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Topological order-by-disorder in orbitally degenerate dipolar bosons on a zigzag lattice
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Spinor bosons offer a conceptually simple picture of macroscopic quantum behavior of topological order-
by-disorder: The paramagnetic state of two-component dipolar bosons in an orbitally degenerate zigzag lattice
is unstable against infinitesimal quantum fluctuations of orbitals, λ, towards developing nonlocal hidden order.
Adjacent to the topological state a locally correlated exact ground state with spontaneously a quadrupoled lattice
constant is realized for the broad parameter regime. The topological order is extremely robust surviving the
λ → ∞ limit where the ground state evolves into the Majumdar-Ghosh state of a frustrated spin- 1

2 chain.
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I. INTRODUCTION

With the realization of the Mott-insulator state of ultracold
Bose gas loaded in an optical lattice [1] the groundwork
for experimental simulation of magnetism of many-body
systems with bosons [2–4] was laid. Since then, with the
help of shaking techniques, classical frustrated magnetism
has been implemented successfully on triangular lattices [5].
The next target is to simulate quantum magnetism and in
particular frustrated quantum spin systems to compensate
for the nonexistence of unbiased analytical or numerical
methods and observe plausible unconventional ground states à
la spin liquids [6,7]. Short-range quantum spin correlations for
two-component alkali (contact interacting) Bose gases was
exhibited in optical lattices [8]. Using bosonic dipolar atoms
(52Cr with strong magnetic dipole moment) nonequilibrium
quantum magnetism with long-range exchange physics has
been reported in recent experiments [9]. However, a techno-
logical breakthrough is needed in reducing temperatures below
the spin coherence scales to simulate ground-state equilibrium
quantum magnetism in experiments on ultracold gases [10].

Interestingly, lattice bosons can serve as well as excellent
analytical simulators of a novel macroscopic quantum effect
such as topological order-by-disorder that it is possible to study
by simple and at the same time solid arguments.

To show this in this work we study a system of
2-component dipolar bosons in an orbitally degenerate zigzag
lattice depicted in Fig. 1. Due to an interplay between the
geometric frustration caused by directional character and
orbital degeneracy and due to the bosonic nature arbitrary
weak quantum fluctuations in orbitals select a topological
state from the manifold of extensively degenerate ground
states. Adjacent to the topological state, for the broad regime
of the system parameters, we also find an exact ground state
of the product form with spontaneously broken translational
symmetry having a large unit cell made of 4 lattice sites.

Ultracold bosons loaded in the degenerate p bands of opti-
cal lattices have attracted considerable theoretical [11,12] and
experimental interest [13] due to the possibility of observing
chiral superfluids with emerging px ± ipy order [14].

II. PHYSICAL REALIZATIONS AND
EFFECTIVE HAMILTONIAN

Dipolar spinor bosons may be realized using diatomic polar
molecules with an electric dipole moment (e.g., potassium-

rubidium 41K 81Rb [15]) where spin-1/2 degrees of freedom
may be encoded in two different total nuclear spin projections
of molecules (similar to fermionic case 40K 81Rb [16]),
resulting in the fact that both the long-range part as well
as short-range interactions will be largely spin independent.
For fermionic molecules the validity of the assumption of spin
independence of interactions was discussed in [17] and similar
reasonings hold for bosonic molecules [18].

First we derive the effective Hamiltonian describing the
Mott-insulator state of two-component dipolar bosons loaded
in doubly degenerate p bands of the zigzag optical lattice
where we retain two energetically degenerate orthogonal px

and py orbitals per lattice site. The zigzag lattice may be
constructed by the incoherent superposition of a triangular
lattice in the xy plane and an additional superlattice [19].
We assume that hopping between neighboring sites is allowed
only between the similar orbitals and amplitude of hopping
we denote by t as depicted in Fig. 1. Interactions between
bosons occupying different sites (when orbitals are spatially
separated) are to a good approximation orbital (and as already
mentioned spin) independent. For deriving a Hamiltonian
describing the Mott phase corresponding to the average
occupancy of one boson per lattice site we will consider only
interactions between bosons at the same site.

The interaction parameters for two bosons within the same
site are given by on-site repulsion within the same orbitals U||
and between the orthogonal orbitals U⊥,

U||(U⊥) =
∫

dr1dr2p
2
α(r1)V (r1 − r2)p2

α(β �=α)(r2). (1)

Here α,β = x,y, orbital wave functions px,y(r) are assumed
to be centered at one and the same site, and V (r1 − r2) is
a total interparticle potential including both long-range and
contact-repulsive interactions.

Two bosons occupying the same orbital of one site may
form a symmetric or antisymmetric state with respect to the
orbital index with corresponding energies U|| ± JH which are
split by Hund’s exchange due to pair-hopping processes,Â´ as
explained in Appendix A,

JH =
∫

dr1dr2px(r1)py(r1)V (r1 − r2)px(r2)py(r2). (2)

Two bosons occupying orthogonal orbitals of the same
site may form a triplet or singlet state in spin variables
with corresponding energies U⊥ ± JH (details are presented
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FIG. 1. (Color online) Geometry of the orbitally degenerate
zigzag lattice with the intersite hopping t (between similar orbitals)
and on-site hopping between the orthogonal orbitals λ.

in Appendix A). In contrast to the fermionic case, Hund’s
coupling minimizes the total spin of bosons occupying
orthogonal orbitals of the same site (even for the case when
only contact-repulsive interactions are present). This is due to
minimization of interaction energy; by placing two bosons in
the antisymmetric ST = 0 spin singlet state the bosonic nature
demands that the coordinate wave function be antisymmetric
as well; thus it has a node when the distance between bosons
vanishes and hence bosons avoid the region where repulsion
would be the strongest.

In the strong-coupling limit U|| ± JH ,U⊥ ± JH � t and
with one particle per site the system is in the Mott-insulator
regime, and in second-order perturbation theory in t we
arrive at the following spin-orbital model (SOM) Hamiltonian
(derived explicitly in Appendix A),

H = −
∑

i

(Pi,i+1 + 1 − α)
[
1+(−1)iσ z

i

][
1+(−1)iσ z

i+1

]

+�
∑

i

(Pi,i+1 − 1/2)
[
1 − σ z

i σ z
i+1

]
, (3)

where Pi,i+1 = 2SiSi+1 + 1/2 is a permutation operator of
spinor components expressed in terms of Si spin- 1

2 operators
and σ z

i is a diagonal Pauli matrix describing the orbital vari-
ables, with eigenvalue +1 (−1) corresponding to the px (py)
orbital occupied on site i. We have fixed units of t2/2Ũ = 1,
with Ũ = (U 2

|| − J 2
H )/U||, α = Ũ (U⊥ − JH/2)/(U 2

⊥ − J 2
H ) ∼

U||/U⊥ > 0, and � = JH Ũ/(U 2
⊥ − J 2

H ) > 0. Spin indepen-
dence of interparticle interactions manifests in explicit SU(2)
symmetry of the spin sector.

We note here the crucial role of the long-range part of the
interparticle interaction potential in deriving the SOM (3). For
a purely contact interaction V (r) ∼ δ(r) → U⊥ = JH , so that
in the singlet spin channel two bosons located in the different
orbitals of the same site do not experience any scattering. Thus,
when only s-wave contact scattering is present (the typical
case of alkali atoms), the Mott phase of one boson per lattice
well would be unstable due to orbital degeneracy. In the Mott-
insulator regime, one can vary both α and � in a wide range by
changing the lattice depth and a relative ratio of the strengths
of the contact and dipolar interactions by modifying the dipole
orientation by electric field or by tuning the contact interactions
using Feshbach resonances.
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FIG. 2. (Color online) Exact analytical ground state phase di-
agram of spin-orbital model Eq. (3) obtained in thermodynamic
limit. We employ (spin,orbital) notation of different phases. For
the ground-state configurations of (Q,↓↑↑↓) and (iH,AF) phases
see Fig. 3 and for denotations of phases consult text. Inset shows
ground-state orbital configuration of (P,F) phase and the effect in
this phase of infinitesimal quantum fluctuations in orbitals λ. Dotted
contours encircle 2 sites forming effective spins-1 Ti = S2i + S2i+1.

III. GROUND-STATE PHASE DIAGRAM
FOR CLASSICAL ORBITALS

Since orbital variables in Eq. (3) are classical it is easy to
map out ground-state phases in the product form of spin times
orbital part. Depending on values of α and � only three differ-
ent orbital configurations can be realized as ground states for
Hamiltonian (3): a period of one ferromagnetic (F) as indicated
in the inset of Fig. 2, a period of two antiferromagnetic (AF)
as depicted in Fig. 3(b), and a period of four configuration
· · · pypxpxpy · · · (↓↑↑↓) presented in Fig. 3(a).

For α > 2 the first line in Eq. (3) selects the AF orbital
configuration whereas the Hund coupling � induces AF
exchange between the spins located on orthogonal orbitals of
neighboring sites. In the spin sector one recovers the isotropic
Heisenberg antiferromagnet (iH) while in orbitals the doubly
degenerate AF configuration remains. Ground-state energy
per site in the (iH,AF) state is independent of α and in the
thermodynamic limit we can estimate it from an exact solution

S0

S1 S3

5S

2S S4
−8

4Δ 4Δ (a)

4Δ (b)

FIG. 3. (Color online) Ground-state orbital configurations in
(a) (Q,↓↑↑↓) and (b) (iH,AF) phases. Only occupied orbitals are
displayed per site. Dotted contour in (a) encircles cluster of 4 spins
decoupled from the rest of the system. Continuous line indicates
ferromagnetic Heisenberg exchange between spins at neighboring
sites −8SiSi+1 and dashed lines indicate AF exchange 4�SiSi+1.
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of the spin- 1
2 AF Heisenberg chain, eiH

0 = �(1 − 4 ln 2). There
are no other phases for α > 2.

The phase diagram is much more interesting for 0 < α < 2
as presented in Fig. 2. There, besides the (iH,AF) state we
map out 2 additional ground states depending on � coupling.
For small values of � the ground state is twofold degenerate
and possesses F orbital order, 〈σ z

i 〉 = +1(−1). Choosing the
〈σ z

i 〉 = +1 orbital configuration (this particular orbital order
is selected by open boundaries if the chain starts from even
number sites; see Fig. 1), two spins on the neighboring sites
combine to form an effective spin-1 Ti = S2i + S2i+1 in the
ground state; however Ti spins are completely decoupled
from each other, thus resulting in an extensively degenerate
paramagnetic ground state (P) of spin-1 chain for the spin part
of the wave function, with the total degeneracy of the ground
state 2 × 3L/2 where L is number of sites.

The energy per site for the (P,F) configuration is eP
0 =

2(α − 2) and is independent of �. Increasing � induces the
transition from the (P,F) state to the ground state with the ↓↑↑↓
configuration of orbitals where bosons can hop only inside
spontaneously selected 4-site clusters, as depicted in Fig. 3.
For the ↓↑↑↓ configuration of orbitals, coupling between the
spins inside each decoupled cluster of 4 sites (see Fig. 3) is
given by 4�S1S2 − 8S2S3 + 4�S3S4 + 4α − 6 and ground-
state energy per site is e

Q
0 = α − 1 − �

2 − √
1 + � + �2. We

denote this phase as (Q,↓↑↑↓) since spin exchanges have a
quadrumerized pattern. Equating two energies eP

0 = e
Q
0 we

obtain the phase transition line from the (P,F) to the (Q,↓↑↑↓)
state, α = αc1 = 3 − �

2 − √
1 + � + �2, for any system size

that is a multiple of 4.
Further increasing � finally system-minimizes its energy

for the (iH,AF) state since large �, as already mentioned,
induces antiferromagnetism for bosons. The phase transition
line from the (Q,↓↑↑↓) to the (iH,AF) state is obtained by
setting e

Q
0 = eiH

0 and is given in the thermodynamic limit
as α = αc2 = 1 + (3 − 4 ln 4)�/2 + √

1 + � + �2. Differ-
ent phases of bosons together with phase transition lines are
presented in the analytical phase diagram in Fig. 2.

IV. EFFECT OF INFINITESIMAL QUANTUM
FLUCTUATIONS IN ORBITALS ON

GROUND-STATE PHASES

In reality the zigzag optical lattice is not strictly symmetric
in the x-y plane; thus one has to consider the probability of
mixing of orbitals,

H
′ = −

∑
i

λσ x
i , (4)

where λ is the amplitude of the mixing of px,y orbitals that
can be large. First we will study analytically the limit λ →
0 where we will observe the topological order-by-disorder
phenomenon. Later we address as well another extreme limit
analytically λ � 1 and show that topological order survives
that limit.

Recently, motivated by simulating transition-metal oxides
with partially filled d levels [20–22] containing zigzag chains
of spin- 1

2 ions, a SOM similar to Eq. (3) was introduced for
fermions [17] (with an essential difference of the overall sign in

front of the Hamiltonian) and it was shown that finite quantum
fluctuations in orbitals can stabilize an exotic spin-orbital-
liquid phase [23].

The effect of arbitrary weak quantum fluctuation λ on the
(P,F) state of bosons is remarkable: the perturbation H ′ acting
as a transverse field in orbitals tries to quantum-disorder orbital
order in σ z variables that is otherwise perfect for λ = 0, and
at the same time, most importantly, it introduces exchange
interactions between the decoupled neighboring spins of the
(P,F) state,

lim
λ→0

HS = −
∑

i

8S2iS2i+1 + χλ

∑
i

S2i+1S2i+2, (5)

where χλ � λ2�/2(1 − �)2 − O(λ4). In particular, in the
limit λ → 0 the two neighboring spins S2i and S2i+1 are
coupled ferromagnetically with each other with the strength
that is infinitely stronger than antiferromagnetic coupling
between S2i+1 and S2i+2. Hence for λ → 0 the ground-state
wave function of the spin part of Eq. (5) coincides with
the ground state of the spin-1 chain [24] and a topological
(H,F) state is established with nonlocal string order [25].
One can determine the boundary of the (H,F) state �F ∼ λ2

for � → 0. For � < �F the fully polarized (F,F) state is
selected for the ground state, and for � > �F the (H,F)
state is stabilized. Thus, for � > 0 infinitesimal quantum
fluctuations λ → 0 select from the extensively degenerate
ground-state manifold (P,F) a doubly degenerate state for
periodic boundary conditions (degeneracy is due to orbital
F order) and a fourfold-degenerate state for open boundary
conditions. As already mentioned open boundaries remove
orbital degeneracy and hence the residual fourfold degeneracy
is purely due to the edge spins of the topological state.

Extensive ground-state degeneracy at the classical level
[similar to the (P,F) phase for λ = 0] is a characteristic property
of many frustrated spin systems [26]. If degeneracy can be
lifted either by thermal [27,28] or by quantum fluctuations
[29,30] and as a result magnetic order develops, such behavior
is referred to as order-by-disorder. No unambiguous experi-
mental confirmation of order-by-disorder has been reported
in condensed matter magnetic systems, though there are
suggestions to simulate it in experiments on ultracold spinor
Bose gases [31,32]. Order by quantum disorder in orbitally
frustrated electron systems was predicted in two-dimensional
square lattices [33]. Here we encounter the emergence of
topological order by quantum disorder in orbitally frustrated
one-dimensional dipolar spinor bosons.

Other phases depicted in Fig. 2 are stable with respect to
infinitesimal quantum fluctuations in orbitals λ. In particular
in the (Q,↓↑↑↓) state the end spins of two adjacent decoupled
(for λ = 0) 4-spin clusters will get coupled due to λ by AF
exchange; i.e., the cluster on Fig. 3 will be coupled to its
neighbors by terms ∼ �λ2(S0S1 + S4S5).

V. GROUND-STATE PHASES FOR STRONG QUANTUM
FLUCTUATIONS IN ORBITALS

Apart of the above determined exotic ground states for
λ → 0 and the discovered effect of topological order-by-
disorder, the bosonic problem studied here turns out to be
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relevant for realistic condensed matter systems. To show this
we address another limit, λ � 1.

We may then decompose H + H
′ = H0 + V , where H0 =

−λ
∑

i σ
x
i + 2(1 − �)

∑
i SiSi+1, and V may be treated as a

perturbation. To the lowest order in 1/λ the system becomes
equivalent to a spin- 1

2 j1-j2 chain,

lim
λ→∞

HS =
∑

i

[j1SiSi+1 + j2SiSi+2], (6)

with j1 = 2(� − 1) + (4 − � + �2)/2λ and j2 = λ−1.
Higher order terms ∼1/λ2 involve biquadratic terms in spin
operators as well as bilinear interactions beyond second nearest
neighbor and present irrelevant deviation from the j1-j2 chain
similarly to the fermionic case [17]. Note that the original
microscopic model at α = 1 for bosons differs just by an
overall sign from the corresponding fermionic expression [17];
however it is not exactly the case for the effective spin models
in large λ. From the known ground-state phase diagram of the
spin- 1

2 j1-j2 zigzag chain with j2 > 0 we map out ground-state
phases for our bosonic system in the strong λ limit. For � >

1 + 1/λ the system can be mapped on the j1-j2 zigzag chain
with j1 > 4j2 with the gapless ground state of the isotropic
Heisenberg chain. Orbital correlations are paramagnetic. We
denote this phase by (iH,P). For 1 − 1/λ < � < 1 + 1/λ the
spin sector can be mapped onto the SU(2) symmetric frus-
trated antiferromagnetic spin- 1

2 chain with 0 < j1 < 4j2 with
dimerized ground state. The representative state in this phase is
realized for j1 = 2j2 and is called the Majumdar-Ghosh state
[34] that is made of the direct product of singlets involving
the nearest spins. Because of the linear coupling between
spin dimerization and orbitals present in Hamiltonian Eq. (3),∑

i(SiSi+1 − SiSi−1)σ z
i , dimerization order in spin variables

〈SiSi+1 − SiSi−1〉 �= 0 is felt as a uniform magnetic field in
orbital variables. Hence the occurrence of the dimerization
pattern in spin variables will be accompanied by developing
ferromagnetic correlations in orbital variables leading to a
dimer-ferro phase (D,F).

For 1 − 3/λ < � < 1 − 1/λ the system can be mapped on
the SU(2) symmetric frustrated ferromagnetic spin- 1

2 chain
with 0 > j1 > −4j2. Numerical study of the ground state of
the frustrated ferromagnetic chain based on the infinite-size
algorithm suggests that the nearest bonds are characterized by
ferro correlations with alternating strengths, and the phase was
dubbed the Haldane dimer [35].

Finally in spin variables we obtain a fully polarized fer-
romagnetic state for � < 1 − 3/λ, whereas orbital variables
become paramagnetic again (F,P).

In the next section we present the numerical ground-state
phase diagram for all values of λ which shows that our bosonic
model interpolates smoothly between the Majumdar-Ghosh
state of the (D,F) phase realized for λ � 1 and an exact
Haldane state of an effective spin-1 chain realized for λ → 0.

VI. NUMERICAL SIMULATIONS

In the remaining we support our analytical findings numeri-
cally by simulating directly the full microsopic SOM including
quantum fluctuations of orbitals, H + H ′. To address large
systems we use the density matrix renormalization group

method [36] that is implemented best with open boundary
conditions. The results of the numerical simulations of the
SOM presented below are for open system with L = 96
sites and we compare them with the analogous results for
the Haldane chain on L = 48 sites to show that for λ → 0
the ground-state configuration of the spin part of the SOM
reproduces identically the topologically nontrivial ground
state of the antiferromagnetic SU(2) symmetric spin-1 chain.
With increasing λ the Haldane state for periodic boundary
conditions adiabatically evolves into the dimerized state of the
spin- 1

2 chain.

A. Small λ case

First we present numerical results of short-range ground-
state correlation functions between the neighboring spins as
a function of λ in the (H,F) state in Fig. 4 for λ � 1. As
expected from analytical analyses one can observe in Fig. 4
that in the limit λ → 0, 〈S2iS2i+1〉 = 〈S2i+2S2i+3〉 = 1/4 and
〈S2i+1S2i+2〉 = 〈S2iS2i+2〉 = 〈S2i+1S2i+3〉 = 〈S2iS2i+3〉 �
−0.35 so that 〈TiTi+1〉 = 〈(S2i + S2i+1)(S2i+2 + S2i+3)〉 �
−1.4 � e0(S = 1), where e0(S = 1) is the well known value of
the ground-state energy per site of the spin-1 chain [36] (in the
units of exchange) that is equal to the ground-state correlation
function of two neighboring spins of the Haldane chain.

The Néel correlation function (−1)j+i〈T z
j T z

j+i〉 and string

correlation function −〈T z
j eiπ

∑j+i−1
k=j+1 T z

k T z
j+i〉 are presented in

Fig. 5(a) for both the SOM on L sites (L = 96) and Haldane
chain on L/2 sites. As one can see the coincidence between
the results for the Haldane chain and SOM in the (H,F) state
for small λ is excellent.

Finally, the magnetization profile of the SOM 〈S2i + S2i+1〉
in one of the ground states of the Kennedy-Tasaki triplet [37]
with total Sz = 1 is presented in Fig. 5(b). On the same plot
we superimpose this profile with the corresponding profile of
the Haldane chain [36] and again observe the perfect matching
between the two.
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FIG. 4. (Color online) Bulk short-range spin correlation func-
tion’s dependence on λ in (H,F) phase. Due to extensive degeneracy
of ground states in (P,F) phase, numerically we cannot approach
arbitrarily close to λ = 0, but the tendency is evident. Symmetry
with respect to translations on 2 sites of (H,F) state imposes
〈S2iS2i+1〉 = 〈S2i+2S2i+3〉 and 〈S2iS2i+2〉 = 〈S2i+1S2i+3〉.
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FIG. 5. (Color online) (a) Blue symbols: Bulk Néel order and
string order of spin-orbital model (SOM) in (H,F) phase for λ → 0
(here λ = 0.1, α = 1, and � = 0.1). Red symbols: Corresponding
order parameters of spin-1 Haldane chain. (b) Magnetization profile
in Sz = 1 Kennedy-Tasaki ground state of spin-1 Haldane chain on
L = 48 sites (red symbols) is nearly identical to magnetization profile
of 〈T z

i 〉 = 〈Sz
2i + Sz

2i+1〉 of SOM on L = 96 sites (blue symbols) in
(H,F) phase for λ → 0 (here λ = 0.1, α = 1, and � = 0.1). Inset
(green circles) shows site-resolved magnetization profile of SOM
〈Sz

2i〉 � 〈Sz
2i+1〉 � 〈T z

i 〉/2.

B. General λ case

We present the numerical ground-state phase diagram in
the full parameter space of � versus λ in Fig. 6.

The simplest task is to determine the boundary of the
fully polarized ferromagnetic state since the total spin of
the ground state jumps from the maximal ST = L/2 value
to ST = 0. Inside the fully polarized region for the orbital
sector we obtain an exactly solvable quantum Ising model
in transverse magnetic field. Hence there is an Ising phase
transition with increasing λ between the (F,F) and (F,P) states at
λ = 2 − α + �/2. Ising phase transitions are usually captured
numerically with studying fidelity susceptibility. For a generic
Hamiltonian, with a phase transition driven by the changing
strength of coupling constant λ, the fidelity susceptibility (FS)
χ with respect to the “perturbation” λ is defined as [38,39]

χ = lim
δλ→0

1 − |〈ψ0(λ)|ψ0(λ + δλ)〉|2
δλ2

, (7)

where |ψ0(λ)〉 is the ground-state vector for given λ.
We have studied numerically fidelity susceptibility inside

the fully polarized phase and obtained the phase transition line
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(D,F)(F,F)

FIG. 6. (Color online) Effect of λ on ground-state phases pre-
sented in Fig. 2 for α = 1. Dashed line between (H,F) and (D,F)
phases represents a boundary phase transition, where edge spins at
the end of the open chain disappear in (D,F) phase. All second-order
phase transition lines are obtained with extrapolation procedure from
finite system size data to infinite size.

between (F,F) and (F,P) phases that matches accurately the
analytical result.

Similarly, between two gapped phases (Q,↓↑↑↓) and
(D,F) due to symmetry considerations we expect the Ising
phase transition. Scaling of the height of the peak of fidelity
susceptibility with system size depicted in Fig. 7 confirms our
expectations.

Based on the behavior of order parameters, ground state,
and low-energy excited states the phase transition from
the (iH,AF) to (D,F) phase seems a smooth second-order
transition. On general grounds we expect a Gaussian phase
transition, respecting the SU(2) symmetry of the spin sector,
driven by a marginal operator, being marginally irrelevant in
the gapless (iH,AF) phase and becoming marginally relevant
in the gapped (D,F) phase. Hence scaling of the fidelity
susceptibility per site should be sublinear. Surprisingly to us,
scaling of the fidelity susceptibility peak per site with system
size in the vicinity of the phase transition from the (iH,AF) to
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FIG. 7. (Color online) FS with respect to λ per site for � = 1.5,
α = 1. Linear scaling of fidelity susceptibility peak per site with
system size confirms Ising nature of quantum phase transition from
the (Q,↓↑↑↓) to (D,F) state.
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(D,F) state is also linear as for the Ising case. However, the
transition between the gapless (iH,AF) phase and gapped (D,F)
phase cannot be of Ising nature. We interpret the linear scaling
in the following way: since FS does not capture transition from
the (D,F) to (iH,P) state (that is witnessed by singlet-triplet
level crossing in the first excited states) from the FS point of
view transition from (iH,AF) to (D,F) is similar to the transition
from the (iH,AF) directly to the (iH,P) state that would be of
Ising nature. Not only the height of the FS peak per site scales
linearly with system size but also the position of the peak
scales perfectly linearly with the inverse system size.

For open boundary conditions, (D,F) has a unique ground
state, whereas (H,F) has a fourfold-degenerate ground state
due to the edge spins. Hence these two phases cannot be
smoothly connected for the case of open boundary conditions.
For periodic boundary conditions the Haldane state is smoothly
connected with the (D,F) state and the ground-state degeneracy
is twofold. Pure spin models which interpolate smoothly
between the Haldane state and dimerized state have been
studied in [40–42].

For values of λ > 2 the topology of the ground-state phase
diagram is similar to the fermionic case obtained in the
strong λ case [17], though with reversed sequence of phases
with increasing � (�Boson → 1/�Fermion), and an identical
approach to that reported in [17] was performed to determine
these phases and boundaries between them. In particular
dimerization order vanished at the boundary of the shaded
region (indicated by star symbols in Fig. 6) and then reappears
again inside the shaded region. However dimer order is very
small adjacent to the (F,P) state where we cannot exclude
occurrence of other additional phases, though the ground state
is a global singlet until reaching the (F,P) phase.

According to our numerical data, in particular due to very
fast growth of the height of peak of fidelity susceptibility, we
interpret the phase transition between (Q,↓↑↑↓) and (iH,AF)
phases as first order.

VII. CONCLUSIONS

In conclusion, dipolar spinor bosons in orbitally degener-
ate zigzag lattices develop topological order in extensively
degenerate paramagnetic states due to arbitrary weak quantum
fluctuations of orbitals. This is a direct consequence of the
interplay between the orbital frustration and the bosonic
nature. Adjacent to the topological state the exact ground
state is obtained with spontaneously quadrupoled unit cells
for the broad parameter regime of Hund’s coupling and the
ratio between on-site and long-range interactions. Moreover,
by changing the strength of quantum fluctuations of orbitals
our model interpolates between the exact ground state of the
Haldane chain (realized for λ � 1) and the Majumdar-Ghosh
state of the spin- 1

2 chain (realized for λ � 1).
In our theoretical work we have not addressed effects of

interactions beyond the single site. Due to symmetry of the
microscopic bosonic model and restricting with quadratic
terms in hoppings, the form of the effective spin-orbit
Hamiltonian will not change by including interactions beyond
on-site; however expressions of constants will be modified.
Dipolar interactions fall off rapidly with the distance; hence
gapped phases such as the topological Haldane phase as well

as (Q,↓↑↑↓) and (D,F) will be robust with inclusion of
dipolar interactions beyond the on-site contribution, though
their boundaries will be modified. We have so far ignored the
effect of population of s orbitals. In experimental realization
efficiency of populating p orbitals will clearly be less than
100%; moreover, due to interorbital collisions the lifetime
in p orbitals will be limited. Neither have we addressed
the effects of finite temperature, whereas in experiments on
multicomponent ultracold gases the biggest challenge is to
reduce the temperature below the spin coherence scale set
by superexchange interaction. All these effects need to be
addressed before experimental realization of the obtained
results in ultracold gases.
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APPENDIX A: MICROSCOPIC DERIVATION
OF EFFECTIVE MODEL

In this appendix we provide details of derivation of
our spin-orbital model Eq. (1), generalizing calculation for
orbitally degenerate electrons [43] to the bosonic case. First we
decompose the bosonic field operator into a Wannier function
basis centered at zigzag lattice sites rj ,

ψs(r) =
∑

j

[ω1(r − rj )b1 j,s + ω2(r − rj )b2 j,s]. (A1)

For a deep lattice the Wannier functions can be approximated
as px,y orbitals of harmonic oscillator ω2 → px and ω1 → py ;
however true Wannier functions are less localized and most
importantly at tails they oscillate to provide orthogonality
between the functions centered at different sites.

Above we have introduced the bosonic annihilation opera-
tor ba j,s at site rj , where the orbital index a = 1 (2) refers to
the py (px) orbital and index s = ↑,↓ refers to the spin.

Two-component Bose gas in a periodic (laser induced)
lattice potential V (r) is described by a generic Hamiltonian,

HB =
∑

s

∫
ψ†

s (r)

[
− �

2

2m
∇2 + V (r)

]
ψs(r)dr

+
∑
s,s ′

∫
ψ†

s (r1)ψ†
s ′ (r2)

V (r1 − r2)

2
ψs ′ (r2)ψs(r1)dr1dr2.

(A2)

Substituting decomposition (A1) into Hamiltonian (A2)
after standard truncations we arrive at the tight-binding type
model HTB = Hk + Hint, where

Hk = − t

2

∑
i,a,s

[1 + (−1)i+a][b†a i,sba i+1,s + b
†
a i+1,sba i,s]

accounts for single-particle processes, describing intersite
tunneling between similar orbitals in zigzag patterns (as
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depicted in Fig. 1), and

Hint = U||
2

∑
i,a,s,s ′

b
†
a i,sb

†
a i,s ′ba i,s ′ba i,s

+U⊥
∑
i,s,s ′

b
†
1 i,sb1 i,sb

†
2 i,s ′b2 i,s ′

+ 2JH

∑
i

[
S1 iS2 i + n1 in2 i

4

]

+ JH

∑
i

[b†1 i,↑b
†
1 i,↓b2 i,↓b2 i,↑ + H.c.]

+ JH

2

∑
i,s

[b†1 i,sb
†
1 i,sb2 i,sb2 i,s + H.c.] (A3)

corresponds to two-particle interactions. Interaction parame-
ters are given in Eqs. (1) and (2).

This form of the interaction part is particularly convenient
for deriving an effective spin-orbital model. The first two lines
in Eq. (A3) describe the usual density-density interactions
for the case of two bosons occupying the same orbital (first
line) and different orbitals (second line) correspondingly; the
third line describes the Hund exchange when two bosons
occupy orthogonal orbitals and the last two lines are called
pair hopping processes of two bosons from one orbital to
another. Due to considerations of symmetry [43] terms con-
taining

∫
dr1dr2pβ �=α(r1)pα(r1)V (r1 − r2)pα(r2)pα(r2) are

neglected.
Now we assume that interactions dominate over kinetic

energy and concentrate on the filling corresponding to one
boson per site. First we put hopping t = 0 and diagonalize the
interaction part Eq. (A3). The lowest energy state is when each
site is occupied by one boson (singly occupied sites). For t = 0
this state is degenerate extensively 4L due to orbital and spin
degeneracy. Considering hopping t as a perturbation we want
to project the effective Hamiltonian on the states with a single
boson per site. For this we have to consider virtual states that
are obtained from singly occupied states after the hopping of
one boson from one site to its neighboring site (hence one site
is empty and a neighboring site is occupied by two bosons).
When two bosons are located on one and the same orbital of the
same site (|px,px〉 and |py,py〉) these state are not eigenstates
of Hint due to pair hopping processes. Rather symmetric
and antisymmetric orbital combinations are eigenstates |±〉 =
|px,px〉 ± |py,py〉, Hint|±〉 = (U|| ± JH )|±〉. Naturally both
states |±〉 are invariant with respect to exchanging the
coordinates of two bosons and hence the spin part of the wave
function is as well the symmetric triplet state

Heff → −P||
Hk|+〉〈+|Hk

�E = U|| + JH

P|| − P||
Hk|−〉〈−|Hk

�E = U|| − JH

P||,

where P|| is a projector on the ground-state manifold of
Hint having one boson per site with two neighboring bosons
occupying similar orbitals. Analogically we have to consider
the case of projectors on the ground-state manifold of Hint

having one boson per site with two neighboring bosons
occupying different orbitals P⊥. In the latter case one has to
distinguish between symmetric and antisymmetric configura-
tions in spin space, equivalently in coordinate space due to the

bosonic symmetrization principle, Hint(|px,py〉 ± |py,px〉) =
(U⊥ ± JH )(|px,py〉 ± |py,px〉). Note that due to the third line
in Eq. (A3) the eigenstates Hint where two bosons occupy
orthogonal orbitals of the same site are |px,py〉 ± |py,px〉.

Putting all contributions together in second order of
perturbation theory in hopping t we obtain the effective
Hamiltonian of the form

∑
i Hi,i+1, where Hi,i+1 is the two-site

Hamiltonian:

Hi,i+1 = − t2

Ũ
Pi,i+1(ST=1)

[
1+(−1)iσ z

i

][
1+(−1)iσ z

i+1

]

− t2

2(U⊥ − JH )
Pi,i+1(ST=0)

(
1 − σ z

i σ z
i+1

)

− t2

2(U⊥ + JH )
Pi,i+1(ST=1)

(
1 − σ z

i σ z
i+1

)
. (A4)

Above we have introduced singlet and triplet projector op-
erators Pi,i+1(ST=0) = −SiSi+1 + 1/4, and Pi,i+1(ST=1) =
SiSi+1 + 3/4, which project onto two-boson states on sites i

and i + 1 with, respectively, total spin ST = 0 and ST = 1,
where

Si =
∑

a

Sa i = 1

2

∑
a,s,s ′

b
†
a i,sσ s,s ′ba i,s ′

with σ denoting Pauli matrices.
The Hamiltonian

∑
i Hi,i+1, where Hi,i+1 is given in

Eq. (A4), is equivalent to Hamiltonian Eq. (1). Quantum
fluctuation of orbitals described in Eq. (2) is caused by
a finite on-site tunneling between px and py orbitals due
to finite lattice asymmetry (mixing px and py orbitals),
−λ

∑
i,s(b

†
1 i,sb2 i,s + b

†
2 i,sb1 i,s).

APPENDIX B: LATTICE ON-SITE ENERGIES
OF DIPOLAR BOSONS IN p-BANDS

Here we discuss on-site interaction energies of dipolar
bosons in p-bands of zigzag optical lattice that may be
realized by incoherent superposition of triangular lattice and
an additional superlattice [19]. We will estimate system
parameters for the case of a quasi-2D square lattice V (r) =
V0(sin2 πx/a + sin2 πy/a + V z

0
V0

sin2 πz/a) and neglect mod-
ification due to the additional superlattice. To simplify further
estimation we will use the harmonic approximation and take
V z

0 /V0 = 2 and V0 = 25ER (the optical lattice should be deep
enough to neglect the tunneling of molecules in s orbitals),
where ER = �

2π2

2ma2 is recoil energy, m mass of molecule, and
a = 0.5 μm (typical lattice constant for optical lattices). We
note that harmonic approximation overestimates interaction
energies and may even (for the case of average occupation
of particles per site greater than 1) miss quantitative features
[44]; however it may serve as a rough estimate of interaction
energies involved in the problem.

We divide the on-site interaction energies into a contact
part and dipolar part, U||(⊥) = Uc

||(⊥) + Ud
||(⊥). In the case of

disoriented dipoles the dominant on-site contribution comes
from the contact s-wave scattering: for bosons occupying
the same orbital Uc

|| = 4πas�
2

m

∫
drp4

α(r) ∼ 0.5ER , for s-wave
scattering length aS ∼ 100a0, with a0 being the Bohr radius.
On-site interaction for bosons occupying orthogonal orbitals is
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Uc
⊥ = 4πas�

2

m

∫
drp2

x(r)p2
y(r) = Uc

||/3, the ratio Uc
⊥/Uc

|| = 1/3
being independent of V z

0 /V0 in the harmonic approximation.
To estimate the dipolar contribution in on-site energies we
Fourier-transform the dipolar potential and use a similar
approximation as discussed for the dipolar Bose gas in the
spherical trap [45] as well as in the presence of an optical
lattice [46]. For molecules with strong dipolar moment (of
the order of Debye) on-site energy from dipolar interactions

can be comparable to Uc
|| . As opposed to the case of contact

interactions, the ratio Ud
⊥/Ud

|| depends on V z
0 /V0. For the

case V z
0 = 2V0 we get Ud

⊥/Ud
|| � 4.43. Hund exchange is

dominated by the contact interactions, JH ∼ Uc
||/3. One

can tune model parameters in Eq. (3) from α � 3, � � 1
(corresponding to the case of weakly polarized dipoles) to
α < 2, � < 1 by aligning dipoles perpendicular to the zigzag
plane with electric field.
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