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Formation of magnetic skyrmions with tunable properties in PdFe bilayer deposited on Ir(111)

E. Simon,1 K. Palotás,1 L. Rózsa,1 L. Udvardi,1,2 and L. Szunyogh1,2

1Department of Theoretical Physics, Budapest University of Technology and Economics, Budafoki út 8, H-1111 Budapest, Hungary
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We perform an extensive study of the spin-configurations in a PdFe bilayer on Ir(111) in terms of ab initio and
spin-model calculations. We use the spin-cluster expansion technique to obtain spin model parameters, and solve
the Landau-Lifshitz-Gilbert equations at zero temperature. In particular, we focus on effects of layer relaxations
and the evolution of the magnetic ground state in an external magnetic field. In the absence of a magnetic field, we
find a spin-spiral ground state; while applying an external magnetic field, skyrmions are generated in the system.
Based on energy calculations of frozen spin configurations with varying magnetic field we obtain excellent
agreement for the phase boundaries with available experiments. We find that the wavelength of spin-spirals and
the diameter of skyrmions decrease with increasing inward Fe layer relaxation, which is correlated with the
increasing ratio of the nearest-neighbor Dzyaloshinskii-Moriya interaction and the isotropic exchange coupling,
D/J . Our results also indicate that the applied field needed to stabilize the skyrmion lattice increases when the
diameter of individual skyrmions decreases. Based on our observations, we suggest that the formation of the
skyrmion lattice can be tuned by small structural modification of the thin film.
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I. INTRODUCTION

The concept of skyrmions (Sk) was originally introduced
in nonlinear field theory [1] and then generally used as
quasiparticle excitations in different fields of physics and
mathematics. Skyrmions were first measured in quantum-Hall
ferromagnets, and the crystallization of skyrmions was also
realized [2,3]. Magnetic skyrmions are chiral spin structures
that are topologically protected; therefore, they are relatively
stable against thermal fluctuations. These magnetic spin
structures were first observed experimentally in bulk MnSi
[4,5] and examined theoretically by using a mean-field model
[6]. At low temperature and low magnetic field, MnSi develops
a helical magnetic structure. Due to the large ferromagnetic
exchange interaction, a uniform spin alignment would, in
principle, be favored; however, the lack of inversion symmetry
in cubic B20 MnSi [4] results in Dzyaloshinskii-Moriya (DM)
interactions [7,8] that induce the helical structure. By applying
an external magnetic field, a columnar skyrmion lattice (SkX)
develops which is referred to as the A phase of bulk MnSi.
Similar skyrmion lattice formation was observed in a thin
film of B20-type Fe0.5Co0.5Si, where the thickness of the film
was less than the wavelength of the helical spin structure [9].
As clear from the phase diagrams [4,9] and other theoretical
studies [6], an external magnetic field and finite temperature
are needed to stabilize the skyrmion lattice; however, the
ranges of the stabilizing field and temperature are relatively
narrow. It should be noted that in contrast to the previous
results, for epitaxial FeGe(111) films the skyrmion phase has
been stabilized up to 250 K [10].

Application of magnetic skyrmions in ultrathin films
in spintronic devices is an appealing issue [11], thus the
conditions of formation and the properties of the magnetic
skyrmions are widely studied.

In a recent experimental work the formation of individual
skyrmions has been observed in a PdFe bilayer deposited
on Ir(111) surface [12]. A spin-spiral ground state has been
revealed at a temperature of 8 K, while applying a relatively
small external magnetic field (B = 1 T) skyrmions were

created. The diameter of the skyrmions, ∼5–6 nm, was much
larger than that of the nanoskyrmions in a single Fe atomic
layer on Ir(111), ∼ 1 nm [13]. However, this nanoskyrmion
lattice likely manifests a phase different from that observed
in PdFe/Ir(111), because it is stable even without an external
magnetic field. Skyrmion magnetic structures including a B-T
phase diagram were first reported in terms of a combined
ab initio and spin-model study for an ordered FePt monolayer
deposited on Pt(111) [14]. The stability and the structural and
dynamic properties of skyrmions in ultrathin films were very
recently investigated theoretically in several contexts by Dupé
et al. [15]

In the present work we study the magnetic properties of
the PdFe bilayer on an Ir(111) surface using first-principles
calculations. We use a spin-cluster expansion (SCE) tech-
nique combined with the relativistic disordered local moment
(RDLM) scheme to obtain parameters of a spin model. Using
these parameters, the magnetic ground state with and without
external magnetic field is examined by spin-dynamic simu-
lations. We highlight the role of the layer relaxations on the
obtained magnetic interactions within the Fe layer. We find that
the geometry of the magnetic interface considerably affects
both the isotropic exchange and the DM interactions, thus the
formation of the skyrmion state. With increasing inward layer
relaxation, the ratio of DM and isotropic exchange is increased.
In agreement with Fert et al. [11], we report reduced skyrmion
sizes with a large ratio of the DM interaction and isotropic
exchange. We also find that the applied field needed to stabilize
the skyrmion lattice increases with decreasing diameter of the
skyrmions. This means that the formation of the skyrmions is
tunable by inducing small structural changes in the system.

II. COMPUTATIONAL DETAILS

Based on the adiabatic decoupling of fast electronic
fluctuations from the slow transversal motion of spins [16],
the spin system can be described in terms of a classical spin
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model. We use a generalized Heisenberg model,

H = −1

2

∑
i �=j

�siJij �sj +
∑

i

�siKi�si −
∑

i

mi�si
�Bext, (1)

where �si represents the direction of the magnetic moment at site
i, �mi = mi�si . The first term of Eq. (1) stands for the exchange
contribution with tensorial exchange coupling, Jij [17], which
can be decomposed into an isotropic component Jij I with
Jij = 1

3 Tr Jij , an antisymmetric component JA
ij = 1

2 (Jij −
JT

ij ), and a traceless symmetric part JS
ij = 1

2 (Jij + JT
ij ) − Jij I,

where the superscript T denotes the transpose of a matrix and
I is the unit matrix. The first, isotropic component describes
the Heisenberg interaction. The energy term −�siJA

ij �sj =
�Dij (�si × �sj ) corresponds to the DM interaction with �Dij being

the DM vector [7,8]. The symmetric part of the exchange term
is the two-site magnetic anisotropy and the second term of
Eq. (1) comprises the on-site anisotropy with the anisotropy
matrix Ki . The third term of Eq. (1) is the Zeeman energy
of the spin moments of magnitude mi in the presence of
an external field, �Bext. Neglecting self-consistent longitudinal
spin fluctuations, two methods are used in the literature to map
the energy from first-principles calculations to the generalized
spin Hamiltonian in Eq. (1). The relativistic torque method
[17,18] makes use of infinitesimal rotations around specific
magnetic configurations, mostly around the ferromagnetic
(FM) state. For this reason, if the ground state is far from the
FM state, the interaction parameters might be inconsistent with
the original ground state. The spin-cluster expansion (SCE)
technique developed by Drautz and Fähnle [19,20] provides a
systematic parametrization of the adiabatic energy of the spin
system. The SCE method was combined with the relativistic
disordered local moment scheme (RDLM) [21–24], and this
combination gives a proper tool to determine the parameters
of the spin Hamiltonian in Eq. (1) from the paramagnetic
state [25–27]. Note that by using the SCE method no
a priori information about the magnetic ground state is
needed.

In terms of the screened Korringa-Kohn-Rostoker (SKKR)
method [28,29] we performed self-consistent calculations of a
PdFe bilayer deposited on an Ir(111) surface. We employed the
scalar-relativistic DLM approach [21] to obtain the electronic
structure in the paramagnetic state. The local spin-density
approximation (LSDA) as parametrized by Vosko et al. [30]
was used within the atomic sphere approximation with an
angular momentum cutoff of lmax = 3. The energy integrals
were performed by sampling 16 points on a semicircle contour
in the upper complex semiplane. To model the geometry of the
system, the in-plane lattice constant of the Ir, a2D = 2.715 Å,
was chosen, and fcc growth was assumed for both the Fe and
the Pd layers. It was indeed confirmed by Dupé et al. [15]
that the fcc growth is lower in energy as compared to the hcp
growth. We performed geometry optimization in terms of VASP

calculations [31–33] by modeling the PdFe/Ir(111) system as
a slab of nine layers (Pd + Fe + 7 layers Ir). This resulted
in a relaxation of −5% of the Fe layer. In order to study the
effect of structural modifications, in our SKKR calculations
we considered inward relaxations of the Fe layer ranging from
−5% to −10%. Following the self-consistent calculations,

for each values of the Fe layer relaxation we derived the
parameters of the spin-model in Eq. (1) in terms of the
SCE-RDLM method [25]. Note that since in the self-consistent
DLM state the local spin-polarization of the Pd and Ir atoms
disappeared, no spin-model parameters were calculated for
these atoms, therefore we considered only Fe spins in the
spin-model.

For finding the ground state, we performed zero-
temperature (deterministic) Landau-Lifshitz-Gilbert spin-
dynamics simulations which describe the motion of the
localized magnetic moments [34,35],

∂ �mi

∂t
= − γ

1 + α2
�mi × �Bi − αγ

(1 + α2)mi

�mi × ( �mi × �Bi),

(2)

where α is the Gilbert damping parameter, γ = 2μB/� is the
gyromagnetic ratio, and the effective field �Bi is obtained from
the generalized Hamiltonian, Eq. (1),

�Bi = − 1

mi

∂H
∂�si

= 1

mi

∑
j (�=i)

Jij �sj − 2

mi

Ki�si + �Bext . (3)

We used a two-dimensional lattice of 128 × 128 sites popu-
lated by classical spins with periodic boundary condition and
considered the full tensorial exchange interactions and the
on-site anisotropy term when calculating the effective field.
Each simulation was initialized at a random spin configuration
and continued until the absolute difference in the energy of
the spin system between two steps reached the value of 10−5

mRy. In the simulations α = 0.01 was used with a sufficiently
small time step to ensure a stable search for the ground state.

III. RESULTS

Figure 1 shows the calculated Fe-Fe isotropic exchange
interaction as a function of the interatomic distance for all
considered layer relaxations. According to Eq. (1), the positive
sign of the exchange interaction means ferromagnetic (FM)
coupling and the negative sign refers to antiferromagnetic
(AFM) coupling. For all considered layer relaxations the
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FIG. 1. (Color online) Calculated Fe-Fe isotropic exchange in-
teractions for PdFe/Ir(111) as a function of the interatomic distance
measured in units of the in-plane lattice constant (a2D) for different
Fe layer relaxations.
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FIG. 2. (Color online) Magnitudes of the Fe-Fe DM vectors for
PdFe/Ir(111) as a function of the interatomic distance measured in
units of the in-plane lattice constant (a2D) for different Fe layer
relaxations. The inset shows a sketch of the in-plane components
of the calculated DM vectors between a central Fe atom (C) and its
nearest and next nearest Fe neighbors at −5% relaxation.

nearest ne-ighbor exchange interactions are FM and they
gradually decrease with increasing inward layer relaxation.
In the second and third shells the exchange interactions are
AFM that turn back to FM from the fourth shell. Interestingly,
from the second shell the interactions just slightly depend on
the inward layer relaxation.

As mentioned above, beside the isotropic exchange in-
teraction the DM interactions can play an important role in
the formation of complex magnetic ground states in ultrathin
films [13–15,27,36]. In Fig. 2 the magnitudes of the DM
vectors between the Fe atoms are shown as a function of the
interatomic distance for all considered layer relaxations. It can
be seen that the largest magnitude of the DM vector is found
for the first Fe neighbors; for further shells the DM vectors
are much smaller in magnitude. It is also clearly seen that the
magnitude of the DM vectors for the first shell increases with
increasing inward layer relaxation. Since the DM interaction
prefers noncollinear alignment of the magnetic moments, the
large DM vectors in the first shell indicate the formation of
a spin-spiral structure in the Fe layer as the magnetic ground
state.

It should be noted that, due to the 1/2 factor in the first
term of the spin Hamiltonian in Eq. (1), our spin model
parameters are twice as large as in Ref. [15]. Taking this into
account, at −5% relaxation we obtained J1 = 16.87 meV and
D1 = 0.82 meV for the nearest-neighbor isotropic exchange
interaction and magnitude of the DM vectors, respectively,
while in Ref. [15] J1 = 14.7 meV and D1 = 1.0 meV
were reported. Considering the quite different theoretical
approaches, this means a very good agreement between the
two calculations.

The inset of Fig. 2 shows the in-plane projection of the DM
vectors for the nearest and second nearest neighbors in case of
5% inward layer relaxation. Obviously, the orientations of the
DM vectors in a given shell are consistent with the C3v point
group symmetry of the system. Note that the DM vectors

transform as axial vectors [7,8]. Our calculations evidence
that the in-plane components of the DM vectors in the first
and second shells are much larger than the out-of plane
components, implying an out-of plane rotation of the spins.
For the first shell, the magnitude of the in-plane component is
D‖ = 1.58 meV, while the out-of plane component is D⊥ =
0.41 meV. Similar behavior of the DM vector components
can be obtained for all considered layer relaxations. Note that
the Fe-Fe isotropic exchange and DM interactions in the first
three shells are increased in magnitude due to the presence of
the Pd overlayer on the Fe/Ir(111). For the nearest-neighbor
interactions this increase was about 30%. A similar effect was
found by Dupé et al. [15].

First, we estimated the magnetic ground state of the system
by calculating the Fourier transform of the exchange matrices,
J(�q). For a spin system described by the first term in the
Heisenberg Hamiltonian Eq. (1), the energy of a spin-spiral
with a wave vector �q is given by the minimum eigenvalue of
−J(�q), or equivalently by the maximum eigenvalue of J(�q)
[26,27,37,38]. A uniaxial magnetic anisotropy, K cos2 θi with
θi being the polar angle of the magnetization at site i, adds
K/2 per unit cell to the energy of such a spin-spiral, while
− |K| to that of the FM state of minimal energy. Note that for
−5% relaxation of the Fe layer we calculated K = −0.5 meV,
considerably smaller than the leading isotropic exchange and
DM interactions. Neglecting on-site anisotropy, a maximum of
the eigenvalues of J(�q) at the center of the Brillouin zone, i.e.,
at the � point, thus means a ferromagnetic ground state, while
a maximum located at a general �q vector of the Brillouin zone
corresponds to a more complex magnetic ground state. For
all considered Fe layer relaxations, the maximum was found
close to the �, anticipating a spin-spiral ground state of large
wavelength.

From the spin-dynamics simulations we obtained a spin-
spiral ground state in accordance with the estimation based on
J(�q). The estimated wavelength from the maximum eigenvalue
of J(�q) and the wavelength obtained from the spin-dynamics
simulations are in remarkably good agreement with each other,
similar to found in the Fe/Os(0001) system [27]. As can be seen
in Table I, the wavelength of the spin-spiral (λ) decreases with
increasing inward layer relaxation. This can be correlated with
the ratio of the magnitude of the nearest-neighbor DM vectors
and the isotropic exchange interaction (D/J ) also presented in
Table I. There is almost an inverse proportionality between λ

and D/J as can be obtained from a simple analytic estimation
in the small wave number limit [36]. It should be noted that for

TABLE I. Ratio of the magnitudes of the nearest-neighbor Fe-Fe
DM vector (D) and isotropic exchange coupling (J ) as well as the
wavelength (λ) of the ground state spin-spiral for each value of Fe
layer relaxation in PdFe/Ir(111).

Relaxation D/J λ (nm)

−5% 0.05 6.8
−6% 0.06 5.4
−7% 0.07 4.7
−8% 0.09 4.1
−9% 0.10 3.6
−10% 0.19 2.4

094410-3
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FIG. 3. (Color online) Energies of frozen spin-spiral (SS), se-
lected skyrmion phase (SkX), and ferromagnetic (FM) spin structures
in external magnetic field (Bext) perpendicular to the surface for −5%
relaxation of the Fe layer in PdFe/Ir(111). All the energies correspond
to the 128 × 128 lattice used for the spin-dynamics simulations. The
vertical lines denote the phase boundaries between the three different
states.

−5% relaxation, which is the energetically favored geometry
from the VASP calculation, the calculated wavelength of 6.8 nm
is in excellent agreement with the experimentally measured
spin-spiral period of about 6 to 7 nm [12].

When an external magnetic field, Bext, is applied perpendic-
ular to the surface, at low temperature the spin-spiral structure
can change to a two-dimensional (2D) skyrmion lattice. In an
external magnetic field the energy of the spin-spiral (SS), the
skyrmion lattice phase (SkX), and the FM state is changing
differently due to the different out-of-plane spin component of
these spin structures entering the Zeeman term of the energy.
Assuming frozen magnetic configurations for the energetically
favored geometry (−5% relaxation), the energy dependence
of the mentioned spin structures on the external magnetic
field at zero temperature is shown in Fig. 3. In particular, for
the skyrmion phase we considered the spin structure with the
maximum skyrmion number (see later in context of Fig. 4).

At Bext = 0 the energy of the spin-spiral state is preferred
and the highest energy is obtained for the ferromagnetic state.
Since the net magnetization is zero in the spin-spiral state, its
Zeeman energy is also zero, therefore, the spin-spiral energy is
constant against Bext. If the spins of the ferromagnetic state are
parallel to the external field, the Zeeman contribution reduces
the total energy by increasing Bext. The slope of the curve
corresponds to Nm, where N is the number of lattice sites and
m is the size of the Fe moments. Similar decreasing energy
can be observed in the case of the skyrmion lattice. Here,
the slope of the energy curve is smaller than in the FM state
due to the smaller net out-of-plane component of the spins.
With increasing external magnetic field the energy minimum
changes first from spin-spiral to skyrmion lattice. Further
increasing Bext leads to the saturation of the Fe moments
in the ferromagnetic state. The slope of the energy curve of
the skyrmion lattice naturally depends on the actual skyrmion
state, more precisely on the number and size of individual

skyrmions in the system. Therefore, we calculated the energy
curve of several different frozen skyrmion states as obtained
from spin-dynamics simulations starting with different initial
configurations and found that the SS-SkX intersection is in the
range between 0.7 and 1.8 T and the SkX-FM intersection is
between 2.4 and 3.2 T. These ranges of magnetic field are in
good agreement with experimental observations [12].

Figure 3 should be regarded as an illustrative model which
gives a good qualitative picture about the origin of the magnetic
phase transitions in PdFe/Ir(1111) at zero temperature. The
phase boundaries can be determined more precisely by
performing spin-dynamics simulations with increasing Bext.
Here the spin-configurations are not frozen any more, but they
are evolved to get the state with minimum energy for each value
of Bext. By starting the simulations from different initial states,
a statistics for the phase transitions can be obtained in terms of
Bext. From the spin-dynamics simulations we found the same
range for the SkX-FM intersection as from the energy curves
of frozen skyrmions. This finding suggests that the skyrmion
lattice above about 3 T is metastable. It should be noted that
Dupé et al. [15] found magnetic phase transitions at much
larger external fields as compared to the experiments [12].

According to our previous study [27], the spatial range of
the magnetic interactions plays a crucial role in the formation
of magnetic patterns in ultrathin films. In our spin-dynamics
simulations we used 15 shells including isotropic exchange
couplings, DM interactions, and two-site anisotropies. We
found that at least four shells are needed to obtain a spin-spiral
configuration as the magnetic ground state and skyrmion
formation under applying external magnetic field. This does
not contradict to the observed strong relationship between the
SS wavelength and the ratio of nearestneighbor parameters,
D/J , as it just highlights that further DM interactions are
needed to decrease the energy of the spin-spiral below that of
the FM state. Without DM interactions the magnetic ground
state was ferromagnetic, in contrast to Dupé et al. [15]
who obtained the SS ground state by neglecting spin-orbit
interaction in their calculations.

The skyrmion phase is characterized by the skyrmion
number (topological charge) defined by

Nsk = 1

4π

∫
�s ·

(
∂�s
∂x

× ∂�s
∂y

)
dx dy, (4)

where �s is the direction of the local magnetization [14].
In case of topologically trivial magnetic structures, such as
ferromagnetic, antiferromagnetic, or spin-spiral states, the
topological charge is zero. A single skyrmion holds the
topological charge of Nsk = 1, while for an antiskyrmion
the charge is Nsk = −1. In the PdFe/Ir(111) system, due to
the clockwise rotation of the nearest-neighbor Fe-Fe DM
vectors—see inset of Fig. 2—skyrmions with winding number
of 1 are formed. Nsk then gives the number of skyrmions in
the surface cell for which the integration is carried out.

Based on the spin-configurations obtained from the spin-
dynamics simulations at zero temperature we determined the
number of skyrmions as described in Ref. [14]. We found
that averaging over 15 independent spin-dynamics simulations
started from random spin configurations is sufficient to
stabilize the value of Nsk for any layer relaxation and external
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FIG. 4. (Color online) Calculated skyrmion numbers (Nsk) on
a 128 × 128 lattice at zero temperature as a function of external
magnetic field (Bext) in cases of −5% and −10% relaxations of the
Fe layer in PdFe/Ir(111). The points represent skyrmion numbers
averaged over 15 independent spin-dynamic simulations and the lines
denote an interpolated curve between the points. The magnetic phases
as described in the text are indicated.

magnetic field. Note that only about 500 time steps were
sufficient to reach convergence of Nsk as opposed to at least
104 time steps for a precise determination of the ground state.
Figure 4 shows the skyrmion number as a function of the
external magnetic field for two different layer relaxations of
−5% and −10%. As can be seen, without Bext the skyrmion
number is zero, corresponding to the spin-spiral ground
state.

According to the variation of Nsk against Bext, we attempt
to identify four different magnetic phases of the system. When
increasing Bext from zero to a certain value, the skyrmion
number is gradually increasing. In this phase individual
skyrmions coexist with spin-spirals; therefore, we call it a
mixed spin-spiral and skyrmion, SS+Sk, state. With larger
external magnetic field the skyrmion number saturates and
there is a range of Bext where Nsk is just slightly changed.
Depending on the actual shape of the Nsk(Bext) curves, this
phase corresponds to the skyrmion lattice SkX, and it is defined
as Nsk > (0.9–0.95) × Nmax

sk , where Nmax
sk is the maximal

number of skyrmions. At even larger Bext the skyrmion
number is decreasing because the skyrmions are saturated to

the ferromagnetic state: this phase is a mixed ferromagnetic
and skyrmion state, FM+Sk. Finally at a sufficiently large
magnetic field the skyrmion number vanishes again when the
ferromagnetic phase is reached.

Inferring Fig. 4, in case of −5% layer relaxation the
skyrmion lattice phase is formed in the vicinity of BSkX � 5 T.
As compared to Fig. 3, this is about 3 T higher than that
obtained from the energy of frozen spin configurations in an
external field. This quantitative difference can be understood
as follows. The spin-configuration of the SS+Sk phase
sensitively changes with the change of Bext. Clearly, more
and more skyrmions are created that considerably reduce the
energy of this phase. Therefore, the notion of constant energy
for the skyrmion phase in Fig. 3 is inconsistent with the results
of the spin-dynamics simulations. Similar reasoning applies
to explain the high value of the lower border of the FM state
(15 T), since the FM state appears via a gradual decrease of
Nsk with increasing Bext.

From Fig. 4 we can observe two main features that
are remarkably different for the two considered Fe layer
relaxations. One of them is that Nsk reaches a maximum of
20 for −5% relaxation, while nearly 130 for −10% relaxation.
The other one is the much broader range of Bext for −10%
relaxation with a corresponding value of BSkX = 18 T as
opposed to BSkX = 5 T for −5%. As for each layer relaxations
we used the same lattice (surface area) in our spin-dynamics
simulations, it is straightforward to conclude that both features
are related to the fact that the size of the individual skyrmions
decreases with increasing inward layer relaxation.

From the spatial dependence of the normal-to-plane com-
ponent of the normalized magnetic moments (sz = cos θ ), we
used a domain-wall-like fit [6,15,39] to determine the diameter
of the skyrmions. At the center of an individual skyrmion
sz = −1 (θ = π ), and sz approaches 1 (θ = 0) sufficiently
far from the skyrmion. In Table II, for all considered layer
relaxations we summarize the determined skyrmion diameters
dsk, the smallest inter-skyrmion distances dSk-Sk, and the
external magnetic fields BSkX, where the skyrmion number is
the largest. Note that dSk-Sk is defined as the distance between
the center of the skyrmions. As can be seen, the skyrmion
diameter is decreasing with increased inward layer relaxation
and correspondingly increased D/J , as found similarly for
the wavelength of the spin-spiral; see Table I. Interestingly,
for larger relaxations the spin-spiral wavelength and the

TABLE II. Relaxation of the Fe layer, ratio of the magnitudes
of the Fe-Fe nearest-neighbor DM vector and the nearest-neighbor
isotropic exchange coupling (D/J ), the diameter of skyrmions (dsk),
the smallest interskyrmion distance (dSk-Sk), and the external magnetic
field (BSkX) where the skyrmion number takes its maximum. Note that
BSkX is determined with an error of 0.5 T.

Relaxation D/J dsk (nm) dSk-Sk (nm) BSkX (T)

−5% 0.05 5.0 6.3 5
−6% 0.06 4.3 4.4 7
−7% 0.07 4.3 4.3 9
−8% 0.09 3.3 3.5 10
−9% 0.10 2.8 3.4 13
−10% 0.19 2.6 2.3 18
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FIG. 5. (Color online) (a) Zero-field ground state spin-spiral
configuration of PdFe/Ir(111) system in case of −5% relaxation and
(c) in case of −10% relaxation as obtained from spin-dynamics
simulation. An external magnetic field leads to skyrmion lattice
formation; (b) represents the skyrmion lattice for −5% Fe layer
relaxation and (d) for −10% relaxation. Small red and blue arrows
indicate magnetic moments with dominating out-of-plane and in-
plane components, respectively.

skyrmion diameter take very similar values. Moreover, we
find that for increasing relaxations the packing of the skyrmion
lattice increases: in the case of −5% relaxation the smallest
interskyrmion distance is considerably larger than the diameter
of the skyrmions, while for −10% relaxation dsk > dSk-Sk.
It is also clearly seen in Table II that BSkX is increasing
with increasing inward layer relaxation, i.e., with decreasing
skyrmion size.

Finally, in Fig. 5 the simulated spin configurations for
the spin-spiral ground states (Bext = 0) and the skyrmion
lattice at BSkX are presented for −5% and −10% Fe layer
relaxations. Notably, the SS ground states are characterized
by a strong domain structure which is the consequence of the
threefold degeneracy of the �q wave vectors of the ground state
spin-spirals. It can be noticed that in the case of larger size of
the skyrmions (−5% relaxation), the high-density skyrmion
phase is rather loosely ordered, and for small skyrmions
(−10% relaxation) a well–ordered skyrmion lattice develops;
see also the dSk-Sk values in Table II. The origin of the less
ordered Sk phase can be purely numerical, as the diameter of
the skyrmions is not compatible with the size of the lattice

used for the simulation. It is, however, not excluded that this
difference can partly be related to different skyrmion-skyrmion
interactions, posing a challenging topic for future research.
Moreover, one can observe that the area of ferromagnetically
ordered spins is much larger for larger sizes of the skyrmions,
being a simple space-filling effect. This makes the more
relaxed (−10%) film more rigid against applied external fields
which explains the larger range of Bext seen in Fig. 4.

IV. CONCLUSIONS

We investigated the magnetic ground state of PdFe/Ir(111)
at different inward layer relaxations and the evolution of
the magnetic ground state in an external magnetic field.
We employed the SCE-RDLM method to obtain spin-model
parameters and performed spin-dynamic simulations. We
found that the magnetic ground state without external mag-
netic field is a spin-spiral in all considered inward layer
relaxations. The wavelength of the spin-spiral is decreasing
with increasing inward layer relaxation due to the increasing
ratio of the nearest-neighbor DM vector and the isotropic
exchange coupling, D/J . Applying an external magnetic
field, skyrmions are created in the system. Based on energy
calculations of spin configurations in an external magnetic field
we obtained good agreement for the phase boundaries with
available experiments. Numerically evaluating the skyrmion
numbers in spin-dynamics simulations, we identified different
magnetic phases depending on the magnetic field. We found
that the skyrmion diameter and the smallest interskyrmion
distances decrease with increasing inward layer relaxation,
and larger external fields are needed to stabilize such skyrmion
lattices. Therefore, we conclude that the size of skyrmions and
the stabilizing external field can be tuned by manipulating
the geometrical structure of the film, e.g., through applying
external mechanical strain or electric field or by alloying the
substrate [37,38].
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224413 (2011).

[27] E. Simon, K. Palotás, B. Ujfalussy, A. Deák, G. M. Stocks, and
L. Szunyogh, J. Phys. Condens. Matter 26, 186001 (2014).
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