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We compute the ac susceptibility of a weakly dipolar-interacting monodisperse assembly of magnetic
nanoclusters with oriented anisotropy. For this purpose, we first compute the relaxation rate in a longitudinal
magnetic field of a single nanomagnet taking account of both dipolar interactions in the case of dilute assemblies
and surface anisotropy. We then study the behavior of the real and imaginary components of the ac susceptibility
as functions of temperature, frequency, surface anisotropy, and interparticle interactions. We find that the surface
anisotropy induces an upward shift of the temperature at the maximum of the ac susceptibility components and
that its effects may be tuned so as to screen out the effects of interactions. The phenomenological Vogel-Fulcher
law for the effect of dipolar interaction on the relaxation rate is revisited within our formalism and a semianalytical
expression is given for the effective temperature in terms of inter alia the applied field, surface anisotropy, and
dipolar interaction.
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I. INTRODUCTION

The dynamics of magnetic systems in the form of nan-
oclusters (nanoparticles or nanomagnets) assemblies is a rather
challenging issue from the standpoint of fundamental physics
as it requires a simultaneous investigation of both long-range
intercluster interactions and the intricacies of inhomogeneous
magnetism taking place inside the clusters. Even for the equi-
librium properties, the problem is of a tremendous difficulty
especially if one tries to take account of the internal structure of
the cluster by regarding it as a many-spin system. In fact, only
advanced numerical approaches may offer a way out, though
with a limited success inasmuch as one considers the effect
of surface anisotropy and its interplay with the intercluster
dipolar interactions. Recently, this issue has been tackled [1,2]
to some extent by representing each nanocluster by an effective
macroscopic model [3–6] with an energy potential whose
coefficients are functions of the cluster’s characteristics (size,
shape, lattice crystal, spin-spin interactions). It was shown
that the magnetic properties of an assembly may be improved
by a tailored variation of the assembly parameters, such as
its concentration and geometry, and the cluster’s intrinsic
characteristics such as the size and shape. In this work, we
investigate the joint effect of intercluster interactions and
surface anisotropy on the dynamic behavior of the assembly,
in the case of low concentration and not too strong surface
effects. For this we study the ac susceptibility with a variable
measuring frequency.

ac susceptibility of an assembly of magnetic nanoclusters
has been studied by many authors during the last decades,
experimentalists and theorists, by varying the applied magnetic
field, temperature, and frequency [7–22]. These studies have
greatly contributed to improve our understanding of the su-
perparamagnetic behavior of such systems and to provide
estimates of their physical parameters. In particular, the size
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study [10] of ac susceptibility, together with Mössbauer spec-
troscopy, of diluted and concentrated assemblies of maghemite
nanoclusters dispersed in polymer, has revealed the important
role of surface effects. On the theoretical side, it is the first time
that the joint effects of intercluster interactions and surface
anisotropy on the ac susceptibility are considered in a single
study.

According to Debye’s model applied to assemblies of mag-
netic nanoclusters [7], the ac susceptibility is given by χ (ω) =
χeq/(1 + iω�−1), where χeq is the static or equilibrium
susceptibility, ω the frequency, and � the cluster’s relaxation
rate (inverse of relaxation time). This model describes the
absorption by a single mode of the electromagnetic energy
provided by the applied field. The dynamics of this mode is
rather slow and characterized by the longitudinal relaxation
time τ = �−1 corresponding to the population inversion
from the blocked state to the superparamagnetic state. This
transition corresponds on average to the crossing by each
cluster’s magnetic moment of its energy barrier. Therefore,
in order to compute the ac susceptibility, one has to compute
the longitudinal relaxation rate of a nanocluster in the assembly
(described by an effective model) in a magnetic field.

The paper is organized as follows: Section II is devoted to
the presentation of the model and the statement of the problem.
This section closes with a brief summary of the results for the
equilibrium susceptibility obtained in Ref. [2] as a function
of the applied field, temperature, surface anisotropy, and
including the contribution of long-range dipolar interaction.
The formulas for the ac susceptibility are then derived in
Sec. III: We first describe in details the evaluation of single
nanocluster’s relaxation rate � with both a uniaxial and a cubic
anisotropy representing the surface effects; by using Debye’s
model, the semianalytical form of the ac susceptibility is then
given at the end of the section. In Sec. IV, we deal with the
main focus of this work, namely, the study of the effect of
surface anisotropy on the ac susceptibility and its competi-
tion with dipolar interparticle interactions. The paper ends
with a discussion of the Vogel-Fulcher law and concluding
remarks.

1098-0121/2014/90(9)/094416(10) 094416-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.90.094416


F. VERNAY, Z. SABSABI, AND H. KACHKACHI PHYSICAL REVIEW B 90, 094416 (2014)

II. ENERGY AND EQUILIBRIUM SUSCEPTIBILITY

A. Nanoparticle assembly

We consider a monodisperse and textured assembly of N
ferromagnetic nanoclusters each carrying a magnetic moment
mi = misi , i = 1, . . . ,N , of magnitude m and direction si ,
with |si | = 1. Each magnetic moment has a uniaxial easy axis
e aligned along the z direction. The energy of a magnetic
moment mi interacting with all the other magnetic moments
within the assembly, in a magnetic field H = H eh, reads as
(after multiplying by −β = −1/kBT )

Ei = E (0)
i + EDDI

i , (1)

where the first contribution E (0)
i = xisi · eh + A(si) is the

energy of the free nanocluster at site i, comprising the Zeeman
energy and the anisotropy contributions from the core and
surface. A(si) is a function that depends on the anisotropy
model and is given by

A(si) =
{

σi(si · ei)2 (OSP)

σi

[
(si · ei)2 − ζ

2

(
s4
i,x + s4

i,y + s4
i,z

)]
(EOSP).

(2)

OSP and EOSP stand, respectively, for one-spin problem
and effective one-spin problem which are macroscopic models
used for representing the magnetic state of the nanocluster [2].
In the present case, we restrict ourselves to the situation
where the uniaxial anisotropy axis is aligned along the z

direction, i.e., with a common axis with the cubic anisotropy.
This assumption makes the analytical calculations somewhat
simpler and the physical interpretation more transparent, but
it does not represent a significant discrepancy with regard to
the real situation. Indeed, the uniaxial anisotropy considered
in Eq. (2) is in fact an effective anisotropy that takes account of
both the magnetocrystalline and shape anisotropy. In typical
nanoparticle assemblies, this effective anisotropy is rather
strong, especially for elongated nanoparticles. As such, a small
tilting of the cubic anisotropy with respect to the axis of the
effective uniaxial anisotropy should not change the results in a
significant way. For a more general situation with an arbitrary
orientation of the cubic anisotropy axes with respect to the
uniaxial anisotropy axis, one can write the cubic contribution
in a different reference frame (x ′,y ′,z′) and then introduce in
Eq. (2) a rotation matrix such that si,α′ = ∑

β=x,y,z Rαβsi,β , as
was done in a different context in Ref. [23].

The second term in Eq. (1) is the dipole-dipole inter-
action (DDI) between nanoclusters which can be written
as EDDI

i = ξ
∑

j<i si · Dij · sj , where Dij is the DDI tensor

Dij ≡ 1
r3
ij

(3eij eij − 1), with rij = ri − rj and eij = rij /rij is

the unit vector along the i–j bond.
For convenience, we have introduced the following dimen-

sionless parameters:

x ≡ mH

kBT
, σ ≡ K2V

kBT
, ζ ≡ K4

K2
, ξ ≡

(
μ0

4π

)(
m2/a3

kBT

)

together with the DDI coefficient ξ̃ ≡ ξC(0,0). C(0,0) =
−4π (Dz − 1

3 ), and Dz is the demagnetizing factor along the
z axis. K2,K4 are the constants of the uniaxial and cubic
anisotropy, respectively. a is the “superlattice” parameter or
the interparticle distance in the assembly whose particles are

supposed to occupy a simple cubic (sc) lattice. Yet, we stress
that a generalization to other superlattices (fcc, bcc, ...) is rather
straightforward. One should simply reevaluate the lattice sums
C(0,0) for the given superlattice. Similarly, one could easily
mimic a disordered spatial arrangement by an evaluation of
C(0,0) in the case of a randomly depleted lattice. However, for
the sake of clarity and to keep our discussion simple, we will
consider the SC case in the rest of this paper.

The (dimensionless) DDI field �i acting on the magnetic
moment mi reads as

�i = ξ
∑

j

Dij · sj . (3)

Later, we make use of the spin average 〈�2
i,‖〉0, where �i,‖ =

�i · ei is the longitudinal component of �i , which is defined
by

〈
�2

i,‖
〉
0 ≡ 1

4π

∫ ⎛
⎝∏

j

dsj

⎞
⎠ �2

i,‖ e
∑

j E
(0)
j . (4)

The average 〈. . .〉0 is defined with respect to the Gibbs prob-
ability distribution containing only the energy contributions
pertaining to a free cluster. Finally, the spin average of the
transverse component of �i can be obtained from the identity
〈�2

i,⊥〉0 = 〈�2
i 〉0 − 〈�2

i,‖〉0.

B. Statement of the problem

In this work, we shall be concerned with the study of the
combined effects of surface anisotropy and dipolar interactions
on the dynamic susceptibility of an assembly of monodisperse
nanoclusters with oriented uniaxial anisotropy. The cubic
anisotropy which stems from spin noncollinearities on the
cluster’s surface is assumed to have its axes parallel to the
crystal axes. We then derive analytical formulas in several
cases of low-field (x � 1), high-energy barrier (σ 	 1),
small surface anisotropy (|ζ | < 1), and weak DDI (ξ � 1).
In particular, for the calculation of the spin averages (4) and
kindred ones we will drop all terms of orders higher than
2. For this reason, it turns out that the calculation of such
averages can be done with good approximation with only
the uniaxial anisotropy contribution in the Gibbs probability
distribution [2]. The final results are expressed in the end in
terms of the following well-known averages (obtained in the
absence of a magnetic field) 〈sα

i 〉0 = 0, and〈
sα
j s

β

k

〉
0 = [

1
3 (1 − Sj2)δαβ + Sj2e

α
j e

β

j

]
δjk (5)

with [15,24]

Sil(σi) 

{

(l−1)!!
(2l+1)!!

(
σi

2

)l/2 + · · · , σi � 1

1 − l(l+1)
4σi

+ · · · , σi 	 1.
(6)

C. Equilibrium susceptibility

For a weakly interacting assembly of nanoclusters de-
scribed with the help of the EOSP model, the equilibrium
susceptibility reads as (to first order in ξ̃ )

χ eq(x,σ,ζ,ξ̃ ) 
 χ
eq
free + ξ̃χ

eq
int, (7)
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where χ
eq
free is the equilibrium (linear) susceptibility of the

noninteracting assembly in the limit of high anisotropy energy
barrier [2,24]

χ
eq
free(x,σ,ζ ) = 2χ⊥

0 σ
[
χ

(1)
free + 3χ

(3)
freex

2],
χ

(1)
free =

(
1 − 1

σ

)
+ ζ

σ

(
− 1 + 2

σ

)
, (8)

χ
(3)
free = 1

3

[(
−1 + 2

σ

)
+ ζ

σ

(
2 − 5

σ

)]
.

Here, χ⊥
0 is the transverse equilibrium susceptibility per spin

at zero temperature in the absence of a bias field

χ⊥
0 ≡

(
μ0m

2

2K2V

)
.

This can be obtained from Eq. (3.86) of Ref. [25] upon setting
the field to zero.

The contribution of DDI to the equilibrium susceptibility is
given by [2]

χ
eq
int(x,σ,ζ ) = 2χ⊥

0 σ
[
χ

(1)
int + 3χ

(3)
int x

2
]
,

χ
(1)
int = 1 − 2

σ
− 2

(
1 − 3

σ

)
ζ

σ
, (9)

χ
(3)
int = −4

3

[(
1 − 3

σ

)
− 3ζ

σ

]
.

In the sequel, all susceptibilities will be measured in units of
χ⊥

0 .

III. AC SUSCEPTIBILITY

The dynamic response of the EOSP assembly can be studied
with the help of the ac susceptibility. For an arbitrary angle
ψ between the (common) easy axis and the field direction,
the effective susceptibility may be written as χ = χ‖ cos2 ψ +
χ⊥ sin2 ψ .

Shliomis and Stepanov [26] proposed a simple Debye form
for χ (ω) which can be generalized to describe the effect of a
longitudinal bias field by writing

χ = χ‖(T ,H )

1 + iωτ‖
cos2 ψ + χ⊥(T ,H )

1 + iωτ⊥
sin2 ψ, (10)

where τ‖ and τ⊥ are appropriate longitudinal (interwell) and
transverse (intrawell) relaxation times; χ‖(T ,H ) and χ⊥(T ,H )
are, respectively, the longitudinal and transverse components
of the equilibrium susceptibility.

For an assembly with oriented anisotropy in a longitudinal
field (ψ = 0), we may assume that the transverse response is
instantaneous, i.e., τ⊥ = 0. In this case, the ac susceptibility is
given by Eq. (10) or using τ‖ = �−1 and χ‖ = χ eq defined in
Eq. (7):

χ (x,σ,ζ,ξ̃ ,η) = χ eq

1 + iω�−1
. (11)

Next, we introduce the reduced frequency

η(x,σ,ζ,ξ̃ ,λ) ≡ ωτ‖ = (ωτD)(τD�)−1, (12)

with λ being the damping parameter. �(x,σ,ζ,ξ̃ ,λ) is the
relaxation rate of an EOSP nanocluster weakly interacting

within the assembly; τD = (λγgyr.HK )−1 is the free diffusion
time, HK = 2K2V/M the (uniaxial) anisotropy field, and
γgyr 
 1.76 × 1011 (T s)−1 the gyromagnetic ratio. For ex-
ample, for cobalt particles the anisotropy field is HK ∼ 0.3 T,
and for λ = 0.1 − 10, τD ∼ 2 × 10−10 − 2 × 10−12 s.

At this point, the only missing ingredient to evaluate the
susceptibility in Eq. (11) is the relaxation rate. Therefore, the
next section is devoted to the calculation of the relaxation rate
�(x,σ,ζ,ξ̃ ,λ).

A. Relaxation rate

Here, we derive an expression for the relaxation rate of a
weakly interacting EOSP nanocluster. In Ref. [11] Jönsson and
Garcia-Palacios derived the following approximate expression
for �:

� 
 �0
[
1 + 1

2 〈�2
‖〉0 + 1

4F (α)〈�2
⊥〉0

]
. (13)

This takes account of the various approximations stated
earlier inasmuch as the general spin averages 〈. . . 〉 are replaced
by their analogs 〈. . .〉0 defined in Eq. (4). �0 is the relaxation
rate in the absence of DDI. The function F (α) is given by [27]

F (α) = 1 + 2(2α2e)1/(2α2)γ

(
1 + 1

2α2
,

1

2α2

)
, (14)

with γ (a,z) = ∫ z

0 dt ta−1e−t the incomplete gamma function,
and where α = λ

√
σ . In Ref. [11] the free-particle relaxation

rate �0 was given in the absence of the applied magnetic field,
i.e., τD�0 = 2√

π
σ 1/2e−σ . A more general expression for the

free-particle relaxation rate in a longitudinal magnetic field is
the Néel-Brown formula [28]

τD�NB

= σ 1/2(1 − h2)√
π

[(1 + h)e−σ (1+h)2 + (1 − h)e−σ (1−h)2
],

(15)

with h ≡ x/2σ . Setting h = 0 recovers the previous expres-
sion. The relaxation rate (15) has to be generalized for
the present purposes in order to take into account surface
anisotropy, in addition to the magnetic field as well as the
core anisotropy.

For intermediate-to-high damping, Langer’s approach al-
lows us to compute the relaxation rate � of a system with
many degrees of freedom related with its transition from a
metastable state through a saddle point [29–34]

� = |κ|
2π

Z̃s

Zm

, (16)

where Zm and Z̃s are, respectively, the partition functions
in the vicinity of the energy metastable minimum and the
saddle point. The two partition functions are computed using
a quadratic expansion of the energy at the corresponding
stationary states. The attempt frequency κ is computed upon
linearizing the dynamical equation around the saddle point,
diagonalizing the resulting matrix and selecting its negative
eigenvalue [29,30].

The dynamics of a single magnetic moment is governed
by the (damped) Landau-Lifshitz equation and Langer’s (or
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FIG. 1. (Color online) Energy landscape at zero field in the limit of a large uniaxial anisotropy, for ζ > 0 (left) and ζ < 0 (right).

Néel-Brown) expression renders the relaxation rate for its
escape from the minimum (θ (m),ϕ(m)) through the saddle point
(θ (s),ϕ(s)), in the limit of intermediate-to-high damping. Owing
to the approximations adopted in this work, especially the
smallness of the surface anisotropy with respect to the uniaxial
anisotropy (|ζ | < 1), the energy potential of the noninteracting
cluster presents two global minima that are mainly defined
by the uniaxial anisotropy, as is shown in Fig. 1 (in zero
field), while the surface anisotropy induces saddle points at
the equator. In the present case, changing the sign of ζ does
not affect the loci of the minima but those of the saddle points
are rotated by π/4 around the z axis. The overall shape of the
energy landscape remains, though, quite similar. The global
minima are θ (m) = 0,π with uniaxial symmetry around the z

axis. Then, we have

Zm 
 2π

2σ (1 − ζ − h)
eE

(0)
m , (17)

where E (0)
m = 2σ × 1

4 (2 − ζ − 4h) is the energy at the
metastable minimum θ (m) = π .

There are four equivalent escape routes (saddle points)
related to each other by a rotational symmetry with respect
to the azimuthal angle ϕ and their loci depend on the sign of
ζ . Indeed, for ζ > 0 we have ϕ(s) = π

4 , 3π
4 , 5π

4 , 7π
4 and

cos θ (s) =
√

2 + ζ

3ζ
sin

(
φ

3

)
−

√
2 + ζ

9ζ
cos

(
φ

3

)
(18)

with cos φ = 9hζ 1/2

(2+ζ )3/2 .

For ζ < 0, the saddle points are given by ϕ(s) = 0, π
2 ,π, 3π

2
and

cos θ (s) =
[

h

4ζ
+

√
�

]1/3

+
[

h

4ζ
−

√
�

]1/3

(19)

with � = ( h
4ζ

)2 − ( 1+ζ

6ζ
)3.

For a small magnetic field h, the azimuthal angle at the
saddle point remains close to the equator while an expansion
of Eq. (18) yields θ (s) 
 π

2 + 2h
2+ζ

. It is worth mentioning that
the symmetry breaking of the continuous rotation around ϕ,
induced by the introduction of a cubic anisotropy, appears as

soon as ζ assumes a finite value. However, for very small values
of ζ the energy surface around the saddle points remains flat,
rendering the quadratic expansion of the energy at the saddle
point questionable (see Fig. 2). As a consequence, Langer’s
approach does not apply in such situations, as was emphasized
earlier [35,36].

Next, expanding the energy at the saddle points for ζ > 0
and ζ < 0 (with not too small |ζ |) we obtain the following
generic expression for the relaxation rate (upon multiplying
by the symmetry factor 4) �0 = �(π,0)→(θ (s),ϕ(s)):

τD�0 = 4 × |κ|
2π

sin θ (s) 2σ (1 − ζ − h)√∣∣μ(s)
1 μ

(s)
2

∣∣ e�E (0)
. (20)
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FIG. 2. (Color online) Relaxation rate as a function of the (neg-
ative and positive) parameter ζ , for three values of the (reduced)
applied field h: Full lines correspond to the relaxation rate defined
in Eq. (22), while the dashed lines are plots of the ζ -independent
Néel-Brown relaxation rate (15) for different values of the magnetic
field. Insets: Ratio of the two prefactors �+

p (h,σ,ζ,λ)/�−
p (h,σ,ζ,λ),

as defined in Eq. (22), and energy barrier difference against h, for
σ = 15 and ζ = 0.2.
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The attempt frequency κ , as a function of the damping
parameter λ, is given by the general expression

κ = λ

2
×

[(
μ

(s)
2 + μ

(s)
1

)

−
√(

μ
(s)
2 + μ

(s)
1

)2 − 4

(
1 + 1

λ2

)
μ

(s)
1 μ

(s)
2

]
, (21)

where μ
(s)
i , i = 1,2, are the eigenvalues of the energy

quadratic form near the saddle point, with respect to the
variables θ,ϕ, respectively. These, together with the energy
at the saddle point, are given by

E (0)
s =2σ

[
h cos θ (s) + 1

2
cos2 θ (s) − ζ

8
(sin4 θ (s) + 2 cos4 θ (s))

]
,

μ
(s)
1 =2σ × −1

4
[4h cos θ (s) + (4 − ζ ) cos 2θ (s) − 3ζ cos 4θ (s)],

μ
(s)
2 =2σ [−ζ sin4 θ (s)]

for ζ > 0.
As the energy landscape remains globally the same by

changing ζ → −ζ , only the energy at the saddle points and
the eigenvalues change, yet the overall form of the relaxation
rate is still given by Eqs. (20) and (21) with the following
substitutions:

E (0)
s = 2σ

[
h cos θ (s) + 1

2
cos2 θ (s) − ζ

4
(cos4 θ (s) + sin4 θ (s))

]
,

μ
(s)
1 = 2σ [−h cos θ (s) − cos(2θ (s)) + ζ cos(4θ (s))],

μ
(s)
2 = 2σ [ζ sin4 θ (s)]

for ζ < 0. Finally, the energy barrier �E (0) in Eq. (20) is
defined as �E (0) = E (0)

s − E (0)
m .

In the limit of zero field (h = 0) and for ζ > 0,
for instance, μ(s)

1 /2σ → (ζ + 2)/2, μ
(s)
2 /2σ → ζ, E (s)

0 /2σ →
−ζ/8 so that the relaxation rate in Eq. (20) reduces to the result
obtained in Ref. [36], normalized with respect to the Néel’s
free-diffusion relaxation time [17] τN = m

2αγ kBT
= στD.

Two remarks are in order:
(i) There are two limits to the range of ζ (>0). First, ζ

must not exceed some value that marks the limit of validity of
the EOSP model. From numerical calculations [4,6], this has
been evaluated to ∼0.25 for an sc lattice and ∼ 0.35 for an fcc
lattice. The second limit stems from the fact that the analytical
expressions obtained above for � within Langer’s approach
cannot be continued to ζ = 0 because the saddle points created
by the cubic contribution to the anisotropy disappear at the
uniaxial anisotropy limit. The lower limit on ζ can be obtained
by setting to zero the first derivative of � with respect to ζ and
numerically solving the ensuing equation. Doing so, we find
that for σ = 15, . . . 25, for instance, ζcrit is of the order of 0.1.

(ii) Because of the nonaxial symmetry (owing to the
presence of surface cubic anisotropy) considered here, the
relaxation rate depends in a nontrivial way on the damping
parameter. Consequently, the longitudinal response (in phase
and out of phase) are damping dependent.

In Fig. 2, we plot the relaxation rate for both ζ > 0 and ζ <

0 as a function of ζ and different values of the applied field h,
for σ = 15. In this case, as mentioned above, the relaxation rate

computed within our approach is only valid for 0.1 < |ζ | < 1.
For smaller values of |ζ |, Langer’s approach is no longer valid
and the relaxation rate is given by the Néel-Brown formula (15)
which does not depend on ζ . This is shown by the dashed lines
in Fig. 2. As it can be expected, the relaxation rate that includes
the cubic anisotropy is larger than the Néel-Brown relaxation
rate since the creation of saddle points increases the probability
of escaping from the metastable state.

Next, if we write the relaxation rates given by Eq. (20) in
the form

�0(h,σ,ζ,λ) = �ε
p(h,σ,ζ,λ)e�E (0)

ε (ζ ) (22)

with ε = + for ζ > 0 and ε = − for ζ < 0 we can study the
behavior of the ratio of the prefactors and the difference of
the energy barriers as the field is varied. The corresponding
plots are given in the inset in Fig. 2. We see that the ratio
of the prefactors is a decreasing function of h while the
difference of the energy barriers is an increasing function
thereof. This implies that there is a competition between
the prefactor-dominated dynamics and the relaxation through
the energy-barrier crossing or, in other words, between the
dynamics dominated, respectively, by the fluctuations of the
transverse and the longitudinal components of the magnetic
moment.

Caution is necessary when trying to compare the expression
of the relaxation rate �0(h,σ,ζ,λ) derived here in the presence
of both surface effects (ζ �= 0) and DDI (ξ �= 0) with the
relaxation rate obtained, in the absence of the cubic anisotropy,
by other authors [11,37]. Indeed, in the presence of an arbitrary
magnetic field, one cannot simply set ζ = 0 in our expressions
because these have been derived using Langer’s approach
that relies on the validity of the quadratic expansion of the
energy at the minima and saddle points; a validity that breaks
down for rather small (but nonvanishing) values of ζ . From
a mathematical point of view, setting ζ to zero in Eqs. (18)
and (19), for example, leads to a singularity.

Now, for the assembly we use the spin averages 〈�2
i,‖〉0 and

〈�2
i,⊥〉0 obtained in Ref. [11] for a monodisperse assembly on

a sc lattice and in the absence of an external magnetic field

〈
�2

i,‖
〉
0 = ξ 2

3
[(1 − S2)R + 3S2T ],

(23)〈
�2

i,⊥
〉
0 = ξ 2

3
[(2 + S2)R − 3S2T ],

where S2 is defined in Eq. (6). R and T are lattice sums given
by R = 2

∑
j �=i r−6

ij , T = ∑
j �=i(e · Dij e)2. For a simple cubic

lattice we have, in the thermodynamic limit, R 
 16.8, T 

13.4.

Therefore, using Eqs. (14), (20), and (23) in Eq. (13) we
obtain the relaxation rate for an assembly of interacting clusters
within the EOSP approach

�(h,σ,ζ,λ,ξ ) 
 �0(h,σ,ζ,λ)
[
1 + ξ 2

6
S(λ)

]
. (24)

where S(λ) is defined by

S(λ) = [1 + F (λ)]R + (3T − R)

(
1 − F (λ)

2

)
S2. (25)
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FIG. 3. (Color online) (a) χ ′ (left) and (b) χ ′′ for a free assembly (ξ = 0) within the OSP model, i.e., without surface anisotropy (ζ = 0),
for different frequencies f̃ ≡ ωτD/(2π ).

Alternatively, using η0 = ω�−1
0 , we can also rewrite Eq. (12)

as

η(h,σ,ζ,ξ,λ) = η0(h,σ,ζ,λ)

[
1 + ξ 2

6
S(λ)

]
. (26)

B. ac susceptibility

We rewrite the ac susceptibility (11) separating its real and
imaginary parts χ (h,σ,ζ,ξ̃ ,η) = χ ′ − iχ ′′ with

χ ′ = χ eq 1

1 + η2
, χ ′′ = χ eq η

1 + η2
. (27)

Now, we substitute for χ eq and η their respective expres-
sions (7) and (26), taking account of DDI and surface
anisotropy contributions given above. We obtain

χ ′ 
 χ ′
free + ξ

1 + η2
0

[
�(1) + ξ

η2
0

1 + η2
0

�(2)

]
,

χ ′′ = χ ′′
free + ξη0

1 + η2
0

[
�(1) + ξ

1 − η2
0

1 + η2
0

�(2)

]
,

where we have defined the in-phase and out-of-phase suscep-
tibilities in the absence of DDI

χ ′
free(h,σ,ζ,λ) ≡ χ

eq
free

1 + η2
0

, χ ′′
free(h,σ,ζ,λ) ≡ η0χ

eq
free

1 + η2
0

together with the first- and second-order DDI contributions

�(1) ≡ χ
eq
intC(0,0),

�(2) ≡ χ
eq
free

3
S(λ).

χ
eq
free and χ

eq
int are given by Eqs. (8) and (9) and η0 = ω�−1

0 by
Eq. (20).

IV. RESULTS

A. Noninteracting assembly of OSP nanomagnets

Using our formalism, we first reproduce the wellknown
results for the in-phase and out-of-phase susceptibilities for
an assembly of noninteracting nanomagnets with uniaxial
anisotropy, in zero dc field [17,25]. In Fig. 3, we plot the
in-phase (left) and out-of-phase (right) susceptibilities as
functions of 1/σ ∝ T for zero field (x = 0) and different

frequencies. On the left, we have also included the equilibrium
susceptibility χ

eq
free(ζ = 0), represented by the solid line.

The appearance in χ ′ and χ ′′ of a maximum at some
particular temperature Tmax and the displacement of the latter to
the right (higher temperatures) upon increasing the measuring
frequency is already well understood and explained in details,
e.g., in Ref. [17]. In particular, the maximum of χ ′ is formed
as a result of the competition between the blocking effect
(namely the decrease of the relaxation rate) and the increase
of χ eq as the temperature decreases. At low temperature, the
relaxation time is longer than the measuring time tm = 2π/ω

and thereby over a large number of cycles of the ac field,
the overbarrier switching probability is nearly zero and the
response consists mainly of intrawell rotations. As T increases
the clusters magnetic moments start to depart from their
respective energy minima due to thermal fluctuations. Then,
over the same number of cycles of the ac field, the switching
probability acquires a non-negligible value. The response starts
to increase with increasing temperature within a range where
the thermally activated mechanism of overbarrier crossing
is not yet efficient enough, leading to a considerable delay
of the response with respect to the excitation. This leads
to a considerable out-of-phase response χ ′′ as witnessed
by the increase of the latter [see Fig. 3 (right)]. At higher
temperatures, the overbarrier crossing mechanism becomes so
efficient that the magnetic moments instantaneously distribute
themselves among the various energy minima, in phase with
the probing field. At much higher temperatures, the distribution
of the magnetic moments reaches its equilibrium state and the
χ ′ curves become independent of the measuring frequency and
superimpose on the equilibrium linear susceptibility χ eq, and
correspondingly χ ′′ tends to zero.

The displacement of Tmax is easily understood from the ex-
pression of the latter as a function of the measuring frequency
νm. Indeed, this temperature is related with the overbarrier
rotation process whose relaxation time is approximately given
by the simple Arrhenius law τ‖ = τ0 exp(�E/kBT ), where
�E is the effective energy barrier and τ0 ∼ 10−12–10−9 s the
characteristic time of the intrawell dynamics. At T = Tmax

we can write τ‖ 
 tm, i.e., the measuring time (∼100 s for a
commercial SQUID), and this then leads to

Tmax = �E

kB
× ln−1

(
τm

τ0

)
. (28)
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FIG. 4. (Color online) (a) χ ′ and (b) χ ′′ for an interacting prolate (10 × 10 × 20) assembly with varying DDI strength ξ̃ , for the frequency
f̃ ≡ ωτD/(2π ) = 0.01 in the absence of an external field h = 0, in the high damping regime λ = 10. Same plots in (c) and (d) for an oblate
(20 × 20 × 5) assembly.

From this relation, one can easily infer the increase of Tmax

as the measuring frequency νm = τ−1
m increases. From the

physical viewpoint, with higher νm one probes on average more
probable (with higher relaxation rate) switching processes and
this is in effect induced by an increase in temperature.

B. Noninteracting assembly: Effects of surface anisotropy

Now, to investigate the effect of surface anisotropy on
the ac susceptibility we can compute the real and imaginary
components of the latter as functions of temperature, for
different values of the parameter ζ > 0.

We have observed that the maxima of both χ ′ and χ ′′ shifts
toward higher temperatures as ζ increases. Indeed, setting to
zero the first derivative of χ ′ with respect to temperature and
setting T = Tmax in the ensuing equation, we can solve the
latter for Tmax as a function of the other parameters, especially
ζ . We indeed find a monotonously increasing function of
ζ . Intuitively, this result appears to be at variance with the
fact that since the cubic (surface) anisotropy creates saddle
points it leads to an increase of the relaxation rate and thereby
to a decrease of Tmax. However, as mentioned earlier, the
location of the maximum of the dynamic response, while it
does depend on the energy barriers, it is strongly dependent
on the equilibrium response (i.e., χ eq) which is rather different
for the pure uniaxial case (ζ = 0). More precisely, χ eq is a
decreasing function of ζ and thereby when ζ increases the
dynamic response requires higher temperatures to reach its
maximum, thus leading to an increasing Tmax for increasing ζ .

C. Effects of interparticle interactions in the absence
of surface anisotropy

The effect of DDI on the ac susceptibility has been
widely investigated by many groups [11,12,16,18,38–46]. In
Ref. [46], the authors provide a short review of the situation
regarding the effect of DDI on the maximum of χ ′ and χ ′′ and
their shift in temperature as the DDI intensity is varied and the
assembly shape changed from oblate to prolate. It was argued
that the discrepancy of conclusions found in the literature as
to whether the DDI shift the maximum of χ ′ and χ ′′ towards
higher or lower temperatures resides in many reasons, mostly
related with the effects of damping, the shape of the (assembly)
sample, and anisotropy. Here, we use the same formalism and
approximations and obviously confirm the same results. There-
fore, we shall not repeat the conclusions of the previous work.

Nevertheless, Fig. 4 shows that as the shape of the assembly
changes from prolate to oblate, we obtain an opposite shift
in temperature in both the maximum of χ ′ and χ ′′ and also
in the corresponding Tmax. In the case of isotropic samples,
such as cubes, the lattice sum C(0,0) vanishes leading to a
DDI coefficient ξ̃ = 0. Therefore, no shift is observed and
the DDI do not contribute, within the present approach. For
prolate and oblate samples, both shifts are explained by the
fact that the equilibrium susceptibility increases with DDI in a
prolate sample whereas it decreases in an oblate sample. More
importantly, it is seen that the effect of DDI is more pronounced
in the oblate case because there the DDI are in competition with
the uniaxial anisotropy and thus strongly contribute to suppress
the equilibrium susceptibility. The effect of damping, while
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remaining secondary as compared to that of the assembly
shape, seems to be somewhat more pronounced in the case of
prolate samples. This may be due again to the fact that in the
prolate case the increase of χ eq with DDI is slower than its de-
crease for the oblate shape. As such, χ ′ and χ ′′, and more so for
χ ′, are more sensitive to the change of the relaxation rate which
then starts to prevail, and which does depend on damping.

D. DDI versus surface effects

Now, we are ready to investigate the interplay between inter-
particle DDI and intrinsic surface anisotropy. We only present
the case of ζ > 0 in which surface (cubic) anisotropy favors the
magnetic alignment along the cube diagonals. In order to deal
with the case ζ < 0, one has to use the corresponding relax-
ation rate, as discussed in Sec. III A. Yet, as shown in Fig. 2,
the behavior of the relaxation rate for ζ < 0 is qualitatively
the same as that for ζ > 0 and that even quantitatively the
difference is not really significant. Therefore, in the remaining
part of the paper, we will focus our discussion on ζ > 0.

We have systematically analyzed χ ′ and χ ′′ for various
values of the surface anisotropy coefficient ζ , for both prolate
and oblate assemblies. We have observed the upward shift of
Tmax as ζ increases and the downward shift of the maximum
of χ ′ and χ ′′, as already discussed earlier. However, owing
to the fact that the effect of increasing ζ is to draw the
particle’s magnetic moment towards the cube diagonals, it
basically plays the same role in a prolate sample where the
magnetization is enhanced along the z axis, or in an oblate
sample where the magnetization is enhanced in the xy plane.

The effect of increasing the strength of DDI alone is
shown in Fig. 4. In the case of a prolate sample, we have
observed a shift of the maximum toward lower temperatures,
in the absence of surface anisotropy. Note again that this is
not the ζ = 0 limit of the expressions of Sec. III A. It is
simply the OSP model with the relaxation rate (15). The effect
of frequency observed by Lee et al. [47] is similar to the
behavior that we observe here: Tmax increases and χ ′ decreases.
Furthermore, the fact that Tmax increases as the concentration
increases is in line with what we observe for oblate samples
and corresponds to the type of samples investigated by Lee
et al. Despite the relative success of our model in interpreting
the experimental data, one has to be careful as not to push
the comparison too far because our approach has been derived
for textured monodisperse assemblies and, more importantly,
is perturbative and thus inherently restricted to weak DDI.
This is in general not the case in experiments where the
assemblies are often random and rather dense. In such cases
(especially high densities), a more quantitative comparison
with experiments can only be accessible with the help of
numerical investigations [22,48].

In Fig. 5, we present a specific case in order to highlight
the competing effects of surface and dipolar interaction on the
susceptibility. The curves are obtained for ξ̃ = 0.008 and small
(and increasing) surface anisotropy parameter ζ . These results
show that the surface anisotropy, in the present case of positive
ζ , has the opposite effect to that of DDI. More precisely, this
implies that surface effects can screen out the effect of DDI
and the other way around. This confirms the results of Ref. [2]
for equilibrium properties for both negative and positive ζ .
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FIG. 5. (Color online) χ ′ for an interacting prolate (10 × 10 ×
20) assembly with a fixed DDI strength ξ̃ = 0.008 and varying surface
anisotropy coefficient ζ , for the frequency f̃ ≡ ωτD/(2π ) = 0.01.
h = 0.

E. Discussion

Very often the experimental results related with the dynam-
ics of an assembly of DDI-coupled nanoparticles are analyzed
with the help of the Vogel-Fulcher law [37,45,47,49–51]

� = τ−1
0 e

�E
kB (T −θVF) , (29)

where ν0 = τ−1
0 
 109–1012 Hz, θVF represents an effective

temperature supposed to include the DDI correction, and �E

is the energy barrier, which reads as �E = K2V in the case
of uniaxial anisotropy and zero field. The main concern with
this phenomenological formula is to provide an interpretation
of the parameter θVF on physical grounds. Accordingly, in
Ref. [49]. there is a discussion of a few approaches in this
regard.For instance, it is shown how the work of Shtrikman
and Wohlfarth [52] leads to an expression of θVF in terms of
the applied magnetic field and how the work by Déjardin [37]
yields an expression in terms of the DDI coupling. In the work
of Landi itself θVF is expressed in terms of the interparticle
distance and other parameters such as the particles magnetic
moment and the uniaxial-anisotropy energy.

Here, we show that our formalism is in full agreement
with the previous results and further extends them along
the following lines: (i) surface anisotropy, (ii) particle’s
spatial distribution and shape of the assembly, (iii) damping
parameter.

In Eq. (24), the factor �0(h,σ,ζ,λ) depends on the applied
field, surface anisotropy, and damping, together with other
parameters, as is seen in Eq. (22). It turns out that in fact the
prefactor �+

p (h,σ,ζ,λ) is a slowly varying function of ζ and as
such can be written as �+

p (h,σ,ζ,λ) 
 �̃(h,σ,λ). This implies
that the dependence of the relaxation rate �0(h,σ,ζ,λ)ζ is
mainly borne by the energy barrier �E (0)

+ (ζ ). Therefore, in
zero field �E (0)

+ (ζ ) 
 −σ + σζ/4 and upon expanding in ζ

we obtain

�(h,σ,ζ,λ,ξ ) 
 �̃(h = 0,σ,λ)eσ

(
1 + σζ

4
+ ξ 2

6
S

)
, (30)

where S(λ) is defined in Eq. (25). Note that �̃(h = 0,σ,λ) is
given in the second line of Eq. (6) in Ref. [36].
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Now, an expansion of Eq. (29) with respect to θVF/T

yields [49]

� = τ−1
0 e

�E
kB (T −θVF) 
 τ−1

0 eσ

(
1 + σ

θVF

T

)
,

which is of the same form as our expression (30). Next,
using Néel’s approximation with a constant prefactor τ−1

0 ,
thus ignoring any dependence on temperature, damping, and
applied field, �̃(h = 0,σ,λ) can be identified with τ−1

0 . Then,
we can further identify the terms between parentheses leading
to the following expression for θVF (in Néel’s approximation):

θVF

T
= ζ

4
+ 1

6σ
(ξ 2S). (31)

This expression provides a somewhat “microscopic” de-
scription of the phenomenological parameter θVF in terms of
the interparticle interactions, the surface anisotropy, and damp-
ing. Indeed, the last term in Eq. (31), which is similar to the one
derived in Ref. [49], includes both the damping parameter and
the shape of the assembly, owing to the expression of S(λ) [see
Eq. (25)]. In addition, we note that ξ is proportional to the as-
sembly concentration [2] CV and thereby to a−3, a being the in-
terparticle distance. Therefore, we expect that in the absence of
surface anisotropy, θVF scales as θVF ∼ C2

V ∼ a−6. In Ref. [45]
experimental estimates of θVF are given for an assembly of Ni
nanoparticles with varying concentration. A comparison of
Eq. (31) with the corresponding data is given in Fig. 6.

On the other hand, the first term in Eq. (31) accounts
for the contribution from surface anisotropy. As discussed
earlier, in practice it should be possible to adjust the assembly
characteristics (assembly shape, particles size, and underlying
material) so as to achieve to some extent a compensation
between surface effects and the DDI contribution. This could
in principle suppress the dependence of θVF on the assembly
concentration. In addition, the term in ζ can also be used to
extract from the experimental data an estimate of the surface
anisotropy coefficient ζ by reading off the intercept from the
plot in Fig. 6.

In the most often encountered situation where the particles
anisotropy is modeled with an effective uniaxial anisotropy of
constant Keff , as would apply for elongated particles, dropping
the ζ term, the effective temperature θVF explicitly reads as (as
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4

6
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12

θ V
F(K

)

Data (Masunaga et al.)
Fit θVF = 0.5633 + 0.05405 Cv

2

FIG. 6. (Color online) θVF against the assembly concentration.
(Stars) Experimental data from Masunaga et al. [45] and (full line)
fit of Eq. (31).

a function of the assembly concentration CV )

kBθVF =
(

μ0

4π

)2 (
M2

s V
)2

KeffV

S
6

× C2
V . (32)

For example, consider a monodisperse assembly of spher-
ical cobalt nanoparticles of 3 nm in diameter with Ms 

1.4 × 106 J T−1 m−3, Keff 
 5 × 105 J m−3, and CV 
 1%.
Then, if the assembly is assumed to be in the form of a
box-shaped sample with its particles arranged into a simple
cubic lattice, the lattice sums R and T were given earlier in
the thermodynamic limit. Then, using F (λ) 
 1 and S2 
 1,
the factor S evaluates to S 
 45. This yields θVF 
 0.05 K,
which is small compared to the particle’s blocking temperature
TB 
 14 K. However, one should keep in mind that θVF scales
with the particle’s volume.

It is worth emphasizing the fact that θVF given by Eq. (32) is
independent of temperature, as can be often encountered in the
literature. However, if we take account of surface anisotropy,
Eq. (31) shows that the phenomenological parameter θVF is in
fact a linear function of temperature via the term in ζ . This
can be understood by noting that surface anisotropy, which
is of cubic nature in the EOPS model, drastically modifies
the energy potential and thereby affects the dynamics of the
particle’s magnetization. As a consequence, the effect of DDI
becomes strongly dependent on the thermal fluctuations and
the elementary switching processes they induce.

V. CONCLUSION

We have studied the combined effects of surface anisotropy
and dipolar intercluster interactions on the dynamic response
of a monodisperse assembly of magnetic nanoclusters with
textured anisotropy. We have derived semianalytical expres-
sions for the in-phase and out-of-phase components of the
ac susceptibility as functions of temperature, applied field,
surface anisotropy, damping, frequency, and (weak) dipolar
interactions. If we ignore the surface anisotropy, we recover
the well-known results of frequency- and interaction-induced
shift in both the maximum of χ ′ and χ ′′ and of the temperature
Tmax thereat, taking into account the effect of the assembly
shape (oblate or prolate). In the presence of surface anisotropy,
we have derived and used a semianalytical expression for the
relaxation time and investigated the effect of surface (cubic)
anisotropy. We have done so in the limit of small field,
high uniaxial anisotropy barrier, and weak surface anisotropy.
The expressions obtained for the small ζ show that the
relaxation rate or the switching probability increases with sur-
face anisotropy, but the equilibrium susceptibility decreases,
thus leading to an overall upward shift of Tmax. When the
interparticle interactions are switched on, a competition sets
in-between the latter and surface anisotropy that may lead, in
adequately prepared samples, to a mutual compensation of the
two effects.

Finally, our results for the relaxation rate have been
analyzed in connection with the so-called Vogel-Fulcher
law and an expression for the ad hoc effective tempera-
ture has been given in terms of the interparticle dipolar
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interactions, the intraparticle surface anisotropy, and the
damping parameter, in addition to the other physical pa-
rameters such as the applied magnetic field and uniaxial
anisotropy.
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