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Current-driven dynamics of coupled domain walls in a synthetic antiferromagnet
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We develop the theory of magnetic domain-wall motion in coupled double-layer systems where electrons can
hop between the layers, giving rise to an antiferromagnetic coupling. We demonstrate that the force from the
interlayer coupling drives the walls and the effect of the extrinsic pinning is greatly reduced if the domain walls
are initially separated. The threshold current density for metastable spin-aligned configurations is also much
lower. We conclude that the interlayer coupling has a significant effect on domain-wall mobility in double-layer
systems.
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I. INTRODUCTION

Domain walls in ferromagnetic materials involve magne-
tization reversal in a thin layer. The thickness of this layer
is determined by the magnetic anisotropy energy and the
exchange energy. Domain walls separate areas of different
magnetization orientations and they are controllable using
currents which create a spin torque that drives the wall.
Therefore, devices using domain-wall dynamics hold promise
for future high-speed, high-density, and nonvolatile data
storage [1].

However, domain-wall motion is restricted by intrinsic
and extrinsic pinning effects and current densities needed
to move domain walls are typically high, of the order of
1 × 1012 A/m2. The intrinsic pinning is due to the hard-
axis magnetic anisotropy [2]. The extrinsic pinning involves,
e.g., defects in individual layers [3]. Theoretically, it was
demonstrated that in the adiabatic limit, where the wall
is driven solely by the spin-transfer torque, the wall has
to overcome the energy barrier arising from the hard-axis
anisotropy energy, and that the wall is intrinsically pinned [2].
This energy barrier involves a threshold current below which a
domain wall does not move or motion stalls soon after the
current is turned on. In most cases, the threshold current
of the intrinsic pinning is high [3]. The intrinsic pinning
effect was observed in a perpendicularly magnetized Co-Ni
nanowire with reduced hard-axis anisotropy [4]. The threshold
current density was 2.5 × 1011 A/m2 and it was insensitive
to the applied magnetic field which was consistent with
theoretical predictions [2]. Spin relaxation results in a torque
orthogonal to the spin-transfer torque, and this torque, called
the nonadiabatic torque, removes the intrinsic pinning effect
and the threshold current is reduced [3,5,6]. The threshold
current is then determined by the extrinsic pinning potential
and the nonadiabaticity parameter, β. In principle, the intrinsic
pinning effect can be removed by fabricating a wire which
has a cross section of a perfect circle [7]. However, most of
the experiments have been carried out in the regime where
extrinsic pinning effects dominate [8].

For realizing fast domain-wall motion and low threshold
current density, several experimental attempts have been
carried out. Lepadatu et al. controlled the value of the nonadia-
baticity parameter, β, by doping permalloy with vanadium [9].

They showed that V doping of 10% leads to an increase of
β by a factor of about 2, but the threshold current did not
improve since the spin polarization of the current was reduced
by doping. On the other hand, doping with Gd also increases
β, in this case leading to a slight reduction in threshold
depinning current [10]. Trilayer Pt/Co/MgO structures were
studied by Miron et al. [11,12]. They were motivated by
the idea that Rashba spin-orbit interaction would emerge in
interfaces of layers of insulators and metals in the presence of
heavy atoms with strong spin-orbit interaction. This interaction
would realize very efficient wall motion since it acts as a large
β as predicted theoretically [13,14]. The wall velocity in that
trilayer system was 400 m/s, which is two orders of magnitude
larger than in single-layer systems, at current density of 3 ×
1012 A/m2 [12]. However, it turned out that the mechanism
for fast wall motion was not due to the Rashba interaction. In
fact, systematic analysis on Pt/CoFe/MgO and Ta/CoFe/MgO
structures indicated that the spin Hall effect in Pt and Ta
layers injects spin current into the ferromagnetic layer and
induces a substantial torque on the domain wall, resulting
in fast motion [15,16]. Due to high domain-wall velocities,
artificial multilayered structures are promising for designing
devices with efficient domain-wall motion. For lowering the
threshold of the wall motion, coupled ferromagnets are useful.
Magnetic field-driven depinning of domain walls in coupled
nanostrips was studied using micromagnetic simulations in
Ref. [17]. The coupling between the walls in the two adjacent
wires is due to the magnetostatic coupling, and it was found
that the depinning from notches is strongly affected by the
coupling. The importance of the domain-wall type and the
initial chirality of the two walls on the depinning was also
reported, since these affect the strength of the magnetostatic
coupling between the walls.

Here we develop theory of current-driven domain-wall
motion in coupled double-layer systems where electrons can
hop between the layers, giving rise to an antiferromagnetic
coupling. The presence of antiferromagnetic coupling between
the layers was demonstrated [18] for ultrathin films in the
mid-1980s and it is used in applications such as magnetic
stabilization of magnetoresistive recording heads [19]. The
interlayer coupling induces an attractive force between the
walls in the two different layers, and this force is expected to
help depin the wall since the current drives both walls. We
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derive equations of motion for the system in the presence of
force from the interlayer coupling and calculate domain-wall
dynamics from the resulting equations. It turns out that in-
terlayer coupling indeed reduces the threshold current greatly
if domain walls are initially separated at different pinning
sites. The coupled-layer systems are therefore promising for
efficient domain-wall motion not affected by localized random
defects.

II. THEORETICAL MODEL

In this section we derive the equation of motion for domain
walls in a ferromagnetic double-layer system. We label the
layers by i = 1,2. The localized spin direction at position r and
time t in each ferromagnetic layer is denoted by a unit vector
field, n(i)(r,t). We define a coordinate system such that the
wire lies in the x-z plane, extended along the z direction, with
the two layers stacked above each other in the y direction [see
Fig. 1(a)]. The magnetic easy axis is along the z direction and
the y direction is the magnetic hard axis. The spin Hamiltonian
can then be written as

HS =
∑
i=1,2

∫
Vi

d3r

a3

[(
JS2

2
∇n(i)

)2

− KS2

2

(
n(i)

z

)2 + K⊥S2

2

(
n(i)

y

)2
]
, (1)

where J , K , and K⊥ are the strength of the exchange
interaction, the easy-axis anisotropy energy, and the hard-axis
anisotropy energy, respectively. In nanowires made from
magnetically soft permalloylike materials, these anisotropy
constants arise from shape anisotropy. The magnitude of spin
is S, a is a lattice constant, and Vi denotes the volume of
the ferromagnet i. We consider the case in which material
constants are the same for both ferromagnets.

Coupling between the two ferromagnets is mediated by
electron hopping between the layers. The in-plane component

FIG. 1. (Color online) (a) Ground-state geometry of Néel-type
domain walls in a synthetic double-layer antiferromagnet. (b) Cou-
pling between the layers gives rise to an attractive force between
the walls at finite separation Z1 − Z2. The figure shows a spin
configuration which has out-of-plane angles φ1,2. Spin orientations at
the center of the walls are shown in the inset.

of the coupling is here antiferromagnetic, �‖ � 0. We assume
for generality that the out-of-plane component of the interlayer
coupling �⊥ is different from the in-plane component,
since this coupling is affected by the demagnetization field.
Therefore, we consider here both antiferromagnetic (�⊥ >

0) and ferromagnetic (�⊥ < 0) out-of-plane couplings. We
assume that the two ferromagnets are thin (compared with the
domain-wall thickness) and that the interlayer coupling acts
uniformly on the whole spin. The interlayer coupling is thus
represented by the Hamiltonian

HI =
∫

V1

d3r1

a3

∫
V2

d3r2

a3

[
�‖S2

(
n(1)

x (r1)n(2)
x (r2)

+n(1)
z (r1)n(2)

z (r2)
) + �⊥S2n(1)

y (r1)n(2)
y (r2)

]
. (2)

Magnetic anisotropy is very common in thin ferromagnetic
films. Therefore, we consider only Néel-type domain walls
which have the domain-wall solution

n(i) =
⎛
⎝sin θi cos φi

sin θi sin φi

cos θi

⎞
⎠ , (3)

where

cos θi = (−)i tanh
z − Zi(t)

λ
(4)

and sin θi = [cosh z−Zi (t)
λ

]−1, where θ is the angle between the
moment and the z axis and φi(t) is the azimuthal angle around
that axis and represents the out-of-plane angle of the spin in
Fig. 1(b). The wall position is denoted by Zi and λ is the
thickness of the wall, given by λ = √

J/K . The topological
charge of the domain wall, given by the sign in Eq. (4), differs
for the two domain walls as a result of the antiferromagnetic
in-plane coupling. This property is essential in the dynamics
of the system of coupled walls. The geometry of the synthetic
antiferromagnet under consideration is shown in Fig. 1.

Current applied in the direction of the wire gives rise to
two important effects: the adiabatic spin-transfer torque effect,
which induces a torque on the domain wall, and a nonadiabatic
contribution which is described as a force on the wall. The
adiabatic effect is given by the spin-transfer Hamiltonian,

HST = −
∑
i=1,2

∫
Vi

d3r

a3
�S

Pa3

2eS
( j · ∇)φi(cos θi − 1), (5)

where j is the electric current density, e(<0) is the electron
charge, and P is the spin polarization of the current. The
nonadiabatic contribution as well as damping are inserted later
in the equations of motion.

By collecting all the above contributions we obtain the
Lagrangian of the coupled double-layer system under applied
current,

L =
∑
i=1,2

∫
Vi

d3r

a3
�Sφ̇i(cos θi − 1) − HS − HI − HST, (6)

where the first term is the spin Berry phase term. We rewrite
the Lagrangian in terms of the collective coordinates for the
two walls, Zi(t) and φi(t) [see Fig. 1(b)]. The spin Berry phase

094411-2



CURRENT-DRIVEN DYNAMICS OF COUPLED DOMAIN . . . PHYSICAL REVIEW B 90, 094411 (2014)

term reduces to
∑
i=1,2

∫
Vi

d3r

a3
�Sφ̇i(cos θi − 1) =

∑
i=1,2

�NiS(−)iφiŻi , (7)

where Ni ≡ 2λAi

a3 is the number of spins in the wall, Ai is
the cross-sectional area of the wire, and we used the fact
that φ̇i cos θi is equivalent to −φi

d
dt

cos θi using integration
by parts. One can easily show that

HS =
∑
i=1,2

NiS
2 K⊥

2
sin2 φi, (8)

and

HI = NIS[�‖u((Z1 − Z2)/2) cos φ1 cos φ2

+�⊥u((Z1 − Z2)/2) sin φ1 sin φ2

+�‖w((Z1 − Z2)/2)], (9)

where NI is the effective number of spins and

u(Z) ≡
∫ ∞

−∞
dz

1

cosh z cosh(z − 2Z)
= 2Zcsch(Z), (10)

w(Z) ≡
∫ ∞

−∞
dz(1 − tanh z tanh(z − 2Z)) = 2Zcoth(Z).

(11)

The potentials u(Z), w(Z) and their derivatives are plotted in
Fig. 2. After these calculations the Lagrangian reads

L =
∑
i=1,2

�NiS

[
(−)i

φi

λ
(Żi − νe) − νc sin2 φi

]

− �NIS[�‖u((Z1 − Z2)/2) cos φ1 cos φ2

+�⊥u((Z1 − Z2)/2) sin φ1 sin φ2

+�‖w((Z1 − Z2)/2)], (12)

where νc ≡ K⊥λS
2�

and νe ≡ Pa3

2eS
j .

FIG. 2. (Color online) Potentials u(Z) and w(Z) and their deriva-
tives, u′(Z) and w′(Z).

Now we include the effect of damping and nonadiabatic
contribution of the current. The damping [20] is included as
δL
δZi

= α�NiS
Żi

λ
and δL

δφi
= α�NiSφ̇i . The nonadiabatic torque,

represented by a parameter β, induces a force �Nia
3

2eSλ2 βPj . Since
L = −�N1S

φ1

λ
Ż1 + �N2S

φ2

λ
Ż2 − H , the equations of motion

obtained by differentiating with respect to Z1 and Z2 are

− �N1S
φ̇1

λ
= F1, �N2S

φ̇1

λ
= F2, (13)

where

F1 ≡ − δH

δZ1
− α�N1S

Żi

λ
+ �N1a

3

2eSλ2
βPj,

(14)

F2 ≡ − δH

δZ2
− α�N2S

Żi

λ
+ �N2a

3

2eSλ2
βPj,

are the forces. The equations of motion thus read

− Ż1 − αλφ̇1 = νc sin 2φ1 − νe − μ1u((Z1 − Z2)/2)

× (�+ sin(φ1 − φ2) + �− sin(φ1 + φ2)),

(15)

φ̇1 − α
Ż1

λ
= −β

λ
νe + μ1

2
[�‖w′((Z1 − Z2)/2)

+u′((Z1 − Z2)/2)(�+ cos(φ1 − φ2)

+�− cos(φ1 + φ2))], (16)

Ż2 − αλφ̇2 = νc sin 2φ2 + νe

+μ2u((Z1 − Z2)/2)(�+ sin(φ1 − φ2)

−�− sin(φ1 + φ2)), (17)

− φ̇2 − α
Ż2

λ
= −β

λ
νe − μ2

2
[�‖w′((Z1 − Z2)/2)

+u′((Z1 − Z2)/2)(�+ cos(φ1 − φ2)

+�− cos(φ1 + φ2))], (18)

where �± ≡ 1
2 (�‖ ± �⊥) and μi ≡ NI/Ni . The μi parame-

ters of the planes determine whether the system is a balanced
synthetic antiferromagnet at μ1 = μ2 or an unbalanced syn-
thetic ferrimagnet at μ1 �= μ2.

III. EFFECT OF PINNING

Domain-wall dynamics is affected by impurities, notches,
and other nonuniformities in the layers. We model such
nonuniformities using pinning forces on the domain walls.
We are interested in calculating the terminal velocity of the
domain walls under applied current when the domain walls
are initially pinned in both layers. We consider, therefore,
one pinning potential in each layer at distance 
 from each
other [20]:

F = −k
(1)
0 (Z1 − 
)θ (ξ − |Z1 − 
|) − k

(2)
0 Z2θ (ξ − |Z2|),

(19)

where k
(i)
0 (i = 1,2) are constants representing the strength of

the potentials, ξ is the width of the potential, and θ (x) is a step
function. We set the potential width ξ in both layers. Using
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ki ≡ λ
�NiS

k
(i)
0 , defining center of mass Z+ and the difference

Z− in the domain-wall positions using Z± ≡ 1
2 (Z1 ± Z2) as

well as the average phase φ+ and the difference in the phase
using φ± ≡ 1

2 (φ1 ± φ2), and denoting μ± = (μ1 ± μ2)/2 we
obtain the final equations for motion:

Ż+ + αλφ̇− = −νc cos 2φ+ sin 2φ− + νe

+u(Z−)(μ+�+ sin(2φ−) + μ−�− sin(2φ+)),

(20)

φ̇− − α
Ż+
λ

= k1

2
(Z+ + Z− − 
)θ (ξ − |Z+ + Z− − 
|)

+ k2

2
(Z+ − Z−)θ (ξ − |Z+ − Z−|) − β

λ
νe

+ μ−
2

[�‖w′(Z−) + u′(Z−)(�+ cos(2φ−)

+�− cos(2φ+))], (21)

Ż− + αλφ̇+ = −νc sin 2φ+ cos 2φ− + u(Z−)(μ−�+ sin(2φ−)

+μ+�− sin(2φ+)), (22)

φ̇+ − α
Ż−
λ

= k1

2
(Z+ + Z− − 
)θ (ξ − |Z+ + Z− − 
|)

− k2

2
(Z+ − Z−)θ (ξ − |Z+ − Z−|) + μ+

2
× [�‖w′(Z−) + u′(Z−)(�+ cos(2φ−)

+�− cos(2φ+))]. (23)

IV. TERMINAL VELOCITY OF UNPINNED
DOMAIN WALLS

In the absence of pinning potentials the terminal velocity
of the domain wall can be analytically solved. We first assume
that the domain-wall separation remains small, i.e., |Z−| 	 λ,
which gives approximately u′(Z−) = 0 and w′(Z−) = 0. We
assume also that φ± changes with time, resulting in vanishing
of time averages of sin 2φ± and cos 2φ±. After time averaging
we see that the terminal velocities are not affected by the
interlayer coupling:

〈Ż+〉 = 1

1 + α2
νe(1 + αβ), 〈φ̇−〉 = 1/λ

1 + α2
νe(α − β),

(24)
〈Ż−〉 = 0, 〈φ̇+〉 = 0.

We then assume that the separation of the domain wall
grows with time, e.g., |Z−| � λ. We can then approximate
u(Z−) = u′(Z−) = 0 and w′(Z−) = 2 sgn(Z−). After time
averaging the terminal velocities are then

〈Ż+〉 = 1

1 + α2
[νe(1 + αβ) + αλμ−�‖sgn(Z−)],

〈φ̇−〉 = 1/λ

1 + α2
[νe(α − β) + λμ−�‖sgn(Z−)],

(25)

〈Ż−〉 = − 1

1 + α2
αμ+�‖sgn(Z−),

〈φ̇+〉 = 1/λ

1 + α2
μ+�‖sgn(Z−).

FIG. 3. (Color online) Motion of coupled domain walls in
double-layer systems under extrinsic pinning. The current is switched
on at time t = 0 and positions Z of the two domain walls in the system
are calculated for pinning potentials which are located at Z1 = 5 and
at Z2 = 0. When the current is insufficient to unpin the walls they
oscillate in the pinning potentials with dampening amplitude (left).
When the current is sufficiently large, it unpins the walls aided by the
force from the interlayer coupling and the walls start moving (right).
Eventually the walls move together with a vanishing phase difference.
The terminal velocity is calculated from this limiting motion.

We see that in this limit the velocity increases with interlayer
coupling. This can be understood from the antiferromagnetic
coupling of the walls which exerts a force on the walls. In
practice unpinned walls which are first at finite distance from
each other move fast until the separation vanishes. Then the
walls start moving together at a lower velocity determined
by Eq. (24). This typical behavior is shown in numerical
simulations in Fig. 3.

V. THRESHOLD CURRENT

Equations (20)–(23) are a group of first-order differential
equations. We integrate the solution from initial conditions
using a numerical Runge-Kutta-Fehlberg fourth-order method
with a fifth-order error estimator for the adaptive step size. We
use dimensionless units in calculations by fixing νc = 1 and
setting the thickness of the wall λ = 1. The time is measured
in terms of a dimensionless quantity, tνc/λ = tK⊥S/(2�). We
consider separately the adiabatic and nonadiabatic regimes.
In the former regime adiabatic torque on the wall dominates
dynamics and in the latter case the nonadiabatic force gives
the most important contribution.

Due to the terms which depend on Z± and φ± the time
evolution of the system depends on the initial separation of the
domain walls as well as the difference in their phases. A slight
variation in the initial domain-wall positions and phases is
introduced in order to simulate experimental situations at finite
temperature and in order to avoid special limiting solutions
to the differential equations, for instance when terms on the
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right-hand side vanish at φ+ = φ− = 0. This also smooths out
the effect of discontinuous external pinning potentials. We use
tiny displacements to the initial domain-wall positions and
phases using random numbers from a uniform distribution
giving a ±0.01 change in the wall position with respect to
each other (in units of wall thickness, λ). The domain wall
velocity is evaluated after a sufficiently long time when the
domain-wall motion has stabilized.

The initial fluctuation of the wall position, δZ, corresponds
to energy fluctuation of δE = k0

2 (δZ)2 = NV0(δZ/ξ )2, where
the pinning potential depth per spin is V0 ≡ �S

2λ
kξ 2 (we sup-

press here the suffix i = 1,2 denoting the layer). In numerical
calculations, the time is measured in terms of a dimensionless
quantity, tνc/λ = tK⊥S/(2�), and thus a pinning strength
k = 0.1 we use in the calculations would correspond to the
pinning potential of V0/K⊥ = kS2ξ 2/(4νc) = 2.5 × 10−2 if
we choose S  1 and ξ  λ. For permalloy wires, K⊥ ∼
0.03 ∼ 2.4 K [21], and if we consider a wall with thickness of
100 nm in a wire of cross-sectional area of 400 nm × 5 nm, we
have N = 1.3 × 107 (for a = 2.5 Å) as the number of spins
in the wall. The fluctuation energy for δZ = 0.01, therefore,
is δE = 30K⊥ = 1–72 K. The initial fluctuations of ±0.01 in
the calculations is therefore small in magnitude in comparison
to those expected for permalloy wires at room temperature.

A. Extrinsic pinning

We insert pinning potentials in both layers as described
in Sec. III. The initial conditions are chosen to fix the
domain walls at the center of the pinning potentials. Details
of the domain-wall dynamics depend now on the relative
strength of the parameters in the model. At finite values of
the nonadiabatic torque β the extrinsic pinning potentials
usually restrict domain-wall motion and a large driving current
is needed to unpin the walls. This limits the usefulness of
magnetic domains in applications, and means to improve
mobility have been the focus of intense research efforts.

Figure 3 shows typical domain-wall dynamics when the
walls are pinned by the potentials and when the interlayer
coupling is large enough to unpin the walls, respectively.
If the force from the interlayer coupling [terms containing
�|| or �⊥ in Eqs. (20)–(23)] is not sufficiently large to
unpin the walls, the walls absorb the momentum, leading
to oscillations. The threshold current is the current at which
depinning occurs. The depinning process is clearly aided by
the force from the separation of the domain walls and once the
walls clear the pinning potentials they start to travel together
with the difference in phases eventually vanishing. In this limit
the velocity decreases as discussed in Sec. IV. We calculate
domain-wall motion in the presence of pinning potentials from
the velocity in this limit.

1. Weak nonadiabatic force (β < α)

We focus first on the regime of weak force from the
nonadiabatic torque β. We set k1,2 = 0.1, β = 0.005, and the
damping term α = 0.01. We set the potential well width ξ = 1,
which is comparable in size to the domain-wall width. We
find also that the potential well width does not significantly
affect the results since the wall motion is coupled also inside

FIG. 4. (Color online) Averaged terminal domain-wall velocity
(given by the color bar) in double-layer systems under weak
nonadiabatic force (β/α = 0.5). The velocity is calculated as a
function of antiferromagnetic in-plane interlayer coupling �|| and
velocity of driving electrons νe. The thicknesses of the layers are
μ1 = 1 and μ2 = 1/2. The velocities are calculated for different
distances between the pinning potentials 
. The interlayer coupling
helps unpin the domain walls and lowers the threshold current at

 > 0. Note that the range for �|| is larger at 
 = 5.

very wide potential wells. The in-plane interlayer coupling is
assumed to be antiferromagnetic (�‖ > 0) and we first neglect
the perpendicular component in the calculations, setting �⊥ =
0. We investigate the effect of the perpendicular component
later.

Figure 4 shows terminal domain-wall velocity as a function
of velocity of driving electrons νe and strength of the in-
plane interlayer coupling � at different distances between
the pinning potential sites, 
. The velocity is calculated for
asymmetric domain-wall configurations (μ1 = 1 and μ2 =
1/2).

We find that the threshold current for domain-wall motion
decreases rapidly with increasing antiferromagnetic interlayer
coupling at finite distance between the pinning potentials.
The threshold current is lowered at large distances between
the pinning potential sites. Assuming that impurities can be
modeled using pinning potentials with a random distribution
and no correlations between the layers, our results mean that
interlayer coupling makes coupled domain walls in disordered
systems much easier to depin with a current.

Our result can be qualitatively explained assuming that
the separation between the walls is large and the wall in the
first layer is outside of the pinning potential, i.e., Z1 � ξ

and w′(Z−) ≈ 2 sgn(Z−) (see Fig. 2). We further assume that
the angles φ± change slowly and that the domain walls are
separated so that Z1 > Z2. Subtracting Eq. (23) from Eq. (21)
then gives

α

λ
Ż2 = k2Z2 − β

λ
νe − μ2�‖. (26)
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This shows that the coupling exerts a force on the domain wall
which is proportional to �‖. The threshold current due to the
extrinsic pinning potential is determined by the condition for
vanishing of the total force. The wall is depinned when the
force, the right-hand side of Eq. (26), vanishes at the highest
pinning potential strength,

k2ξ = β

λ
νe + μ2�‖. (27)

The threshold value of the velocity of the driving electrons,
νe, is reduced in the presence of the coupling �‖. We note that
w′(Z−) increases rapidly as a function of distance between
the walls and saturates for large distances. Therefore, even a
small displacement for one of the walls induces a force on the
coupled wall and decreases the threshold current density. As
a consequence large initial domain-wall separation assists the
depinning process slightly and smooths out the sharp boundary
between the regimes. In this crossover regime some initial
domain-wall configurations lead to depinning of the walls.
Finite temperature in experiments may therefore assist the
depinning process. In the case of strong pinning potentials the
threshold current has only a weak dependence on the pinning
potential strength [20]. We find that even in this regime the
interlayer coupling decreases the threshold current.

2. Strong nonadiabatic force (β � α)

Next we consider the regime where β is large and the
nonadiabatic torque predominates. The domain-wall motion
is then driven by the force exerted by this torque. Threshold
current density is low and the terminal domain-wall velocity
above the threshold current is proportional to β/α [3]. In this
regime mobility is high and the threshold current depends on
the interlayer coupling and the distance between the pinning
potential sites. Figure 5 shows terminal domain-wall velocity
when the pinning potentials are located at different positions
with respect to each other (
 = 0,1,2). We find that the
nonadiabatic force from the interlayer coupling drives the walls
and the effect of the extrinsic pinning is greatly reduced at finite

. In this regime the threshold current is strongly reduced by
even a weak interlayer coupling.

At high driving currents (νe > 0.2) and weak pinning
strength the domain-wall mobility is reduced due to a mecha-
nism which is analogous to the Walker breakdown in magnetic
fields [22,23]. The combination of strong nonadiabatic driving
and the interlayer coupling increases domain-wall mobility
significantly at finite 
. We see a factor-of-5 improvement
in the threshold current at the coupling strength �‖ = 0.1.
Otherwise, the behavior is similar to the case of weak
nonadiabatic driving force and consistent with the analytical
calculation in Sec. VA1.

So far we have neglected the out-of-plane component of
the interlayer coupling �⊥. The out-of-plane component is
affected by the demagnetization field and therefore it can
differ from the in-plane coupling in experiments. However,
calculations at fixed in-plane coupling strength �|| = 0.5 with
ferromagnetic and antiferromagnetic out-of-plane coupling
strength (�⊥ = +0.5 and �⊥ = −0.5, respectively) show
little effect on the threshold current (Fig. 6). Antiferromagnetic
out-of-plane coupling gives the highest domain-wall velocity
close to the regime of Walker breakdown. We find also that the

FIG. 5. (Color online) Averaged terminal domain-wall velocity
(given by the color bar) in double-layer systems in the regime of strong
nonadiabatic driving (β/α = 6) and different distances between the
pinning potential sites, 
. In this regime the unpinned domain-wall
velocity is proportional to β/α until the point of Walker breakdown
at νe  0.2. In-plane interlayer coupling is antiferromagnetic (� =
�|| > 0) and improves domain-wall mobility at finite 
. The layers
have unequal thickness μ1 = 1, μ2 = 1/2, and α = 0.01.

potential well width ξ does not significantly affect the results
since the wall motion is coupled also inside very wide potential
wells.

3. Evolution of metastable states

Next we study metastable states corresponding to parallel
spin alignment at the center of the walls (φ1 = φ2 = 0) [see

FIG. 6. (Color online) Averaged terminal domain-wall velocity
in double-layer systems in the nonadiabatic driving regime with fixed
in-plane coupling strength �‖ = +0.5 and ferromagnetic (�⊥ =
−0.5), vanishing (�⊥ = 0), and antiferromagnetic (�⊥ = +0.5)
out-of-plane component, respectively. Layer thickness μ1 = 1 and
μ2 = 0.5. Distance between the pinning potential sites is 
 = 2.
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FIG. 7. (Color online) (a) A metastable initial state with par-
allel spin orientations at the center of the walls (φ1 = φ2 = 0).
(b) Averaged terminal domain-wall velocity for the initial metastable
states. The in-plane interlayer coupling is antiferromagnetic (�|| > 0)
and the out-of-plane component is �⊥ = 0. Figure shows the regime
of weak nonadiabatic force (β/α = 0.5) and the regime of strong
nonadiabatic driving (β/α = 6). The threshold current decreases
with increasing interlayer coupling in both cases. The layers have
unequal thickness μ1 = 1, μ2 = 1/2, the pinning potential strength
is k1 = k2 = 0.1, and the pinning sites are at the same position, 
 = 0.

Fig. 7(a)]. Energy associated with this initial spin alignment
increases with interlayer coupling and helps depin the domain
walls. Simulations show then that the system evolves until the
final states have antiparallel spin alignment. The threshold
current decreases strongly with the increasing interlayer
coupling even at 
 = 0 in the regimes of both weak and
strong nonadiabatic driving [Fig. 7(b)]. We find an order-of-
magnitude difference in the threshold current density when the
interlayer coupling strength is large.

B. Intrinsic pinning

In the case of adiabatic driving (β → 0) the domain-wall
dynamics is driven purely by the spin-transfer torque. The
intrinsic pinning effects dominate domain-wall dynamics over
extrinsic effects [2]. Intrinsic pinning is caused by the hard-
axis magnetic anisotropy. We investigate here whether the
interlayer coupling modifies the intrinsic pinning within our
model at β = 0 assuming that there are no extrinsic pinning
potentials k1,2 = 0. Figure 8 shows the domain-wall terminal
velocity as a function of velocity of driving electrons at zero
and finite interlayer coupling �. In the absence of interlayer
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FIG. 8. (Color online) Terminal domain-wall velocity under in-
trinsic pinning in the absence of extrinsic pinning (k1 = k2 = 0).
Interlayer coupling is assumed to be antiferromagnetic and isotropic,
�|| = �⊥ = �. The domain-wall velocity as a function of the
velocity of driving electrons, νe, at � = 0, 0.25, and 0.5 at equal layer
thickness μ1 = μ2 = 1 shown at left. The threshold νe at different
layer thicknesses μ2 fixing μ1 = 1 shown at right.

coupling a high threshold current is needed to move the
domain wall as discussed in Ref. [20]. The threshold current
is attributed to the fact that a domain wall can absorb spin
torque and deform instead of the torque setting the domain
wall into motion. Calculations indicate that intrinsic pinning
is stronger in the presence of interlayer coupling (Fig. 9).
The domain-wall motion stalls after an initial boost from
the spin torque of electron current and this effect increases
with the strength of the interlayer coupling. The effect is
largest for symmetric layers (Fig. 8). This effect is due to

FIG. 9. (Color online) Averaged terminal domain-wall velocity
under intrinsic pinning. Layers have unequal thickness μ1 = 1, μ2 =
1/2. In the absence of nonadiabatic torque the interlayer coupling
moderately increases the threshold current needed to move the domain
walls.
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enhancement of the effective magnetic hard-axis anisotropy.
The magnetic hard-axis anisotropy is proportional to νc. Close
to the ground-state spin configuration φ1 = 0, φ2 = π ; the
�±-dependent terms in the equations of motion [Eqs. (15)
and (17)] combine with the term which is proportional to νc

and therefore the anisotropy is effectively higher.

VI. DISCUSSIONS

In our theory the force from the interlayer coupling
facilitates significantly domain-wall motion in the regime
where extrinsic pinning effects dominate. Even a low interlayer
coupling improves mobility and in the limit of high interlayer
coupling our theory predicts a much lower threshold current
for the domain walls pinned at random impurity sites. A
domain-wall separation which is of the order of the wall width
is large enough to significantly improve domain-wall mobility.
This effect is further expected to be enhanced at elevated
temperatures due to thermal fluctuations in the domain-wall
positions. In contrast to the extrinsic pinning regime, the
interlayer coupling enhances effectively the hard-axis isotropy,
giving rise to no mobility improvement in the regime where
intrinsic pinning effects dominate.

We find that the depinning threshold depends strongly on
the initial wall configuration as was discussed in the context of

metastable spin-aligned states. This was also reported in the
case of magnetostatically coupled walls driven by a magnetic
field [17]. A magnetostatically repulsive interaction can reduce
the depinning field. This bears some similarity to our results.
However, an essential difference between the field-driven
and current-driven cases is that head-to-head and tail-to-tail
configurations are pushed in the same direction by the current
but in opposite directions by a magnetic field.

We have shown theoretically that interlayer coupling
improves domain-wall mobility in correlated bilayer systems.
The interlayer coupling greatly reduces the effective pinning
potential depth when the pinning potentials are uncorrelated in
the two layers. Bilayer systems are thus promising candidates
for realization of efficient domain-wall control with low
current densities.
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