
PHYSICAL REVIEW B 90, 094413 (2014)

Exact treatment of magnetism-driven ferroelectricity in the one-dimensional compass model
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1College of Physics, Optoelectronics and Energy, Soochow University, Suzhou, Jiangsu 215006, People’s Republic of China
2Department of Physics, Tianjin Polytechnic University, Tianjin 300387, People’s Republic of China

3Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany
4Marian Smoluchowski Institute of Physics, Jagellonian University, Reymonta 4, PL-30059 Kraków, Poland

(Received 15 June 2014; published 19 September 2014)

We consider a class of one-dimensional compass models with antisymmetric Dzyaloshinskii-Moriya exchange
interaction in an external magnetic field. Based on the exact solution derived by means of Jordan-Wigner
transformation, we study the excitation gap, spin correlations, ground-state degeneracy, and critical properties at
phase transitions. The phase diagram at finite electric and magnetic field consists of three phases: ferromagnetic,
canted antiferromagnetic, and chiral. Dzyaloshinskii-Moriya interaction induces an electrical polarization in the
ground state of the chiral phase, where the nonlocal string order and special features of entanglement spectra
arise, while strong chiral correlations emerge at finite temperature in the other phases and are controlled by a
gap between the nonchiral ground state and the chiral excitations. We further show that the magnetoelectric
effects in all phases disappear above a typical temperature corresponding to the total bandwidth of the effective
fermionic model. To this end we explore the entropy, specific heat, magnetization, electric polarization, and the
magnetoelectric tensor at finite temperature. We identify rather peculiar specific-heat and polarization behavior
of the compass model which follows from highly frustrated interactions.
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I. INTRODUCTION

In classical electromagnetism, electric ( �E) and magnetic
( �H ) fields induce electric polarization ( �P ) and magnetization
( �M) in matter, respectively, yet using �H ( �E) to induce �P ( �M),
the so-called magnetoelectric effect (MEE), is a highly nontriv-
ial issue [1]. Recently, technological and theoretical progress
triggered a renaissance of the MEE, especially in multiferroic
materials [2–5]. It was expected that the efficient control of
magnetism in terms of the electric field would have many po-
tential applications in spintronics and data-storage technology.

There are several envisaged explanations for the magnet-
ically induced ferroelectricity. Among them, the exchange-
striction mechanism [6,7] and the inverse Dzyaloshinskii-
Moriya (DM) mechanism [8] are main streams in accounting
for ferroelectricity in inversion-symmetry-breaking lattices. In
the former mechanism, the bonds become different between
the parallel and the antiparallel spins through exchange
striction associated with symmetric superexchange (�σi · �σj ).
As a result, the electric polarization �P is induced by the
crystallographic deformations in the direction of the chain.
Such a mechanism was originally introduced to explain the
MEE in the material Cr2O3 [9] and was recently applied to
other versatile systems [10–12].

Besides, for the noncollinear spiral or helimagnetic order,
resulting from antisymmetric magnetic frustration, the term
(�σi × �σj ) is also a common way to activate the inversion-
symmetry breaking. The electric polarization �P is thereby
generated by the displacement of oppositely charged ions as
described by Tokura and Seki [13],

�Pi = γ êij × (�σi × �σj ), (1.1)

where êij is the unit vector connecting the neighboring spins �σi

and �σj . The coupling coefficient γ of the cycloidal component
is material dependent [14], and its sign depends on the vector
spin chirality. This microscopic origin towards magnetism-

induced ferroelectricity constitutes the well-known inverse
DM mechanism. It was proposed that DM interaction induces
the helimagnetic spin ground state and ferroelectricity in
Cu2OSeO3 [15–17] and cycloidal magnetic structure in multi-
ferroic BiFeO3 [18]. Note, incidentally, that there is a plethora
of experimentally accessible compounds where electron spin
resonance can be applied as a consequence of the presence of
DM interaction [19,20]. Meanwhile, a number of theoretical
papers were devoted to the effects of DM interaction in
magnets [21–24].

The concept of magnetism-driven ferroelectricity naturally
brings significant attention to quantum spin systems. Among
them, several spin-1/2 chain materials appear to be the
most straightforward but conceptually important models and
have been extensively studied, for example, Ca3CoMnO6 [6],
LiCu2O2 [25], LiCuVO4 [26], and CuCl2 [27]. In a realistic
quantum wire, the superexchange interaction between spins of
transition metal ions depends on the details of crystal structure,
such as the bond length between magnetic ions and the angle
between the bonds connecting magnetic and ligand ions. The
effect of such variants must be addressed.

So far most literature has focused on Heisenberg exchange
interaction; such models require approximations and are not
easy to solve completely. In order to obtain an unbiased
solution we address in this paper the problem of ferroelectricity
in the anisotropic exchange model which is exactly solvable.
Our model is a generalization of the one-dimensional (1D)
compass model where vector chiral correlations are introduced
by the additional DM interaction. It features a rather rich phase
diagram that results from the interplay of DM terms, external
fields, and frustrated compass-type exchange interactions. We
analyze the different symmetry breaking due to magnetic
and electric fields. Further we demonstrate in the fermionic
representation of the spin model that the gapless topological
phase is characterized by four distinct Fermi points, in contrast
to the conventional gapped phases or symmetry-protected
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phases with twofold-degenerate Fermi points. We identify the
nonlocal string order in the chiral phase accompanied by the
finite electrical polarization. In particular we demonstrate the
change of the entanglement spectrum between the canted Néel
phase and the chiral phase.

The 1D compass model is a realization of the directional
competing interactions known from the two-dimensional (2D)
compass model [28–31] on a chain with alternating Ising-like
interactions between x and z spin components on neighboring
bonds. Similar to the Kitaev model [32,33], the 2D and 1D
compass model are characterized by intrinsic frustration of
interactions. An exact solution of the 1D compass model shows
that the ground state has high degeneracy [34], and a quantum
phase transition (QPT) occurs when anisotropic interactions
pass through the isotropic point [35].

We have organized the paper into six sections. First, we
introduce the Hamiltonian of the 1D generalized compass
model (GCM) with DM interaction in Sec. II A and then
present the procedure to solve it exactly by employing Jordan-
Wigner transformation in the absence of magnetic field in
Sec. II B. This solution is next used to evaluate various
correlation functions at finite electric field in Sec. II C. The
model in the magnetic field is analyzed in Sec. III, and the
complete phase diagram is obtained when the electric and
magnetic fields are varied. Several thermodynamic functions,
such as the entropy and the specific heat, and the MEEs are
presented and discussed in Secs. IV and V. Section VI contains
the final discussion and conclusions.

II. THE 1D COMPASS MODEL AND ITS SOLUTION

A. From a frustrated magnet to spinless fermions

In this paper, we consider a frustrated 1D magnet with DM
interaction, which relates to the magnetostriction and inverse
DM (or spin-current) mechanisms in a nonstoichiometric
structure. To focus attention, we assume that the 1D chain
is along the x axis, i.e., êij = x̂, so the possible nonzero
components of �Pi are P

y

i and/or P z
i according to Eq. (1.1).

In analogy to the 2D GCM [36], we consider interactions
which interpolate between the Ising model and the frustrated
interactions in the 1D compass model. Therefore we introduce
an arbitrary angle ±θ/2 relative to σx

l for an odd/even bond,
which defines new operators as linear combinations of {σx

l ,σ
y

l }
spin components on even bonds,

σ̃i(θ ) ≡ cos(θ/2) σx
i + sin(θ/2) σ

y

i , (2.1)

with similar operators with angle −θ/2 for odd bonds. In such
frustrated systems, the Ising-like interactions along odd and
even bonds have different strengths and preferential easy axes
within the (σx,σ y) plane along the chain of N sites.

The 1D GCM considered below is given by

HGCM =
N ′∑
i=1

{Joσ̃2i−1(θ )σ̃2i(θ ) + Jeσ̃2i(−θ )σ̃2i+1(−θ )}

+
N∑

i=1

{ �Di · (�σi × �σi+1) + �E · �Pi + �H · �σi}, (2.2)

where Jo and Je denote the coupling strength along odd and
even bonds, respectively. For convenience an even number of
sites N = 2N ′ is assumed. Here �E is the electric field, and
�H is the external magnetic field, which contains the g factor

g and the Bohr magneton μB. �D is the DM vector, and the
interaction comes from a relativistic correction to the usual
superexchange that has a strength proportional to the spin-orbit
coupling constant. Without an inversion center on any bond,
the antisymmetric exchange is usually one order of magnitude
smaller than the exchange interaction. An immediate question
is to what extent they affect the nonmagnetic phase. Note that
the first term in the Hamiltonian (2.2) interpolates between
the 1D Ising model (θ = 0) and the 1D compass model
(θ = π/2) [34,37,38]. At an intermediate value of θ = π/3
the interactions correspond to eg orbitals; such a model was
recently introduced for a 1D zigzag chain in an (a,b) plane [35]
and may be realized either in layered structures of transition
metal oxides [39] or in optical lattices [40,41].

First, we consider below the model (2.2) in the absence
of an external magnetic field. The role of magnetic field is
explored in Sec. III. Without a magnetic field, the Hamiltonian
is invariant under a rotation in spin space around the z axis
and under time-reversal operator T = iσyK , which reverses
the sign of all spin-component operators. Here K denotes the
complex conjugation operator, and σy is a Pauli matrix in
spin space. As soon as a DM interaction is introduced, the
Hamiltonian is no longer invariant with respect to a space
inversion about a bond center. The DM interaction always
induces an electric polarization according to Eq. (1.1) that lies
within the rotation plane of the spins and is perpendicular to the
magnetic bond and thus competes with the exchange energy.
Here we presume that the �D vector is along the direction
perpendicular to the plane, i.e., �Di = Dzẑ, and originates
from symmetry breaking associated with the planar molecular
structure that determines the (a,b) plane. In-plane components
of the DM vector are assumed to be negligible compared with
the out-of-plane components. By Eq. (1.1) an electric field
component Ey along the in-plane y direction acts on the chiral
polarization (�σi × �σi+1) in the same way as the Dz component
of the DM vector. Below we shall express this dependence, for
the considered geometry, by the variable E, defined as

E = Dz + γEy. (2.3)

The Hamiltonian (2.2) can be exactly diagonalized by
following the standard procedures. The Jordan-Wigner trans-
formation maps explicitly between spin operators and spinless
fermion operators by the following relations [42]:

σ+
j = exp

[
iπ

j−1∑
i=1

c
†
i ci

]
cj =

j−1∏
i=1

σ z
i cj ,

σ−
j = exp

[
−iπ

j−1∑
i=1

c
†
i ci

]
c
†
j =

j−1∏
i=1

σ z
i c

†
j ,

σ z
j = 1 − 2c

†
j cj , (2.4)

where cj and c
†
j are annihilation and creation operators of

spinless fermions at site j , which obey the standard anticom-
mutation relations: {ci,cj } = 0, {c†i ,cj } = δij . Consequently,
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we have a free-fermion Hamiltonian:

ĤE =
∑

i

[Joe
iθ c

†
2i−1c

†
2i + (Jo − 2iE)c†2i−1c2i

+ Jee
−iθ c

†
2ic

†
2i+1 + (Je − 2iE)c†2ic2i+1 + H.c.]. (2.5)

The spinless fermion Hamiltonian is equivalent to the 1D
mean-field model for a triplet superconductor, with inho-
mogeneous nearest-neighbor hopping and condensate ampli-
tudes [43].

B. Quasiparticles at finite electric field and �H = 0

The above Hamiltonian can be diagonalized; to this end we
introduce the discrete Fourier transformation of the fermionic
operators,

c2j−1 = 1√
N ′

∑
k

e−ikj ak, c2j = 1√
N ′

∑
k

e−ikj bk, (2.6)

with the discrete momenta given as follows:

k = nπ

N ′ , n = −(N ′ − 1), − (N ′ − 3), . . . ,(N ′ − 1). (2.7)

The Hamiltonian takes the following form, which is suitable
to introduce the Bogoliubov transformation:

ĤE =
∑

k

[Bka
†
kb

†
−k + Aka

†
kbk − A∗

kakb
†
k − B∗

k akb−k]. (2.8)

Here

Ak = (Jo − 2iE) + (Je + 2iE)eik,

Bk = Joe
iθ − Jee

i(k−θ). (2.9)

To diagonalize the Hamiltonian (2.8), we rewrite it in the
Bogoliubov–de Gennes (BdG) form,

Ĥ0 =
∑

k

�
†
kM̂k�k, (2.10)

where

M̂k = 1

2

⎛
⎜⎜⎜⎝

0 0 Rk + Sk Pk + Qk

0 0 Pk − Qk Rk − Sk

R∗
k + S∗

k P ∗
k − Q∗

k 0 0

P ∗
k + Q∗

k R∗
k − S∗

k 0 0

⎞
⎟⎟⎟⎠

(2.11)

and �
†
k = (a†

k,a−k,b
†
k,b−k). Here we have defined

Pk = −i(Jee
ik + Jo) sin θ,

Qk = (Jee
ik − Jo) cos θ,

Sk = Jo + Jee
ik,

Rk = 2iE(eik − 1). (2.12)

Within the Majorana representation, the BdG Hamilto-
nian (2.11) acts in an enlarged expanded Nambu-spinor space,
namely, the tensor product of the physical space C2N with an
extra degree of freedom C2, which we call the “particle-hole
space” [44]. This structure has an emergent particle-hole

symmetry (PHS) C = τxK , namely, {M̂k,C} = 0. Here, τx is
a Pauli matrix acting in the Nambu space. Note that both
time-reversal operator T and particle-hole transformation C
are antiunitary operators, satisfying [Ĥ ,T ] = 0, {Ĥ ,C} = 0.
As a consequence, two copies of the actual excitation spectrum,
a particle and a hole copy, emerge simultaneously [45].

A unitary transformation Ûk can transform the Hermitian
matrix (2.11) into a diagonal form,

ϒ̂k = ÛkM̂kÛ
†
k . (2.13)

The quasiparticle (QP) operators, {γ †
k,1,γ

†
k,2,γ

†
k,3,γ

†
k,4}, are

connected with {a†
k,a−k,b

†
k,b−k} through the following

relation: ⎛
⎜⎜⎜⎜⎝

γ
†
k,1

γ
†
k,4

γ
†
k,2

γ
†
k,3

⎞
⎟⎟⎟⎟⎠ = Ûk

⎛
⎜⎜⎜⎝

a
†
k

a−k

b
†
k

b−k

⎞
⎟⎟⎟⎠ . (2.14)

After diagonalization, the eigenspectra εk,j (j = 1, . . . ,4) are
readily obtained:

εk,1(2) = −1

2

√
ςk ±

√
ς2

k − τ 2
k , (2.15)

εk,3(4) = 1

2

√
ςk ∓

√
ς2

k − τ 2
k , (2.16)

where

ςk = |Pk|2 + |Qk|2 + |Rk|2 + |Sk|2,
τk = ∣∣P 2

k − Q2
k − R2

k + S2
k

∣∣. (2.17)

The eigenenergies are labeled sequentially from the bottom
to the top as εk,1, . . . ,εk,4 (see Fig. 1). Note that the spectra
of mode k = 0 are independent of E, in contrast to the other
modes. We can make this peculiarity to trace the order of
the spectra. Instantly, we obtain the diagonal form of the

FIG. 1. (Color online) The energy spectra εk,j (j = 1, . . . ,4) for
increasing electric field E: (a) E = 0.3, (b) E = 0.5, and (c)
E = 0.7. The inset in (c) is the amplification of the dashed circle
below. Parameters are as follows: Jo = 1, Je = 4, θ = π/3, H = 0.
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Hamiltonian,

Ĥ0 =
∑

k

4∑
j=1

εk,j γ
†
k,j γk,j . (2.18)

One finds that the spectra are symmetric with respect to energy
ε = 0 and the k ↔ −k transformation; see the QP bands
in Fig. 1. The positive spectra correspond to the electron
excitations, while the negative ones are the corresponding hole
excitations. As seen in Fig. 1(a), the upper two branches of the
spectra, εk,3 and εk,4, are always positive for E = 0.3. The
PHS implies here that γ

†
k,4 = γ−k,1, γ †

k,3 = γ−k,2. Accordingly,
the gap is determined by the absolute value of the difference
between the second and third energy branches,

� = min
k

|εk,2 − ε−k,3|. (2.19)

With the increase of E, επ,3 bends down and επ,2 moves
upwards at k ≈ ±π . Finally, επ,3 touches επ,2 at E = 0.5 and
k = ±π , i.e., � = 0 [see Fig. 1(b)]. The condition for the gap
closing requires τπ = 0, which gives rise to

Ec ≡ 1
2

√
JoJe | cos θ | . (2.20)

Further increase of E leads to the bands inversion; επ,2 and
επ,3 cross at two generally incommensurate and symmetric
momenta ±kic, which is given by

kic = arccos

(
1 − JoJe cos2 θ

2E2

)
. (2.21)

One finds that in Fig. 1(c) the energies in the upper second
band can be negative,

εk,3 � 0 for |k| � kic. (2.22)

The ground state of any fermion system follows the total
filling of the Fermi-Dirac statistics, and the lowest energy is
obtained when all the QP states with negative energies are
filled by fermions. More precisely, in the thermodynamic limit
(N → ∞), the ground state of the system |0〉 corresponds to
the configuration with chemical potential μ = 0, where all the
states with εk,j < 0 are occupied and the ones with εk,j � 0
are empty. By means of the corresponding occupation numbers

nk,j = 〈0|γ †
k,j γk,j |0〉 =

{
0 for εk,j � 0,

1 for εk,j < 0.
(2.23)

One recognizes that in the present case of a symmetric QP
spectrum, the ground-state energy may be expressed as

E0 = −1

2

∑
k

4∑
j=1

|εk,j |. (2.24)

The advantage of the result given by Eq. (2.24) is that it is
independent of the signs of Jo and Je, which can be verified
by transformations σx

2i−1 → −σx
2i−1 and σ

y

2i → −σ
y

2i .
As observed in Fig. 2, the gap � diminishes after E

exceeds the critical value Ec for a fixed angle θ ; Ec is
symmetric with respect to θ = π/2 and decreases with θ . As
E approaches Ec (2.20) from below, the size dependence of
the gap, � ∼ L−z, defines the dynamic exponent z. Expanding

0

0.5

1

0

1

2
0

1

2

θ/πE

Δ

FIG. 2. (Color online) The gap � as a function of E and θ . The
dotted lines are obtained from Eq. (2.20). They separate a gapless
chiral phase from two gapful, canted Néel phases that are separated
by a quantum critical point at θ = π/2. Parameters are as follows:
Jo = 1, Je = 4.

the gap around the critical line Ec from lower threshold, i.e.,
at τk → 0,

� ∼ τk√
2ςk

∼ 8
(
E2

c − E2
)

√
J 2

o + J 2
e

. (2.25)

The relativistic spectra at kic imply a dynamical exponent
z = 1 for θ �= π/2 [see the inset in Fig. 1(c)]. The linear
dispersion law guarantees that the density of low-energy states
in the anisotropic chain remains finite instead of leading to the
square-root divergence typical for isotropic spin chains [46].
In contrast, the point θ = π/2 at E = 0 is a multicritical
point with an emergent Z2 symmetry, and the spectra vanish
quadratically at ±π as a result of the confluence of two Dirac
points, corresponding to a dynamical exponent z = 2 [47].

C. Correlation functions

In order to characterize the QPTs, we study the nearest-
neighbor correlation function,

Cα
l = − 2

N

N/2∑
i=1

〈
σα

i σ α
i+l

〉
, (2.26)

where the superscript α = x,y,z denotes a Cartesian compo-
nent, and chirality,

Xα
l = − 2

N

N∑
i=1

〈�α · (�σi × �σi+l)〉, (2.27)

where �α denotes the unit vector in the direction of a Cartesian
component α. Finally, we introduce the nonlocal string order
parameter,

Oα
s = 〈

Sα
4kS

α
4k+1S

α
4k+2S

α
4k+3 · · · Sα

4nS
α
4n+1S

α
4n+2S

α
4n+3

〉
.

(2.28)

The chirality Xα
l (2.27) will exhibit a sign change under the

parity operation but will stay invariant under the time-reversal
operation. It is well known that two-point correlation functions
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can be calculated from determinants in terms of Wick’s
theorem [42,48],

〈
σx

0 σx
r

〉 =

∣∣∣∣∣∣∣∣
G−1 G−2 · G−r

G0 G−1 · G−r+1
...

...
. . .

...
Gr−2 Gr−3 · G−1

∣∣∣∣∣∣∣∣
, (2.29)

〈
σ

y

0 σy
r

〉 =

∣∣∣∣∣∣∣∣
G1 G0 · G−r+2

G2 G1 · G−r+3
...

...
. . .

...
Gr Gr−1 · G1

∣∣∣∣∣∣∣∣
, (2.30)

〈
σ z

0 σ z
r

〉 = 4
〈
σ z

0

〉〈
σ z

r

〉 − GrG−r , (2.31)

where

Gr = 〈
σ

y

0 σx
r

〉
. (2.32)

When E = 0, the ground state is marked by the finite
nearest-neighbor correlation functions, among which x com-
ponents {Cx

l } dominate for θ < π/2, implying that the adjacent
spins are antiparallel and aligned with a canted angle with
respect to the x axis. In other words, the ground state of the
GCM is a canted Néel (CN) phase for θ < π/2. The predicted
spin-wave spectrum can be compared with the results obtained
from inelastic neutron scattering measurements [18,49]. Con-
versely, the z-component chirality Xz

l completely vanishes.
With increase of E, Cx

l , C
y

l , and Cz
l remain unchanged until

reaching a threshold value Ec(θ ), as shown in Fig. 3(a).
Simultaneously, the chiral order Xz starts to grow and saturates
as E → ∞. The DM interaction or the electric field induces
spins to be cycloidally oriented in the (σx,σ y) plane.

The effects of bond alternation and the DM interaction
on the zero-temperature phase diagram of the Ising model
have been studied in terms of an infinite time-evolving block
decimation (iTEBD) algorithm [50]. The iTEBD method
allows one to solve for the ground-state properties of a
1D translationally invariant spin system of infinite length.
One of the main controlling factors under this strategy
is the bond dimension χ , i.e., the cutoff dimension of
Schmidt coefficients during the singular-value-decomposition
process [51]:

|�〉 =
χ∑

i=1

∣∣φL
i

〉
�i

∣∣φR
i

〉
, (2.33)

where |φL
i 〉 and |φR

i 〉 represent the orthonormal bases of
the subsystem to the left and right halves of the broken
bond and � is a diagonal matrix. The iTEBD algorithm
not only can reveal ground-state energy, excitations, and
local correlation functions but also can conveniently evaluate
nonlocal correlations, like quantum entanglement, which are
not easy to obtain by other methods.

Quantum entanglement was originally introduced to exhibit
nonlocal correlations in a quantum system [52–55]. Consider-
ing a d-dimensional block composed by Ld contiguous spins,
embedded in an infinite system, the von Neumann entropy
between the block and the rest of the system is given by

SL = −TrρL log2 ρL, (2.34)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

E

C
or

re
la

tio
n 

fu
nc

tio
n Cx

e

Cy
e

Cz
e

Xz
e

(a)

(b)

FIG. 3. (Color online) Evolution of the ground state for increas-
ing electric field: (a) the nearest-neighbor correlations Cα and
chirality Xα on even bonds; (b) the string order parameters Oα

s .
The bond dimension is set as χ = 30. Parameters are as follows:
n − k = 200, Jo = 1, Je = 4, θ = π/3, and H = 0.

where ρL is the reduced density matrix for the Ld -site block.
A celebrated boundary law is satisfied for

SL ∼ Ld−1 (2.35)

in a gapped d-dimensional system due to a short-range
correlation length [56,57], while a logarithmic additive term
in gapless regimes becomes dominated by the form [58–62]

SL ∼ c

3
Ld−1 log2 L, (2.36)

where c is central charge. Moreover, the study of the entan-
glement spectrum, i.e., the eigenvalues ξi of the entanglement
Hamiltonian HL resulting from ρL = e−HL [63], has recog-
nized that the universal part of the entanglement spectrum
reveals an intricate connection between a bulk property and
edge physics [64].

An alternative way to look at the dimerization of a chain
is via the study of entanglement entropy of weak and strong
bonds [65]. In Fig. 4, the normalized entanglement spectra
of the half-infinite chain, obtained by dividing the chain into
two half-infinite chains, are shown as functions of E. Since
Eq. (2.2) is a two-period system, we have two entanglement
spectra (�a and �b) by cutting odd or even bonds. They are
not equivalent; we find that the entanglement spectra �b are
doubly degenerate in chiral phases in contrast to �a . The
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(a)

(b)

FIG. 4. (Color online) The normalized entanglement spectrum
for increasing electric field E by cutting (a) a single odd bond and (b) a
single even bond. Parameters are as follows: Jo = 1,Je = 4,θ = π/3,
and H = 0.

exact twofold degeneracy in the entire entanglement spectrum
is protected by the space inversion (parity) symmetry of the
“odd-parity” chiral state [66], and this implies the existence of
a nonlocal string order parameter [67]. The iTEBD calculation
reveals that nonlocal correlation Oz

s arises for E > Ec, as
observed in Fig. 3(b). The bipartite entanglement between two
half-infinite chains can be directly read out through

S2i−1,2i = −Tr[(�a)2 log2(�a)2], (2.37)

S2i,2i+1 = −Tr[(�b)2 log2(�b)2]. (2.38)

The bipartite entanglement on even bonds is larger than that on
odd bonds, and both of them exhibit a singularity at criticality.
In the iTEBD calculation the divergence of SvN at the critical
point is argued to scale with bond dimension χ as [68]

SvN ∼ 1√
12/c + 1

ln χ. (2.39)

A QPT is indicated to exist in the zero-temperature phase
diagram by nonanalyticity of order parameters with the
controlling parameter. Thus, one finds a QPT from the gapped
Néel phase to the gapless chiral phase at the critical point Ec.
The three-dimensional phase diagram as functions of varying

Canted Néel Phase

Chiral Phase

0.

0.5

1.
r

0.

0.25

0.5

0.0

0.2

0.4

0.6

E

FIG. 5. (Color online) Ground-state phase diagram of Eq. (2.2),
at zero magnetic field, as a function of the dimerization parameter
[Eq. (2.40)], the electric field E, and angle θ .

angle θ , dimerization parameter

r ≡ Je − Jo

Je + Jo

, (2.40)

and electric field E is presented in Fig. 5. The transition from
the CN phase to the chiral phase occurs at the critical value
of the electric field Ec given by Eq. (2.20). The CN phase is
stable in a finite range of 0 < E < Ec, except for the limit
of decoupled dimers on even bonds (r = 1), or the value of
θ = π/2, where the chiral phase exists at any electric field
strength E.

Until now we have focused on the role played by the DM
interaction and the applied electric field in the model. It is of
interest now to ask how the above scenario is modified by the
additional effect of finite magnetic field, and we explore this
problem in the following section.

III. GENERALIZED COMPASS MODEL IN A
HOMOGENOUS MAGNETIC FIELD

Here we study the effect of a homogenous magnetic field
and the associated MEEs. We consider the case where the
magnetic field is oriented perpendicular to the easy plane of the
spins, i.e., �H = Hẑ. Subsequently, in Nambu representation,
the Hamiltonian matrix is modified in the following way:

M̂k → M̂ ′
k = M̂k − HI2 ⊗ σ z, (3.1)

where I2 is a (2 × 2) unity matrix. The directional Zeeman
splitting perpendicular to the (x,y) plane lifts the Kramers
degeneracy and makes the expression for the ground-state
energy rather involved, which will not be shown here.
The analytical solution of Hamiltonian (3.1) along the path
E = 0 had been scrutinized recently, and an order-disorder
QPT induced by the magnetic field was recognized [35].
Such criticality is suited at momentum k = 0. Generally, the
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FIG. 6. (Color online) The energy spectra εk,j (j = 1, . . . ,4) for
(a) the CN phase at P1 (E = 0.3, H = 1.8), (b) the chiral phase at
P2 (E = 0.6, H = 0.6), and (c) the polarized phase at P3 (E = 0.2,
H = 2.2). Insets show the amplification of the corresponding two
central branches. εk,3 is negative for k ∈ (0.4655π,0.7871π ) at P2. A
horizonal guiding line marks the position of the chemical potential,
i.e., μ = 0. Parameters are as follows: Jo = 1, Je = 4, θ = π/3.

Hamiltonian (2.2) breaks the space-inversion symmetry of the
spin chain when electric field E is applied, while the H field
breaks the time-reversal symmetry (TRS). Figure 6 shows the
energy spectra for three typical values of E and H . The joint
breaking of TRS and parity symmetry leads to the asymmetry
of the bands with respect to k = 0.

The BdG band structure in the absence of further symme-
tries still preserves the antiunitary PHS. The PHS of the BdG
Hamiltonian is

CM̂kC = −M̂−k. (3.2)

Hence, we have

εk,1 = −ε−k,4, εk,2 = −ε−k,3. (3.3)

Note that k = 0 and k = ±π are special points; the latter are
called “time-reversal-invariant” points since they are mapped
onto themselves. At E = 0.6 and H = 0.6, we can see from
Fig. 6(b) that the energy spectrum εk,3 is not positive for all
k values in the Brillouin zone, as this band crosses from
positive to negative values at some intermediate value of k.
The appearance of hole and electron pockets generate four
Fermi points and is the key feature of the chiral phase at finite
H field. A scrutiny of gap for typical parameters in Fig. 7
incorporating Lee-Yang zeros [69–71] shows three different
phases. Two of them are gapped in the excitation spectrum,
while the third one is gapless.

The spin chirality (�σi × �σi+1) is perpendicular to the
spin-spiral plane and is odd under spatial reflections. The
magnetic field ∝H induces a tilt of the spin-spiral plane.
Both the time-reversal and parity symmetries are broken in
this spin-spiral phase. As a result, it exhibits a MEE and
thus leads to a directional change of polarizations P and
staggered magnetic moments, which can be measured by
nuclear magnetic resonance (NMR) and muon spectroscopy
(μSR) [72].

0

2

4

0.0

0.5

1.0
0.0

0.5

1.0

HE

Δ

FIG. 7. (Color online) The excitation gap � as functions of
electric (E) and magnetic (H ) fields. One recognizes the gapped
CN (polarized) phase at small (large) H and the gapless chiral phase
at large E. Parameters are as follows: Jo = 1, Je = 4, and θ = π/3.

The corresponding components of magnetization are shown
in Fig. 8 for increasing H . The magnetization is found
to be almost independent of E as long as the system is
within a given magnetic phase, but discontinuous changes
of magnetization occur at phase transitions. At E = 0.3, an
abrupt change of each σα

i component occurs at H = 2.0,
and only the z component of the magnetization survives for

(a)

(b)

FIG. 8. (Color online) Evolution of magnetization components
with magnetic field H for (a) E = 0.3 and (b) E = 0.7. Parameters
are as follows: Jo = 1, Je = 4, θ = π/3.
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III: Polarized Phase

II: Chiral Phase
I: Canted Néel

Phase

Hc,1

E
c

H c
,2

P1

P2

P3

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

E

H

FIG. 9. (Color online) Magnetic phase diagram of the 1D GCM
at θ = π/3 with three critical lines, Hc,1, Hc,2 = 4E and Ec. In
the special case θ = π/2, there will no longer be a CN phase. The
magenta dashed line denotes a typical path, H = 3 − 4E, that will be
used in the following discussion. Parameters and the representative
points {P1,P2,P3} in the (E,H ) plane are defined in Fig. 6.

H > 2.0 [see Fig. 8(a)]. A nonzero chirality Xz
l shows up

when H > 2.0. At E = 0.7, the xth and yth magnetization
components completely disappear regardless of the value of
H [see Fig. 8(b)]. Only the zth magnetization component is
monotonously enhanced by increasing magnetic field, and a
discontinuity occurs at H = 2.8. The sharp downturn of the
magnetization below the critical field indicates a competition
with the chiral order parameter of the chiral phase, and the
chirality Xz

l decreases as H grows and a kink also arises at
H = 2.8. A remarkable finding is that local magnetizations of
each sublattice are not uniform under the competition of E

and H ; that is, |〈σx
2i−1〉| is slightly larger than |〈σx

2i〉|, while
|〈σy

2i−1〉| and |〈σy

2i−1〉| are smaller than their counterparts. The
ferrimagnetic structure is observed in some magnetoelectric
materials, such as hexaferrites Ba0.5Sr1.5Zn2Fe12O22 [73] and
Ba2Mg2Fe12O22 [74].

Following all the criteria, including correlators, chirality,
the string order parameter, the entanglement spectrum, and
fidelity, the phase diagram in the (E,H ) plane is displayed in
Fig. 9. For relatively small H and E one finds region I, which
corresponds to the CN phase, limited by two critical lines at
E = Ec and H = Hc,1. The critical lines are defined by

Hc,1 = 2
√

JoJe| cos θ |, (3.4)

Ec = 1
2

√
JoJe| cos θ |. (3.5)

The area of the CN phase is proportional to cos2 θ and shrinks
to a point at θ = π/2. While E > Ec, we find the third critical
line,

Hc,2 = 4E, (3.6)

which separates the chiral phase at low magnetic field from
the polarized phase at high magnetic field.

The long-range order is spoiled beyond the CN phase. Nu-
merical results show that SL saturates to a constant (2.35) in CN
and a polarized phase, and a logarithmic divergence (2.36) with
c = 1/2 is observed along the critical line Hc,1, suggesting the
QPT belongs to the 2D Ising universality class. Specifically,
SL also displays a logarithmic form in the chiral phase;
however, c = 1 is confirmed, implying that the QPT to chiral
phase falls within the well-known 1D XX universality class.
The logarithmic boundary-law violation is attributed to its
gapless nature. The gapless character will have a considerable
impact on the thermodynamic properties as any minor thermal
fluctuation should intermix the ground state and excited states.

IV. THERMODYNAMIC PROPERTIES

The remainder of the paper is concerned with the case where
the system is in thermal equilibrium. It is straightforward to
obtain the thermodynamic characteristics of the model (2.2)
at finite temperature. The free energy per site of the quantum
spin chain at temperature T is equal to

F = − T

N

∑
k

4∑
j=1

ln
(

2 cosh
εk,j

T

)
. (4.1)

Here we use the units with the Boltzmann constant set as
kB ≡ 1. We derive the entropy, which is arguably a fundamen-
tal thermodynamic quantity and has been considered at low
temperature for a long time [75]. We obtain the entropy S and
the specific heat CV from the free energy F via the standard
relations:

S = −∂F
∂T

, (4.2)

CV = −T
∂2F
∂T 2

. (4.3)

As we show in Fig. 10(a), the entropy at low tempera-
tures displays two local maxima, implying two successive
QPTs with the increase of electric field E. One is close to
E = 0.25, and the other is located at E = 0.5. From the
conformal field theory (CFT), the low-temperature expansion
of the free energy of the chiral phase per site is given by [76–78]

F = ε0 − πc

6vF

T 2 + O(T 3), (4.4)

where ε0 is the ground-state energy per site and vF is the
velocity of the excitations. Consequently, a linear relation of S
with T is observed in the gapless chiral phase with scaling [79],

S = πc

3vF

T . (4.5)

Here we adopt the units of � ≡ 1.
The theoretical description of the chiral phase should be

applicable for the whole gapless regime in 1D systems. In
this respect, the system is gapless along the critical line,
and its entropy is also linear in T , i.e., S(T ) ∝ T , in the
regime of low temperature, while in the gapped phases an
exponential scaling is observed, i.e., S ∝ exp(−�/T ) [see
Fig. 10(b)].
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In fact, either in the chiral phase or at critical lines, the
low-temperature thermal entropy and the universal part of the
entanglement entropy are linked by a universal scaling function
in the framework of the 1D CFT since both of them stem
from the low-energy degrees of freedom close to the Fermi
surface. The dynamical critical exponent z controls the relative
scaling of space and temperature, leading to an invariant
form LT 1/z. For 1D relativistic scale-invariant systems the
finite-temperature fluctuations behave like (LT )d . Here we
set z = d = 1. On the one hand, the von Neumann entropy
recovers the usual entanglement entropy of the ground state
as LT 1/z → 0, and only constant or logarithmic terms are
allowed at T = 0. A lot of studies revealed that the coefficient
of the boundary-law term (2.35) is nonuniversal, but the
boundary-law-violating term (2.36) at zero temperature was
proven to be universal. On the other hand, in the opposite
limit as LT → ∞, the dimensionlessness and extensivity
require that the thermal entropy per site then scale linearly
with T [80].

The specific heat CV of the GCM in the transverse field has
been plotted in Fig. 11(a). For extremely low temperatures,
the specific heat presents a broad peak around the critical
point and reaches a local minimum on the top of the peak
at quantum critical points (QCPs). In the gapped phase, the
low-temperature specific heat reveals an exponential increase
in T in the absence of spontaneous magnetization. Since
CV = T (∂S/∂T ), the specific heat at the QCPs is identical
to its entropy. In particular, the specific heat CV (T ) of the
Luttinger liquid is also linear in T [81].

A special case is the quantum compass model (QCM)
realized at θ = π/2. Here we find that the low-temperature

0.00 0.25 0.50 0.75
0.0

0.2

0.4

E

S

0.01 0.01 0.02
0.00

0.04

0.08

T

S

 

 

E=0.2

E=0.3
E=0.6

(a)

T=0.10

T=0.01

(b)

FIG. 10. (Color online) Entropy S of the 1D eg orbital model at
finite electric field and temperature: (a) the entropy vs electric field
at increasing temperature T = 0.01,0.02, . . . ,0.10 (from bottom to
top) along the path H = 3 − 4E defined in phase diagram shown in
Fig. 9; (b) scaling of entropy S(T ) as a function of temperature T for
critical (solid circles) and noncritical (open circles) fields. Parameters
are as follows: Jo = 1, Je = 4, θ = π/3.
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FIG. 11. (Color online) Specific heat CV of the 1D eg orbital
model as function of electric field and temperature. (a) The specific
heat vs electric field along the path H = 3 − 4E at different temper-
atures T = 0.01,0.02, . . . 0.10 (from bottom to top); the specific heat
reaches its local minimums at QCPs for extremely low temperatures.
(b) The scaling of specific heat at local minimum with respect to T .
Parameters are as follows: Jo = 1, Je = 4, θ = π/3.

behavior is non-Fermi-liquid-like and remarkably different
from the behavior obtained at other values of θ . The entropy
at different temperatures is plotted as a function of the E

field in Fig. 12(a) along the critical line H = 4E, which
extends here to E = 0. We recall that for θ = π/2 the CN
phase has disappeared. Usually, according to the third law
of thermodynamics, the entropy falls to zero at T → 0. Here
it approaches the maximal value S = ln 2 per unit cell for a
small E field in the low-T limit, as a result of the macroscopic
degeneracy 2N/2−1 in the disordered state [82]. Large residual
entropy was measured in the spin-ice system Dy2Ti2O7 [83],
where it is related to a macroscopic degeneracy of the
ground state resulting from frustration in the pyrochlore
lattice.

The measurement of the full magnetic field and temperature
dependence of the complete entropic landscape was performed
for Sr3Ru2O7 near quantum criticality [84]. Lowering the
entropy of ultracold gases becomes nontrivial to realize more
exotic quantum states [85–87], such as d-wave supercon-
ductivity. Simultaneously, the specific heat remains zero for
vanishing field, as shown in Fig. 12(b). This follows from the
excitation gap, which opens at this value of θ between the
degenerate ground state and excited states.

V. MAGNETOELECTRIC EFFECTS

The advantage of the presented formalism is that the
magnetization, the electric polarization, and thereby the
magnetoelectric tensor can be calculated exactly for the entire
temperature range relevant for the phase diagram. Figure 13
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FIG. 12. (Color online) Thermodynamic properties of the QCM
for increasing electric field E as obtained along the phase boundary
H = 4E: (a) the entropy S and (b) the specific heat CV . Different
lines are for increasing temperature T = 0.01,0.02, . . . ,0.10 (from
bottom to top at E = 0.5). Parameters are as follows: Jo = 1, Je = 4,
θ = π/2.

shows the average magnetization,

Mz = 1

N

∑
l

〈
σ z

l

〉
, (5.1)

and the electric polarization,

P y = 1

N

∑
l

〈σx
l σ

y

l+1 − σ
y

l σ x
l+1〉, (5.2)

as functions of the magnetic field H for a few selected values
of the electric field E at very low temperatures. Here the angle
brackets 〈· · · 〉 denote the thermal average.

A key quantity to characterize the MEE is the linear
magnetoelectric susceptibility at constant temperature. The
numerical derivatives of P y and Mz with respect to H and E

define the magnetoelectric tensor αyz,

αμν = −
(

∂P μ

∂Hν

)
T , �E

= −
(

∂Mν

∂Eμ

)
T , �H

. (5.3)

The size of the macroscopic MEE depends on the microscopic
mechanism. Below we use the abbreviation α for the magne-
toelectric tensor component αyz.

In Fig. 13(a) the electric polarization P y is large in the chiral
phase (the case of E = 0.7), and it decreases strongly towards
the phase transition to the polarized phase at H = Hc,2. In
contrast, in the CN phase (at E = 0.3) P y starts from zero
and increases gradually with H but remains small compared
to the chiral phase. Actually, we find that the polarization
P y behaves quadratically at small H � 0 in the CN phase
and shows a gradual decrease after entering the polarized
phase. In the limit of large H the polarization decreases again
to zero.
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E=0.7

(b)

0 1 2 3 4

0.0

0.5

1.0

1.5

H

α
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E=0.7

(c)

FIG. 13. (Color online) Evolution of various quantities with in-
creasing magnetic field H at low temperature T = 0.01 and three
values of electric field, E = 0.3,0.5,0.7 (see legend): (a) y-direction
electric polarization P y , (b) z-component magnetization Mz, and (c)
the magnetoelectric tensor α through relation ∂H P y . Parameters are
as follows: Jo = 1, Je = 4, and θ = π/3.

In the CN phase the Mz component of the magnetization
[Fig. 13(b)] grows with E and reaches a maximum at the
critical line Ec, which is contrary to the trend found at the
critical line Hc,2 (not shown). Figure 13(b) reveals the S-shaped
continuous variation of the magnetization Mz at the phase
transition between the CN and polarized phases, i.e., for
E = 0.3 and also for E = 0.5. In contrast, the transition at
E = 0.7 appears as a second-order phase transition, where the
Mz order is suppressed below Hc,2 by the appearance of the
chiral order and the associated strong variation of P y . This
naturally leads to a huge signal in the MEE tensor component
α, as seen in Fig. 13(c) for E = 0.7. On the other hand, α

remains small in the CN and polarized phases at E = 0.3 but
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FIG. 14. (Color online) Magnetoelectric tensor α as a function of
H obtained for (a) E = 0.3 and (b) E = 0.7 close to the critical point.
The square-root singularity at T = 0 decays rapidly with increasing
temperature. Parameters are as follows: Jo = 1, Je = 4, and θ = π/3.

develops strong features at E = 0.5 both at small H and in the
vicinity of Hc.

In Fig. 14 we compare the magnetic field dependence
of the magnetoelectric tensor α at different temperatures
T . It is evident that also the variation with temperature
distinguishes (i) the phase transition from the CN phase
to the polarized phase and (ii) the transition from the
chiral phase to the polarized phase. In Fig. 14(a) the
magnetoelectric tensor undergoes a gradual change at E = 2.0
for E = 0.3 under extremely low temperature. α manifests
opposite trends on both sides of the critical point as the
temperature increases. Increasing temperature suppresses α

in the polarized state, while enhancing it in the CN phase.
Remarkably, α displays van Hove–like singularities close to
Hc,2 = 2.8 for E = 0.7. These singularities gradually disap-
pear at increasing temperature, and one finds that α becomes
more and more flat, as shown in Fig. 14(b). We have found
that the singular behavior is smeared out when T > 0.05.

The temperature dependence of P y , Mz, and α is displayed
in Figs. 15(a)–15(c). The data are shown at three points, P1, P2,
and P3, representing the CN phase, the chiral phase, and the
polarized phase, respectively (see the phase diagram of Fig. 9).
In Fig. 15(a) we find that the P y component of the electric
polarization for point P2 saturates at its maximal value at low
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FIG. 15. (Color online) Temperature dependence (note the log-
arithmic scale) of the magnetoelectric effect for three selected
(E,H ) points, P1 ≡ (0.3,1.8), P2 ≡ (0.6,0.6), and P3 ≡ (0.2,2.2),
corresponding to the CN, chiral, and polarized phases, respectively:
(a) the polarization P y , (b) magnetization Mz, and (c) magnetoelectric
tensor α. Parameters are as follows: Jo = 1, Je = 4, and θ = π/3.

temperatures. With increasing temperature P y(T ) decreases
in two steps: (i) the first decrease at T1 ∼ 0.1 can be identified
with the excitation energy between the chiral low-energy states
and nonchiral excited states, while (ii) the final decay of P y(T )
towards zero at T2 ∼ 10 can be related to the total range of
excitation energies.

Interestingly, the two characteristic temperature scales are
also recognized in the other phases. In the polarized and CN
phases P y(T ) increases above T1 from very small values at low
temperatures and assumes relatively large values near T ∼ 1,
i.e., comparable to those in the chiral phase, and becomes
small above T2. Surprisingly, the magnetoelectric effects are of
similar strength in all three magnetic phases in the intermediate
temperature regime, T1 < T < T2.

The same two characteristic temperatures may be recog-
nized in the temperature dependence of the magnetization
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Mz(T ) and magnetoelectric tensor α(T ). The magnetoelectric
tensor α changes sign from negative to positive values upon
increasing temperature, reflecting the maximum in P y(T )
within the polarized and CN phases. The derivative (∂Mz/∂T )
also changes its sign at T1. We note that T1 decreases
monotonously when approaching the chiral phase along the
path depicted in Fig. 9, and the reentrant behavior of P y

vanishes after entering the chiral phase.

VI. DISCUSSION AND CONCLUSIONS

In this paper we have considered the 1D generalized
compass model which interpolates between the Ising model
(θ = 0) and the maximally frustrated QCM (θ = π/2) via
the eg orbital model and includes Dzyaloshinskii-Moriya
interaction. We investigated this model in the presence of
external magnetic and electric fields. The Ising-like exchange
interactions are directional in the compass model, and we
selected the preferential axes in such a way that interactions
lie within the (σx,σ y) plane. The particular advantage of the
presented model is that it can be solved exactly in terms
of Jordan-Wigner transformation, and therefore the magne-
tization, correlation functions, and the phase diagram could
be obtained rigorously. Note that, usually, the effective Ising
interactions have to be treated in the mean-field approximation,
which is uncontrolled.

The analytical results show that the angle θ between the
easy axes on odd and even bonds plays a crucial role in
determining the properties of the generalized compass model,
including intersite spin correlations and the excitation gap.
We have shown that for θ = π/3, corresponding to the eg

orbital model, the 1D model is in the same universality class
as the Ising model, whose ground state is Néel ordered. The
presence of coplanar staggered 〈σx(y)

i 〉 order in this phase
opens the possibility for the existence of transverse order in
addition. Indeed, the magnetic field polarizes the system into
ferromagnetic alignment. These two phases exhaust the phase
diagram at vanishing (or small) electric field.

In contrast, finite electric field drives the system into a chiral
phase, which is characterized by nonlocal zth-component
string order. The development of such a peculiar phase can
be regarded as a spontaneous generation of Dzyaloshinskii-
Moriya interaction, which breaks the parity symmetry and
exhibits a magnetoelectric effect. We have demonstrated that
the entanglement spectra of a half-infinite chain as a function of
electric field may also be used to determine the phase diagram.
Both Néel and polarized phases are gapped, where entangle-
ment is a constant satisfying the boundary law, while entangle-
ment in the gapless chiral state shows a logarithmic divergence.

By analyzing the exact results at finite temperature obtained
for entropy and specific heat, we have established that the
thermal properties exhibit anomalies in the vicinity of quantum
critical points. As a function of the electric field, the entropy
displays local maxima, while the specific heat exhibits local
minima at critical points for extremely low temperature, where
a linear scaling with temperature was established. Away from
the quantum critical point, exponential decay of the entropy
and specific heat with the inverse temperature is observed
instead of a linear dependence on T in the chiral phase.

The QCM is a very special case, which is realized at
the angle θ = π/2, for which the spin components of the
exchange interactions along the even/odd bonds are orthog-
onal. The QCM represents a peculiar quantum critical state
between two gapped phases. Removing external fields, i.e.,
at E = 0 and H = 0, the low-energy elementary excitations
in Eq. (2.16) become dispersionless and tend to zero energy,
i.e., εk,2 = εk,3 = 0. This flat band is then half filled by fermions
and thus gives high macroscopic degeneracy 2N/2−1 away from
the isotropic point and the increased degeneracy of 2N/2 when
the spin interactions are balanced (at Jo = Je). The degeneracy
for isotropic spin interactions increases further by a factor of
2 in the thermodynamic limit, being 2 × 2N/2.

The critical lines intersect at θc = π/2, Hc,1 = 0, Ec = 0,
forming a multicritical point. The phase diagram changes
qualitatively in this case. The z = 2 critical Fermi surface
corresponds to a marginal Fermi liquid, and it has a nonzero
entropy density as T → 0. This indicates the absence of
Néel-like long-range order in the ground state of the θ = π/2
compass model. A finite magnetic field opens an exponen-
tially small gap at the Fermi energy and thus removes the
high degeneracy of the ground state. However, applying the
Dzyaloshinskii-Moriya-type electric field, the spectra remain
gapless at k = 0, but the huge degeneracy is lifted. The gap
is then much smaller than the external fields, and therefore
the thermal excitations through the gap contribute to the
thermodynamic properties at relatively low temperature. This
is observed in the maximal entropy S = ln 2 per unit cell
being robust for not too large external field, as shown in
Fig. 12. The high degeneracy revealed by finite entropy at
low temperature suggests that the θ = π/2 compass model
may have potential applications in quantum computation [88].
In contrast, the entropy S of the Fermi liquid vanishes at
zero temperature for θ �= π/2 according to the third law of
thermodynamics.

In summary, we have shown that the polarization as a
function of the electric field is strongly affected by the
magnetic field. Similarly, the electric field has an effective
impact upon the magnetization, which depends on the strength
of the magnetic field. Strong variation of correlation functions
and thermodynamic quantities are encountered by varying both
electric and magnetic fields in the vicinity of a quantum critical
point, where the magnetoelectric tensor demonstrates singu-
larities at zero temperature. Remarkably, two characteristic
temperature scales are uncovered. For T < T1 ≈ 0.05, the
magnetization saturates in all three phases at large values,
similar to the electric polarization P y in the chiral phase,
whereas in the other two phases P y drops to small (but
finite) values. Within the intermediate temperature range,
T1 < T < T2, the thermal excitation admixes the features
of the chiral state and the nonchiral state. As long as the
thermal energy overcomes the bandwidth for T > T2, the high
temperature will wipe out the chiral features. This leads to
a characteristic reentrant behavior of the electric polarization
P y in the canted Néel and the ferropolarized phases.

Note added in proof. We note, that knowing the mapping
in Eq. (2.3), which is different for different materials, one can
directly use all our relations which feature the dependence on
the field E. Interestingly the control of DM interaction may
also be extended to oscillating electric fields which may allow
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for an externally driven rotation of spins [89,90]. Moreover,
our work sheds light on the topological phase transitions
in strongly correlated systems through the mapping of the
complex spin Hamiltonian into the framework of independent
electrons. Thereby the topological phase transition between
the canted Néel or the polarized phase and the chiral phase,
respectively, acquires a different and perhaps simpler interpre-
tation than in the original spin model.
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104416 (2010).

[37] W.-L. You and G.-S. Tian, Phys. Rev. B 78, 184406 (2008);
W.-L. You, Eur. Phys. J. B 85, 83 (2012); G. H. Liu, W. Li, and
W.-L. You, ibid. 85, 168 (2012).

[38] G.-H. Liu, W. Li, W.-L. You, G.-S. Tian, and G. Su, Phys. Rev.
B 85, 184422 (2012).

[39] D. Xiao, W. Zhu, Y. Ran, N. Nagaosa, and S. Okamoto, Nat.
Commun. 2, 596 (2011).

[40] J. Simon, W. S. Bakr, R. Ma, M. Eric Tai, P. M. Preiss, and
M. Greiner, Nature (London) 472, 307 (2011).

[41] G. Sun, G. Jackeli, L. Santos, and T. Vekua, Phys. Rev. B 86,
155159 (2012).

[42] E. Barouch and B. M. McCoy, Phys. Rev. A 2, 1075 (1970); ,3,
786 (1971).

[43] A. Y. Kitaev, Phys. Usp. 44, 131 (2001).
[44] A. Altland and M. R. Zirnbauer, Phys. Rev. B 55, 1142 (1997).
[45] J. C. Budich and E. Ardonne, Phys. Rev. B 88, 075419

(2013).
[46] M. E. Zhitomirsky and A. Honecker, J. Stat. Mech. (2004)

P07012.
[47] Y. Niu, S. B. Chung, C.-H. Hsu, I. Mandal, S. Raghu, and

S. Chakravarty, Phys. Rev. B 85, 035110 (2012).
[48] T. J. Osborne and M. A. Nielsen, Phys. Rev. A 66, 032110

(2002).

094413-13

http://dx.doi.org/10.1088/0022-3727/38/8/R01
http://dx.doi.org/10.1088/0022-3727/38/8/R01
http://dx.doi.org/10.1088/0022-3727/38/8/R01
http://dx.doi.org/10.1088/0022-3727/38/8/R01
http://dx.doi.org/10.1038/nature02018
http://dx.doi.org/10.1038/nature02018
http://dx.doi.org/10.1038/nature02018
http://dx.doi.org/10.1038/nature02018
http://dx.doi.org/10.1038/nmat1804
http://dx.doi.org/10.1038/nmat1804
http://dx.doi.org/10.1038/nmat1804
http://dx.doi.org/10.1038/nmat1804
http://dx.doi.org/10.1038/nmat2826
http://dx.doi.org/10.1038/nmat2826
http://dx.doi.org/10.1038/nmat2826
http://dx.doi.org/10.1038/nmat2826
http://dx.doi.org/10.1103/PhysRevB.88.060103
http://dx.doi.org/10.1103/PhysRevB.88.060103
http://dx.doi.org/10.1103/PhysRevB.88.060103
http://dx.doi.org/10.1103/PhysRevB.88.060103
http://dx.doi.org/10.1103/PhysRevLett.100.047601
http://dx.doi.org/10.1103/PhysRevLett.100.047601
http://dx.doi.org/10.1103/PhysRevLett.100.047601
http://dx.doi.org/10.1103/PhysRevLett.100.047601
http://dx.doi.org/10.1103/PhysRevLett.101.097205
http://dx.doi.org/10.1103/PhysRevLett.101.097205
http://dx.doi.org/10.1103/PhysRevLett.101.097205
http://dx.doi.org/10.1103/PhysRevLett.101.097205
http://dx.doi.org/10.1103/PhysRevLett.95.057205
http://dx.doi.org/10.1103/PhysRevLett.95.057205
http://dx.doi.org/10.1103/PhysRevLett.95.057205
http://dx.doi.org/10.1103/PhysRevLett.95.057205
http://dx.doi.org/10.1103/PhysRevLett.96.067601
http://dx.doi.org/10.1103/PhysRevLett.96.067601
http://dx.doi.org/10.1103/PhysRevLett.96.067601
http://dx.doi.org/10.1103/PhysRevLett.96.067601
http://dx.doi.org/10.1143/JPSJ.16.2589
http://dx.doi.org/10.1143/JPSJ.16.2589
http://dx.doi.org/10.1143/JPSJ.16.2589
http://dx.doi.org/10.1143/JPSJ.16.2589
http://dx.doi.org/10.1088/1367-2630/11/4/043019
http://dx.doi.org/10.1088/1367-2630/11/4/043019
http://dx.doi.org/10.1088/1367-2630/11/4/043019
http://dx.doi.org/10.1088/1367-2630/11/4/043019
http://dx.doi.org/10.1146/annurev.matsci.37.052506.084259
http://dx.doi.org/10.1146/annurev.matsci.37.052506.084259
http://dx.doi.org/10.1146/annurev.matsci.37.052506.084259
http://dx.doi.org/10.1146/annurev.matsci.37.052506.084259
http://dx.doi.org/10.1103/PhysRevLett.106.087201
http://dx.doi.org/10.1103/PhysRevLett.106.087201
http://dx.doi.org/10.1103/PhysRevLett.106.087201
http://dx.doi.org/10.1103/PhysRevLett.106.087201
http://dx.doi.org/10.1002/adma.200901961
http://dx.doi.org/10.1002/adma.200901961
http://dx.doi.org/10.1002/adma.200901961
http://dx.doi.org/10.1002/adma.200901961
http://dx.doi.org/10.1103/PhysRevB.73.094434
http://dx.doi.org/10.1103/PhysRevB.73.094434
http://dx.doi.org/10.1103/PhysRevB.73.094434
http://dx.doi.org/10.1103/PhysRevB.73.094434
http://dx.doi.org/10.1126/science.1214143
http://dx.doi.org/10.1126/science.1214143
http://dx.doi.org/10.1126/science.1214143
http://dx.doi.org/10.1126/science.1214143
http://dx.doi.org/10.1103/PhysRevLett.108.237204
http://dx.doi.org/10.1103/PhysRevLett.108.237204
http://dx.doi.org/10.1103/PhysRevLett.108.237204
http://dx.doi.org/10.1103/PhysRevLett.108.237204
http://dx.doi.org/10.1103/PhysRevLett.109.107203
http://dx.doi.org/10.1103/PhysRevLett.109.107203
http://dx.doi.org/10.1103/PhysRevLett.109.107203
http://dx.doi.org/10.1103/PhysRevLett.109.107203
http://dx.doi.org/10.1103/PhysRevLett.109.067205
http://dx.doi.org/10.1103/PhysRevLett.109.067205
http://dx.doi.org/10.1103/PhysRevLett.109.067205
http://dx.doi.org/10.1103/PhysRevLett.109.067205
http://dx.doi.org/10.1103/PhysRevLett.107.037204
http://dx.doi.org/10.1103/PhysRevLett.107.037204
http://dx.doi.org/10.1103/PhysRevLett.107.037204
http://dx.doi.org/10.1103/PhysRevLett.107.037204
http://dx.doi.org/10.1103/PhysRevB.84.174420
http://dx.doi.org/10.1103/PhysRevB.84.174420
http://dx.doi.org/10.1103/PhysRevB.84.174420
http://dx.doi.org/10.1103/PhysRevB.84.174420
http://dx.doi.org/10.1140/epjd/e2010-00056-1
http://dx.doi.org/10.1140/epjd/e2010-00056-1
http://dx.doi.org/10.1140/epjd/e2010-00056-1
http://dx.doi.org/10.1140/epjd/e2010-00056-1
http://dx.doi.org/10.1103/PhysRevB.84.174426
http://dx.doi.org/10.1103/PhysRevB.84.174426
http://dx.doi.org/10.1103/PhysRevB.84.174426
http://dx.doi.org/10.1103/PhysRevB.84.174426
http://dx.doi.org/10.1016/0378-4371(75)90052-7
http://dx.doi.org/10.1016/0378-4371(75)90052-7
http://dx.doi.org/10.1016/0378-4371(75)90052-7
http://dx.doi.org/10.1016/0378-4371(75)90052-7
http://dx.doi.org/10.1088/1674-1056/22/9/090313
http://dx.doi.org/10.1088/1674-1056/22/9/090313
http://dx.doi.org/10.1088/1674-1056/22/9/090313
http://dx.doi.org/10.1088/1674-1056/22/9/090313
http://dx.doi.org/10.1103/PhysRevB.87.054407
http://dx.doi.org/10.1103/PhysRevB.87.054407
http://dx.doi.org/10.1103/PhysRevB.87.054407
http://dx.doi.org/10.1103/PhysRevB.87.054407
http://dx.doi.org/10.1103/PhysRevLett.98.057601
http://dx.doi.org/10.1103/PhysRevLett.98.057601
http://dx.doi.org/10.1103/PhysRevLett.98.057601
http://dx.doi.org/10.1103/PhysRevLett.98.057601
http://dx.doi.org/10.1103/PhysRevB.77.144101
http://dx.doi.org/10.1103/PhysRevB.77.144101
http://dx.doi.org/10.1103/PhysRevB.77.144101
http://dx.doi.org/10.1103/PhysRevB.77.144101
http://dx.doi.org/10.1103/PhysRevB.82.064424
http://dx.doi.org/10.1103/PhysRevB.82.064424
http://dx.doi.org/10.1103/PhysRevB.82.064424
http://dx.doi.org/10.1103/PhysRevB.82.064424
http://dx.doi.org/10.1103/PhysRevB.71.195120
http://dx.doi.org/10.1103/PhysRevB.71.195120
http://dx.doi.org/10.1103/PhysRevB.71.195120
http://dx.doi.org/10.1103/PhysRevB.71.195120
http://dx.doi.org/10.1103/PhysRevB.71.024505
http://dx.doi.org/10.1103/PhysRevB.71.024505
http://dx.doi.org/10.1103/PhysRevB.71.024505
http://dx.doi.org/10.1103/PhysRevB.71.024505
http://dx.doi.org/10.1103/PhysRevB.72.024448
http://dx.doi.org/10.1103/PhysRevB.72.024448
http://dx.doi.org/10.1103/PhysRevB.72.024448
http://dx.doi.org/10.1103/PhysRevB.72.024448
http://dx.doi.org/10.1103/PhysRevB.82.060401
http://dx.doi.org/10.1103/PhysRevB.82.060401
http://dx.doi.org/10.1103/PhysRevB.82.060401
http://dx.doi.org/10.1103/PhysRevB.82.060401
http://dx.doi.org/10.1103/PhysRevB.87.214421
http://dx.doi.org/10.1103/PhysRevB.87.214421
http://dx.doi.org/10.1103/PhysRevB.87.214421
http://dx.doi.org/10.1088/1742-6596/200/1/012017
http://dx.doi.org/10.1088/1742-6596/200/1/012017
http://dx.doi.org/10.1088/1742-6596/200/1/012017
http://dx.doi.org/10.1088/1742-6596/200/1/012017
http://dx.doi.org/10.1016/j.aop.2005.10.005
http://dx.doi.org/10.1016/j.aop.2005.10.005
http://dx.doi.org/10.1016/j.aop.2005.10.005
http://dx.doi.org/10.1016/j.aop.2005.10.005
http://dx.doi.org/10.1103/PhysRevLett.98.247201
http://dx.doi.org/10.1103/PhysRevLett.98.247201
http://dx.doi.org/10.1103/PhysRevLett.98.247201
http://dx.doi.org/10.1103/PhysRevLett.98.247201
http://dx.doi.org/10.1103/PhysRevB.75.134415
http://dx.doi.org/10.1103/PhysRevB.75.134415
http://dx.doi.org/10.1103/PhysRevB.75.134415
http://dx.doi.org/10.1103/PhysRevB.75.134415
http://dx.doi.org/10.1103/PhysRevB.89.104425
http://dx.doi.org/10.1103/PhysRevB.89.104425
http://dx.doi.org/10.1103/PhysRevB.89.104425
http://dx.doi.org/10.1103/PhysRevB.89.104425
http://dx.doi.org/10.1103/PhysRevB.82.104416
http://dx.doi.org/10.1103/PhysRevB.82.104416
http://dx.doi.org/10.1103/PhysRevB.82.104416
http://dx.doi.org/10.1103/PhysRevB.82.104416
http://dx.doi.org/10.1103/PhysRevB.78.184406
http://dx.doi.org/10.1103/PhysRevB.78.184406
http://dx.doi.org/10.1103/PhysRevB.78.184406
http://dx.doi.org/10.1103/PhysRevB.78.184406
http://dx.doi.org/10.1140/epjb/e2012-21046-y
http://dx.doi.org/10.1140/epjb/e2012-21046-y
http://dx.doi.org/10.1140/epjb/e2012-21046-y
http://dx.doi.org/10.1140/epjb/e2012-21046-y
http://dx.doi.org/10.1140/epjb/e2012-21050-3
http://dx.doi.org/10.1140/epjb/e2012-21050-3
http://dx.doi.org/10.1140/epjb/e2012-21050-3
http://dx.doi.org/10.1140/epjb/e2012-21050-3
http://dx.doi.org/10.1103/PhysRevB.85.184422
http://dx.doi.org/10.1103/PhysRevB.85.184422
http://dx.doi.org/10.1103/PhysRevB.85.184422
http://dx.doi.org/10.1103/PhysRevB.85.184422
http://dx.doi.org/10.1038/ncomms1602
http://dx.doi.org/10.1038/ncomms1602
http://dx.doi.org/10.1038/ncomms1602
http://dx.doi.org/10.1038/ncomms1602
http://dx.doi.org/10.1038/nature09994
http://dx.doi.org/10.1038/nature09994
http://dx.doi.org/10.1038/nature09994
http://dx.doi.org/10.1038/nature09994
http://dx.doi.org/10.1103/PhysRevB.86.155159
http://dx.doi.org/10.1103/PhysRevB.86.155159
http://dx.doi.org/10.1103/PhysRevB.86.155159
http://dx.doi.org/10.1103/PhysRevB.86.155159
http://dx.doi.org/10.1103/PhysRevA.2.1075
http://dx.doi.org/10.1103/PhysRevA.2.1075
http://dx.doi.org/10.1103/PhysRevA.2.1075
http://dx.doi.org/10.1103/PhysRevA.2.1075
http://dx.doi.org/10.1103/PhysRevA.3.786
http://dx.doi.org/10.1103/PhysRevA.3.786
http://dx.doi.org/10.1103/PhysRevA.3.786
http://dx.doi.org/10.1070/1063-7869/44/10S/S29
http://dx.doi.org/10.1070/1063-7869/44/10S/S29
http://dx.doi.org/10.1070/1063-7869/44/10S/S29
http://dx.doi.org/10.1070/1063-7869/44/10S/S29
http://dx.doi.org/10.1103/PhysRevB.55.1142
http://dx.doi.org/10.1103/PhysRevB.55.1142
http://dx.doi.org/10.1103/PhysRevB.55.1142
http://dx.doi.org/10.1103/PhysRevB.55.1142
http://dx.doi.org/10.1103/PhysRevB.88.075419
http://dx.doi.org/10.1103/PhysRevB.88.075419
http://dx.doi.org/10.1103/PhysRevB.88.075419
http://dx.doi.org/10.1103/PhysRevB.88.075419
http://dx.doi.org/10.1088/1742-5468/2004/07/P07012
http://dx.doi.org/10.1088/1742-5468/2004/07/P07012
http://dx.doi.org/10.1088/1742-5468/2004/07/P07012
http://dx.doi.org/10.1103/PhysRevB.85.035110
http://dx.doi.org/10.1103/PhysRevB.85.035110
http://dx.doi.org/10.1103/PhysRevB.85.035110
http://dx.doi.org/10.1103/PhysRevB.85.035110
http://dx.doi.org/10.1103/PhysRevA.66.032110
http://dx.doi.org/10.1103/PhysRevA.66.032110
http://dx.doi.org/10.1103/PhysRevA.66.032110
http://dx.doi.org/10.1103/PhysRevA.66.032110
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022329 (2006).
[59] D. Gioev and I. Klich, Phys. Rev. Lett. 96, 100503 (2006).
[60] I. Klich and L. Levitov, Phys. Rev. Lett. 102, 100502 (2009).
[61] H. F. Song, C. Flindt, S. Rachel, I. Klich, and K. Le Hur, Phys.

Rev. B 83, 161408 (2011).
[62] H. F. Song, S. Rachel, C. Flindt, I. Klich, N. Laflorencie, and

K. Le Hur, Phys. Rev. B 85, 035409 (2012).
[63] Hui Li and F. D. M. Haldane, Phys. Rev. Lett. 101, 010504

(2008).
[64] B. Swingle and T. Senthil, Phys. Rev. B 86, 045117 (2012).
[65] J. Sirker, A. Herzog, A. M. Oleś, and P. Horsch, Phys. Rev. Lett.
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[77] H. W. J. Blöte, J. L. Cardy, and M. P. Nightingale, Phys. Rev.

Lett. 56, 742 (1986).
[78] J. L. Cardy, J. Phys. A 17, L385 (1984); ,17, L957 (1984); ,Nucl.

Phys. B 240, 514 (1984).
[79] C. Trippe, A. Honecker, A. Klümper, and V. Ohanyan, Phys.
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