, we have
qn,1 �= qm,2 for all integers m. We then expect that the two
layers will not couple. (I) In this case, we find two solutions
that correspond to acoustic and optical modes. These modes
behave very much like the macrospin modes; however, as in
the symmetric case, the damping renormalization is greater by
a factor of 2:

�α
A,O
n�=0 = 2�αA,O

macro, case I. (36)

The eigenvectors of these coupled modes have the same form
as for the macrospin modes, such that m1 = m2 and L1m1 =
−L2m2 for the acoustic and optical modes, respectively. (II)
In this case, the two layers are completely decoupled. To the
leading order in dN/lsf , we find

�αn�=0 = γ �
2g⊥

2L1MSe2
, case II, (37)

for all modes that correspond to excitations in FI1. The
damping renormalization is thus half that of the FI(L1)|N(lsf =
0) system [32]. This result can be explained by the zero loss
of spin memory in the NM. Although half of the spins are lost
to the static FI2, half of the spins return and rectify half of
the dissipation attributable to spin pumping. The amplitudes
of these modes are strongly suppressed in FI2 (or FI1, upon
the interchange of FI1 ↔ FI2), such that |m2|/|m1| ∼ ωχ2.
Finally, let us discuss the case in which surface anisotropy is
present. In the limit |KS |Li/A � 1, the excitation energies
of the surface modes are independent of the FI thicknesses.
However, the surface modes do not behave like the macrospin
modes for the asymmetric stack. The excitation volume of
these modes is determined by the decay length A/KS in
accordance with Eq. (28). This finding is in contrast to the
result for the macrospin modes, where the excitation volume
spans the entire FI. Thus, the surface modes couple in the same
manner as in the symmetric case. When the surface anisotropy
can be well controlled experimentally, the coupling of the
surface modes becomes robust to thickness variations. When
surface anisotropy is present, the higher excited transverse
modes have thickness-dependent frequencies; i.e., these modes
behave similarly to the n > 0 modes in the KS = 0 case.

IV. NUMERICAL RESULTS

When the spin-wave wavelength becomes comparable to
the film thickness, the dipolar field becomes a complicated
function of the wavelength. We study the properties of the
system in this regime by numerically solving the linearized
equations of motion (10) with the boundary conditions (15).
We use the method presented in Ref. [32], which solves the
spin-wave excitation spectrum for an FI|N system, and extend
this approach to the present trilayer system. The physical
parameters used in the numerical calculations are listed in
Table I. We investigate two geometries: (I) the BVMSW
geometry, in which the spin wave propagates parallel to the
external field, and (II) the MSSW geometry, in which the spin
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TABLE I. Physical parameters used in the numerical calculations.

Constant Value Units

g⊥ 3.4 × 1015a cm−2 e2/h

σ 5.4 × 1017b s−1

4πMS 1750c G
A 3.7 × 10−7c erg/cm
Hint 0.58 × 4πMS

α 3 × 10−4c

KS 0, 0.05d erg/cm2

aReference [42].
bReference [43].
cReference [35].
dReported to be in the range of 0.1–0.01 erg/cm2 in Ref. [21].

wave propagates perpendicular to the external field. To calcu-
late the renormalization of the Gilbert damping, we perform
one computation without spin pumping and one computation
with spin pumping, in which the intrinsic Gilbert damp-
ing is excluded. Numerically, the renormalization can then
be determined by calculating �α = αIm[ω(SP)]α=0/Im[ω(0)],
where ω(0) is the eigenfrequency obtained for the computation
without spin pumping and ω(SP) is the frequency obtained for
the computation with spin pumping [32].

A. BVMSW

Let us first discuss the BVMSW geometry. The coupling
of the uniform modes in the two films is robust; it is not
sensitive to possible thickness asymmetries. In contrast, at
Q = 0, the sensitivity to the ratio between the thickness
and the rather weak dynamic coupling attributable to spin
pumping implies that the coupling of the higher transverse
modes in the two bilayers is fragile. Small asymmetries in
the thicknesses destroy the coupling. This effect can best
be observed through the renormalization of the damping.
However, we will demonstrate that a finite wave number Q

can compensate for this effect such that the higher transverse
modes also become coupled. To explicitly demonstrate this
result, we numerically compute the real and imaginary parts of
the eigenfrequencies of a slightly asymmetric system, FI(100
nm)|N(50 nm)|FI(101 nm) with lsf = 350 nm. The asymmetry
between the thicknesses of the ferromagnetic insulators is only
1%. The surface anisotropy is considered to be small compared
with the ratio Li/A, and we set KS = 0. In Fig. 3, the numerical
results for the effective Gilbert damping, the dispersion of
the modes, and the relative phase and amplitude between the
magnetizations in the two FIs are presented. As observed in
the relative phase results depicted in Fig. 3(c), the two uniform
modes in widely separated FIs split into an acoustic mode
and an optical mode when the bilayers are coupled via spin
pumping and spin transfer. Figure 3(a) also demonstrates that
the acoustic mode has a very low renormalization of the Gilbert
damping compared with the optical mode. Furthermore, there
is no phase difference between the two modes with a transverse
node (n = 1) in Fig. 3(a), which indicates that the modes
are decoupled. These n = 1 modes are strongly localized in
one of the two films; see Fig. 3(b). For small QL1, Fig. 3(a)
demonstrates that these modes have approximately the same

FIG. 3. (Color online) FI(100 nm)|N(50 nm)|FI(101 nm):
(a) Spin-pumping-enhanced Gilbert damping �α as a function
of QL1 of the uniform modes and the n = 1 modes; inset shows
the corresponding dispersion relation; (b) relative phase; and (c)
amplitude between the out-of-plane magnetizations along x at the
edges of FI1|N and FI2|N; the apparent discontinuity in the green
line in (c) results from defining the phase over the interval from −π

to π .

renormalization as the optical mode, which is in agreement
with the analytical results. Because the magnetization in the
layer with the smallest amplitude is only a response to the
spin current from the other layer, the phase difference is
π/2 [Fig. 3(b)]. When Q increases, the dipolar and exchange
interactions become more significant. The interlayer coupling
is then no longer attributable only to spin pumping but
is also caused by the long-range dipole-dipole interaction.
This additional contribution to the coupling is sufficient to
synchronize the n = 1 modes. The relative amplitude between
the two layers then becomes closer to 1 [see Fig. 3(b)]. Again,
we obtain an acoustic mode and an optical n = 1 mode, which
can be observed from the phase difference between the two
layers in Fig. 3(c). Comparing this system to a system without
spin pumping shows that the synchronization results primarily
from dipolar coupling (see Appendix D). The elements of the
dipole tensor in Eq. (8) exhibit a maximum at Q = 1/|ξ − ξ ′|.
This result implies that the interlayer coupling should be
maximal at Q ∼ 1/dN. This results agrees well with the
synchronization at QL1 � 1. The dipole coupling becomes
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weaker for larger Q, and the modes rapidly decouple because
of the reduced spin-pumping coupling, which can be attributed
to a decrease in the effective spin-diffusion length. In the large
QL1 limit, the exchange interaction becomes dominant. At
large Q, the frequency is dominated by the exchange energy,
such that ω ∼ ωM (Qlex)2. Spin pumping is proportional to
the frequency; thus, there is a frequency at which the spin
pumping term becomes the dominant term in the boundary
conditions of Eqs. (15). Spin pumping is then no longer purely
dissipative but also contributes a surface pinning term to the
energy. Thus, the dynamic part of the magnetization is forced
to zero at the FI|N boundaries, causing the renormalization
from the spin pumping to vanish for large QL1. We also note
that the dispersion relation depicted in the inset of Fig. 3(a)
reveals that the acoustic mode (blue line) exhibits a dip in
energy at lower QL1 than does the optical mode (red line).
We suggest that this feature can be understood as follows: The
shift in the position of the energy dip can be interpreted as
an increase in the effective FI thickness for the acoustic mode
with respect to that for the optical mode. When l̃sf is larger
than the NM thickness, the uniform mode behaves as if the
NM were absent and the two films were joined. This result
indicates that the dispersion relation for the acoustic mode
exhibits frequency behavior as a function of QL̃/2, where
the effective total thickness of the film is L̃ = L1 + L2. The
optical mode, however, “sees” the NM and thus behaves as
if L̃ = L1. Consequently, the dip in the dispersion occurs at
lower QL1 for the acoustic mode than for the optical mode.

B. MSSW

Finally, let us study the dynamic coupling of magnetostatic
surface spin waves (MSSWs). We now consider a perfectly
symmetric system, FI(1000 nm)|N(200 nm)|FI(1000 nm),
with lsf = 350 nm. For such thick films, surface anisotropies
may play an important role. We therefore discuss a case in
which we include a surface anisotropy of KS = 0.05 erg/cm2.
According to the analytical result presented in Sec. III A
the lowest-energy modes with QL1 
 1 are exponentially
localized at the FI|N surfaces. The n �= 0 modes are not as
strongly affected by the surface anisotropy, and the surface
characteristics are only moderately altered [32]. We now
compute the eigenfrequencies, ω, as a function of the wave
vector in the range 10−4 < QL1 < 103. In Fig. 4(a), we present
the real part of the frequency for the six lowest-energy modes
with a positive real part, and in Fig. 4(b), we present the corre-
sponding renormalizations of the Gilbert damping for the four
lowest-energy modes. The dispersion relations indicate that
the mode pairs that are degenerate at QL1 
 1 rapidly split
in energy when QL1 approaches 10−2. Strong anticrossings
can be observed between the n = 1 and n = 2 modes. Such
anticrossings are also present between the surface mode and
the n = 1 mode; they are almost too strong to be recognized as
anticrossings. The enhanced damping renormalizations exhibit
very different behavior for the different modes. We recognize
the large-�α mode of one pair as the surface optical mode
and the low-�α mode as the volume n = 1 acoustic mode.
Without EASA, the anticrossings in Fig. 4(a) would become
crossings. The lowest-energy modes at QL1 
 1 would then
cut straight through the other modes. In the case considered

FIG. 4. (Color online) FI(1000 nm)|N(200 nm)|FI(1000 nm),
lsf = 350 nm, KS = 0.05 erg/cm2: (a) The dispersion relation as
a function of QL1 for the six lowest positive-real-part modes.
(b) The renormalization of the damping attributable to spin pumping
for the four lowest modes with frequencies with positive real parts
as a function of QL1. At large QL1, the computation becomes
increasingly demanding, and the point density of the plot becomes
sparse. We have therefore individually marked the plotted points in
this region.

here, this behavior is now observed only as steep lines at
QL1 ∼ 0.05 and at QL1 ∼ 0.5. The difference in the energies
of the surface modes at QL1 ∼ 1 results from the difference in
the dipolar interaction between layers [see Eq. (8)]. When Q

is increased, the effective spin-diffusion length decreases [see
Eq. (17)], which reduces the spin-pumping-induced coupling
between the modes at large Q. When QL1 ∼ 100, the coupling
becomes so weak that the two FIs decouple. This phenomenon
can be observed from the behavior of �α in Fig. 4(b), where
the damping of the acoustic modes become the same as
for the optical modes. In the MSSW geometry, an isolated
FI has magnetostatic waves that are localized near one of
the two surfaces, depending on the direction of propagation
with respect to the internal field [35]. Asymmetries in the
excitation volume are therefore also expected for the trilayer
in this geometry. In Fig. 5, we present the eigenvectors of the
surface modes as functions of the transverse coordinate ξ for
increasing values of the wave vector Q. At QL1 = 0.5, the
modes have already begun to exhibit some asymmetry. Note
that the renormalization of the damping observed in Fig. 4(b) is
approximately one order of magnitude larger than the intrinsic
Gilbert damping for the optical mode and that the damping
of any one mode may vary by several orders of magnitude
as a function of QL1 [32]. Therefore, these effects should be
experimentally observable. The greatest damping occurs when
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FIG. 5. (Color online) FI(1000 nm)|N(200 nm)|FI(1000 nm),
lsf = 350 nm, KS = 0.05 erg/cm2: (a) and (b) present the real parts of
the x components of the out-of-equilibrium magnetization vectors for
the acoustic and optical surface modes, respectively, for several values
of QL1. For values of QL1 � 1, the modes decouple and become
localized in one of the two layers. For large values of QL1 ∼ 100,
the two modes are strongly localized at one of the two FI|N interfaces,
which correspond to the peaks in the damping that are apparent in
Fig. 4(b).

the two layers are completely decoupled; see Figs. 4(b) and 5.
Because the damping of the optical mode is equivalent to that
of a system with a perfect spin sink, one might expect that
the greatest damping should occur for this mode. However,
the large localization, which is achieved only at large QL1, in
combination with the vanishing of the effective spin-diffusion
length, leads to damping that is much greater than that of the
synchronized optical mode.

V. CONCLUSIONS

We investigated the dynamic coupling of spin-wave exci-
tations, which are present in single FI thin films, primarily
through spin pumping and spin transfer but also through the
dynamic demagnetization field created when two FI thin films
are in contact via an NM layer. Because of this coupling, the
modes are split into acoustical and optical excitations. When
the NM is thin compared with lsf , the renormalization of the
Gilbert damping vanishes for the acoustic modes, whereas for
the optical modes, the renormalization is equally as large as for
a single-FI|N system in which the NM is a perfect spin sink.
A spin wave pumps a spatially dependent spin current that
is determined by the wave number Q. When the wavelength
2π/Q is on the order of, or smaller than, the spin diffusion
length, spin currents of opposite sign diffuse into each
other and partially cancel each other out. Consequently, the

spin-memory loss is greater for short-wavelength spin currents.
This phenomenon leads to an effective spin-diffusion length
in the NM that decreases for increasing values of Q. Thus, the
dynamic coupling strength is reduced for short-wavelength
spin waves. At some critical value of Q, the coupling becomes
so weak that the acoustic- and optical-mode configurations
are lost in favor of modes that are localized in one of the
two FIs. At these values of Q, the interlayer dipole coupling
is also dominated by the intralayer exchange coupling. For
these high-wave-number modes, the system behaves similar
to two separate FI|N(lsf = 0) systems. When the two films
are of different thicknesses, the exchange energies of the
higher-order transverse n > 1 modes differ between the two
layers. Because of the relatively small coupling attributable
to spin pumping, the synchronization of these modes at
QL1 
 1 requires that the FI thicknesses be very similar.
A small asymmetry breaks the synchronization; however, for
larger QL1 ∼ 1, the modes can again become coupled through
interlayer dipole interaction. This coupling arises in addition
to the spin-pumping-induced coupling. At even larger Q, both
the dipolar- and spin-pumping-induced couplings are reduced.
Consequently, the modes of the two layers are desynchronized.
Depending on the quality of the interface between the FIs and
the strength of the spin-orbit coupling in the NM, additional
effective surface fields may be present because of surface
anisotropy energies. When surface anisotropy is present, the
lowest-energy modes are localized at the FI|N surfaces. These
modes couple in the same manner as the macrospin modes.
For films that are much thicker than the decay length A/KS ,
the energies of the surface modes do not depend on the
film thickness. Consequently, the coupling of these modes
is independent of the thickness of the two FIs. Similar to the
simpler FI|N system, the damping enhancement may attain
values as high as an order of magnitude larger than the
intrinsic Gilbert damping. However, in the trilayer system, the
presence of both acoustic and optical modes results in large
variations in the effective damping within the same physical
sample. Because of this wide range of effective damping,
which spans a difference in �α of several orders of magnitude
as a function of Q, we suggest that trilayer modes should be
measurable in an experimental setting. With more complicated
FI structures in mind, we believe that this work may serve as
a guide for experimentalists. The large variations in effective
damping for different modes make the magnetic properties of
the system detectable both with and without surface anisotropy.
For spin waves, dipole-dipole interactions assist spin pumping
in interlayer synchronization, which can be exploited in the
design of future spintronic devices.
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APPENDIX A: DIPOLE TENSOR

The dipole tensor in the ζηξ coordinate system, Ĝ(ξ ) from
Eq. (9), can be rotated in the xyz coordinate system using the
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rotation matrix

R =
⎛
⎝sθ −cθ sθ −cθcφ

0 cφ −sφ

cθ sθ sφ sθ cφ

⎞
⎠ , (A1)

where we have introduced the shorthand notation sθ ≡ sin θ , cθ ≡ cos θ , and so forth. Thus, we obtain the following result:

Ĝxyz = RĜRT

=

⎛
⎜⎝

s2
θ Gξξ − cφs2θGξζ + c2

θ c
2
φGζζ −sφsθGξζ + sφcφcθGζζ sθ cθGξξ − sθ cθ c

2
φGζζ + cφ

(
s2
θ − c2

θ

)
Gξζ

−sφsθGξζ + sφcφcθGζζ s2
φGζζ −sφcθGξζ + sφsθ cφGζζ

sθ cθGξξ − sθ cθ c
2
φGζζ + cφ

(
s2
θ − c2

θ

)
Gξζ −sφcθGξζ + sφsθ cφGζζ c2

θGξξ + s2θ cφGξζ + c2
φs2

θ Gζζ

⎞
⎟⎠ .

(A2)

As we are considering the linear response regime, the equilibrium magnetization should be orthogonal to the dynamic deviation,
mi · ẑ = 0. Thus, it is sufficient to retain only the xy part of Ĝxyz. Thus, we obtain the following result:

Ĝxy =
(

s2
θ Gξξ − cφs2θGξζ + c2

θ c
2
φGζζ −sφsθGξζ + sφcφcθGζζ

−sφsθGξζ + sφcφcθGζζ s2
φGζζ

)
. (A3)

APPENDIX B: SPIN ACCUMULATION

The functions 1(ξ ) and 2(ξ ) are taken directly from
Ref. [40] and modified to apply to the more complex magnetic
texture model. Thus, we obtain the following result:

1(ξ ) ≡ cosh(ξ/l̃sf)

cosh(ξ/l̃sf) + σ sinh(ξ/l̃sf)/2g⊥ l̃sf
,

(B1)

2(ξ ) ≡ sinh(ξ/l̃sf)

sinh(ξ/l̃sf) + σ cosh(ξ/l̃sf)/2g⊥ l̃sf
.

For Qlsf � 1, the effective spin diffusion length is shortened,
1 → 1 and 2 → 0 at the FI|N interfaces.

APPENDIX C: EFFECTIVE SPIN DIFFUSION LENGTH

Diffusion in the NM can be described as follows:

∂tμS = D∇2μS − 1

τsf
μS, (C1)

where D is the diffusion constant, and τsf is the spin-flip
relaxation time. We assume that the FMR frequency is much
smaller than the electron traversal time, D/d2

N, and the spin-flip
relaxation rate, 1/τsf [40]. Thus, the left-hand side of Eq. (C1)
can be neglected. In linear response, the spin accumulation,
which is a direct consequence of spin pumping, must be
proportional to the rate of change of magnetization at the
FI|N interfaces. We perform the same Fourier transform, as on
the magnetization, such that μ ∼ exp{i(ωt − Qζ )}. The spin
diffusion equation then takes the form

∂2
ξ μS =

(
Q2 + 1

Dτsf

)
μS. (C2)

The spin diffusion length becomes lsf = √
Dτsf . We intro-

duce the effective spin diffusion length as follows: l̃sf =

lsf/
√

1 + (Qlsf)2 one gets

∂2
ξ μS = 1

l̃2
sf

μS. (C3)

APPENDIX D: SYNCHRONIZATION WITH VANISHING
SPIN PUMPING

We identify the relative contributions of spin pumping and
interlayer dipole coupling by considering the results of the
numerical calculation in Sec. IV A in the absence of spin
pumping and the associated coupling (g⊥ = 0). In Fig. 6,
we show the relative amplitude between the two layers for
the four lowest energy modes. The frequencies of the two
uniform modes are independent of the thickness and are
therefore synchronized even at Q → 0, where the interlayer
dipole coupling becomes small. Comparing this calculation
to the same calculation with spin pumping shows that the
synchronization observed at QL1 ∼ 1 primarily results from
dipole coupling.

FIG. 6. (Color online) FI(100 nm)|N(50 nm)|FI(101 nm),
BVMSW without spin pumping, showing relative amplitude of the
out-of-plane magnetizations along x at the edges of FI1|N and FI2|N
as functions of QL1; blue and yellow (red and green) lines show
acoustical (optical) modes.
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