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Interplay of topology and geometry in frustrated two-dimensional Heisenberg magnets
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We investigate two-dimensional frustrated Heisenberg magnets using nonperturbative renormalization group
techniques. These magnets allow for pointlike topological defects which are believed to unbind and drive
either a crossover or a phase transition which separates a low-temperature, spin-wave-dominated regime from a
high-temperature regime where defects are abundant. Our approach can account for the crossover qualitatively
and both the temperature dependence of the correlation length as well as a broad but well-defined peak in
the specific heat are reproduced. We find no signatures of a finite-temperature transition and an accompanying
diverging length scale. Our analysis is consistent with a rapid crossover driven by topological defects.
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I. INTRODUCTION

Frustrated magnets have a number of highly fascinating
properties which have been the focus of intense research inter-
est for some time. These include magnets which do not order
but where a macroscopic number of competing low-lying states
give rise to strong correlations and a large low-temperature
entropy or spin liquids where quantum fluctuations prevent
ordering and exotic quasiparticles appear; see Ref. [1] for
a recent review. A much simpler situation arises in classical
magnets if the frustration is not sufficiently strong to prevent an
ordered ground state. In this case the ground state has a broken
symmetry and the low-temperature excitations are just spin
waves. However, even classical frustrated magnets which do
order are not completely understood, which can be attributed in
large part to a nontrivial order parameter which characterizes
such magnets. In d = 2, as was first pointed out by Kawamura
and Miyashita [2], the order parameter manifold of a frustrated
Heisenberg magnet allows for pointlike topological Z2 defects
and the influence of these defects on the properties of the
magnet at finite temperatures proved very difficult to quantify.
In two-dimensional collinear XY magnets topological defects
are responsible for the Berezinskii-Kosterlitz-Thouless (BKT)
transition. However, in this case the perturbative β function
of the XY coupling constant, which is sensitive only to the
geometry but not the topology of the order parameter space,
vanishes. This is very different from the situation in frustrated
Heisenberg magnets.

The major difficulty with two-dimensional frustrated
Heisenberg magnets is the combined presence of both pointlike
defects, originating from the topological properties of the
order parameter space [2], and the phenomenon of asymptotic
freedom which has its root in the local geometry of the order
parameter space. In contrast to collinear XY magnets, where
the Villain approximation makes it possible to map the problem
on the two-dimensional Coulomb gas, which can be well
studied using renormalization group (RG) techniques [3], no
similar tool is available for frustrated Heisenberg models. The
yet-unsolved question is whether a finite-temperature transi-
tion exists in frustrated Heisenberg magnets. In particular, for
the simplest such model, the Heisenberg antiferromagnet on
a triangular lattice (HAFT), this question has been addressed
repeatedly over the years, without a definite conclusion. Monte

Carlo (MC) simulations of the HAFT have found indications
of a vortex unbinding at a finite temperature Tcross [4–6]. The
vorticity modulus, which measures the response of the magnet
to an imposed twist along a path which encloses a vortex core,
has been shown to vanish [4] at Tcross. Further indications of
a finite-temperature transition can be found from the phase
diagram of the HAFT in a magnetic field [7,8]. In small
fields, there are two finite-temperature transitions. There is
a BKT transition from a low-temperature canted state with
quasi-long-range order of the transverse spin components to
an intermediate state which has a vanishing spin stiffness. A
second transition at higher temperatures restores the sublattice
symmetry of the magnet, which is broken in both low-
temperature phases. It is unclear from MC what happens in the
zero-field limit, but both transitions are of the order of Tc ≈
0.3J (where J is antiferromagnetic exchange constant) for
very small fields, a similar temperature to where at zero field a
vortex unbinding seems to occur. In a perturbative RG analysis
some indication of a fixed point in d = 2 which might corre-
spond to a topological phase transition was reported [9]; see,
however, also Ref. [10]. Experimentally, there are also several
reports on indications of a vortex-driven transition [11–14].

Perhaps the cleanest demonstration of the role of topology
comes from a comparison of MC simulations of two different
matrix models representing interacting tops, which both
share the same geometrical properties but differ in their
topology [15]. The model which allows for topological defects
shows a clear finite-temperature peak in the specific heat and
a crossover in the correlation length dependence on T which
are both absent in the topological trivial model.

The properties of the long wavelength modes of the
magnet are described by a nonlinear σ model (NLσM). The
order parameter space for a frustrated Heisenberg magnet
has the symmetry SO(3) × SO(2)/SO(2) ∼ SO(3); see, e.g.,
Ref. [16,17] for a discussion of the symmetries. While
this model describes well the physics of the Heisenberg
antiferromagnet (AF) on the triangular lattice at low temper-
atures [5,18], its perturbative β function is not sensitive to
the topological properties of SO(3), which has a nontrivial
homotopy group [2] π1[SO(3)] = Z2 and thus allows for
topological defects which could be generated either through
temperature or disorder [19].
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An alternative continuum model for frustrated magnets is
based on a Landau-Ginzburg action which includes also mas-
sive excitations. The advantage of using a Landau-Ginzburg
model in conjunction with a nonperturbative RG (NPRG)
approach is its ability to describe the BKT transition of the
two-dimensional XY model, without relying on a mapping to
the Coulomb gas [20]. Although it is not well understood how
exactly topology enters the NPRG flow, its success in the study
of the XY model makes the NPRG a promising approach to the
physics of Z2 defects in frustrated Heisenberg models. Here
we follow this ansatz and present results for d = 2.

In Sec. II we discuss the different field theoretical ap-
proaches to the HAFT and present the Landau-Ginzburg model
which we investigate here. Although the Landau-Ginzburg
model applies to noncollinear ordered magnets in general,
we concentrate here on the HAFT model in our numerical
analysis and estimate appropriate initial values for the NPRG
in Sec. II. The NPRG approach is presented in Sec. III, and
the approximation of the effective average action are presented
and discussed in Secs. III A and III B. The derivation of the
flow equations is discussed in Sec. III C. Results for the NPRG
approximation of the HAFT model are presented in Sec. IV,
where we calculate both the temperature dependence of the
spin correlation length and the specific heat. Our results show
a clear crossover behavior of the temperature dependence of
the correlation length, from a low-temperature exponential
dependence characteristic as it is also obtained within a NLσM
approach, to a much weaker temperature dependence at higher
temperatures. This crossover is also visible as a broad but
well defined peak at the crossover temperature in the specific
heat. We stress that while this crossover has been repeatedly
observed in MC data, it is not captured by the NLσM and it
also has not yet been successfully described by other analytical
approaches. We close with a summary in Sec. V.

II. THE ANTIFERROMAGNETIC HEISENBERG MODEL
ON THE TRIANGULAR LATTICE

We concentrate on one of the simplest frustrated Heisenberg
models, the HAFT. It is defined by

H = J
∑
〈i,j〉

Si · Sj , (2.1)

where the sum is over nearest neighbors of the triangular
lattice, Si are three-component unit vectors with S2

i = 1, and
J > 0. The zero-temperature ground state is the well-known
planar 120◦ state, where neighboring spins have angles ±120◦.

MC simulations [18] have convincingly demonstrated that
at low temperatures the two-dimensional HAFT model is well
described by a NLσM, which has the form

S = 1

2

∫
x

3∑
i=1

pi(∂μni)
2, (2.2)

where the ni are orthonormal three-component unit vectors,
the pi’s are three stiffnesses (divided by the temperature),
and

∫
x

= ∫
ddx. Because of the planar spin orientation in the

ground state one has p1 = p2, which holds both at the bare
level but also throughout the renormalization group flow.

The alternative Landau-Ginzburg approach for frustrated
magnets was developed early on; see, e.g., Ref. [21], and
has usually been applied to study frustrated magnets close to
d = 4. It has also been the basis of a thorough nonperturbative
RG (NPRG) analysis [16,22], where flow equations were
derived for all 2 < d < 4. The central functional in the NPRG
approach is the effective average action which is also the
generating functional of one-particle irreducible correlation
functions, and the NPRG provides a framework in which the
flow of this functional connects the bare effective average
action, which is identical to the bare action, to the fully renor-
malized generating functional of irreducible vertices [23,24].
The simplest approximation for the effective average action
used in the study of frustrated magnets has the form [16,22]

��[�1,�2] =
∫

x

{
Z�

2
[(∂μ�1)2 + (∂μ�2)2]

+ λ0
�

4
[ρ/2 − κ�]2 + μ0

�

4
τ

+ ��

4
(�1 · ∂μ�2 − �2 · ∂μ�1)2

}
, (2.3)

where ρ = Trt and τ = (1/2)Tr[t − 1ρ/2]2 are local
invariants of the theory. Here the symmetry SO(3) × SO(2)
for Heisenberg (N = 3) models has been generalized for
general N � 2 to a O(N ) × O(2) symmetry and the symmetry
of the symmetry-broken ground state is O(N − 2) × O(2).
The subscript � in �� indicates that all parameters enter-
ing (2.3) depend on the cutoff scale �. The fields �1,2 have
N components (the same number of components as the lattice
spins), are orthogonal in the ground state, and span the planar
order of a frustrated magnet [16], such as, e.g., the 120◦ state
of the HAFT. Further,  = (�1,�2) is a 2 × N matrix such
that

t =
(

�1 · �1 �1 · �2

�2 · �1 �2 · �2

)
. (2.4)

Thus, one has the expressions ρ = �2
1 + �2

2 and τ = (�2
1 −

�2
2)2/4 + (�1 · �2)2. Both λ0

� and μ0
� are positive coupling

parameters, where λ0
� controls the magnitude of the vector

fields and μ0
� ensures that �1 and �2 are orthogonal in the

ground state. If both λ0
� and μ0

� become very large, �1 and
�2 are forced into a configuration where they are orthogonal
with fixed length and, for N = 3, can be identified with the n1

and n2 fields of the NLSM, after a suitable rescaling such that
both �1, �2 have norm one. The third field n3 of the NLσM
is not independent of n1 and n2 but fixed by the relation n3 =
n1 × n2. However, to recover correctly the three independent
fluctuation terms (∂μni)2 of the ni fields within the Ginzburg-
Landau model (2.3), it is necessary to add the ��-derivative
term, which is the only derivative term at fourth order in the
fields, which directly renormalizes the gapless modes of the
model [16,22,25].

A central role is played by the parameter κ�, which is
the order parameter of the theory. It gives the magnitude of
the ordered magnetization (the canted 120◦ magnetization)
around which ρ, which corresponds to the local magnetization,
fluctuates. It is initially finite, since the IR modes are cut
off, but the further the IR cutoff � is reduced, the stronger
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κ� is suppressed (for d = 2). The vanishing of κ� at some
finite scale � signals the absence of 120◦ order and the spin-
correlation length is then determined by 2π/�.

For the case considered here, the triangular AF, we have
N = 3 and the fields �1,2 can be locally related to the
microscopic spins of the triangular AF. This is done by
partitioning the spins first into plaquettes of three spins, where
each of the spins belongs to one of the three sublattices
associated with a 120◦ order. We then have [26]

3√
2
�1 = −1

2
(
√

3 + 1)S1 + 1

2
(
√

3 − 1)S2 + S3 , (2.5a)

3√
2
�2 = 1

2
(
√

3 − 1)S1 − 1

2
(
√

3 + 1)S2 + S3 , (2.5b)

where S1, . . . ,S3 are the three spins of a local triangular
plaquette. Note that we have for three spins six degrees of
freedom, the same number as we have in the two unconstrained
three-component fields �1 and �2. One can easily check
that �1 · �2 = (2/9)(2S1 · S2 − S1 · S3 − S2 · S3) and (S1 +
S2 + S3)2 = 9(1 − �2

1/2 − �2
2/2), which both vanish in the

perfectly ordered 120◦ ground state in which the fields are
chosen to be normalized such that �2

1,2 = 1. As we discuss in
more detail below, the model defined by Eq. (2.3) supports 2N

modes of which 2N − 3 are gapless at T = 0. There are two
modes with gaps κ�μ0

� and one with a mass κ�λ0
�. At any finite

temperature all modes eventually become gapped; however,
at very small temperatures the IR physics is completely
dominated by the 2N − 3 modes which are initially gapless.
This low-temperature regime is well described by a NLσM.
In principle, it would also be possible to start our investigation
from the paramagnetic phase, which has κ = 0; however, it
is then far more difficult to ensure that the symmetries of the
model are not violated in the flow. Thus, within the same
spirit as in the NLσM approach, we assume a local order and
investigate how this order is destroyed by fluctuations.

The relation between the NLσM and the NPRG approach
near d = 2 (and for any N ) has been established in Ref. [16]
who showed that in the limit of large masses the NPRG reduces
to

∂�η1 = −(d − 2)η1 + N − 2 − η2

2η1
, (2.6a)

∂�η2 = −(d − 2)η2 + N − 2

2

(
η2

η1

)2

, (2.6b)

with � = − ln �/�0 and

η1 = 2πκ̃, (2.7a)

η2 = 4πκ̃(1 + κ̃�̃), (2.7b)

where we introduced the rescaled dimensionless parameters

κ̃ = Z��2−dκ�, (2.8a)

�̃ = Z−2
� �d−2��. (2.8b)

These reproduce for N = 3 the one-loop β functions of
the stiffnesses entering the NLσM given in Eq. (2.2) if

one identifies η1/2 = p3 + p1 and η2/4 = p1. One important
prediction of these RG equations (which is preserved also
at two-loop order [27]) is an interaction-driven enhancement
of symmetry. This can be expressed by the parameter α =
(p1 − p3)/(p1 + p3), which flows towards the fixed point
α∗ = 0; i.e., all the pi’s become asymptotically equal in the
IR limit � → ∞. This signals an enhancement of the original
symmetry to O(4)/O(3) and this symmetry determines the
critical behavior at finite ε in a d = 2 + ε expansion. We
emphasize that this enhanced symmetry is, however, only
expected at low temperatures and in the IR limit.

Dombre and Read [28] derived the values of the pi’s of
the NLσM (2.2) appropriate for the HAFT at the original
lattice scale and found p1 = p2 ≈ √

3J/4T and p3 ≈ 0. This
derivation was based on a local rigidity constraint where the
spins were grouped into local three-spin plaquettes within
which they where assumed to be rigid. We use these values
to fix the derivative terms Z�0 and ��0 in our initial effective
action.

While rigid rotations of the spins within a plaquette account
for the three initially gapless modes, we can easily understand
also the nature of the three gapped modes from looking at a
single plaquette if we relax the rigidity constraint. For a local
three-spin plaquette we have

S1 · S2 + S1 · S3 + S2 · S3 = L2/2 − 3/2, (2.9)

where L = S1 + S2 + S3 is the ferromagnetic moment of the
three spins, which vanishes for the planar 120◦ ground state.
Small fluctuations around that state give rise to two massive
excitations with energy 3J/4 and a singlet with excitation
3J/2. This is the same structure of massive modes which
we obtain from Eq. (3.12), which has two modes with mass
κ�μ0

� and one with mass κ�λ0
�. Dividing by the size of the

unit cell a2
√

3/2 (where a is the nearest-neighbor distance)
we thus estimate μ0

�0
κ�0 = βJ

√
3/2 and λ0

�0
κ�0 = βJ

√
3 in

units such that a = 1 and, where �0 is the UV cutoff of the
model which originates from the lattice. We fix it by matching
it with the smallest wave vector in the (magnetic) Brillouin
zone boundary [21], �0 ≈ 2π/3a. Since we normalized the
�i fields to be equal to one in the zero-temperature ground
state, we set the initial normalization of the �i equal to one
by choosing κ�0 = 1. We finally rescale the fields to have the
initial value Z�0 = 1, the initial value of ��0 is zero.

While the switch to a continuum field theory is necessarily
only approximate, with this estimate of initial values of the
coupling constants we nonetheless expect to get reasonable
approximate values for the relevant energy scales of the model.

III. NONPERTURBATIVE RENORMALIZATION
ANALYSIS OF THE LANDAU-GINZBURG MODEL

The model defined by Eq. (2.3), and extensions thereof
including all local terms up to tenth order in the fields as
well as two more additional derivative terms of fourth order,
were investigated in Refs. [16,22]. The main objective of that
analysis was to clarify the nature of the transition in d =
3 from the paramagnetic phase to the ordered phase, which
the authors concluded was most likely of weakly first order
for both N = 2,3. It was further shown that, already within
the approximation given in Eq. (2.3), the NPRG approach
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reproduces the one-loop results from a d = 2 + ε expansion of
the NLσM, the leading term of the usual d = 4 − ε expansion
and also the leading term of the large N expansion. They did,
however, not discuss in detail the physics in d = 2 beyond the
leading terms which recovers the one-loop NLσM result. This
is the main objective of the present work.

We extend the previous truncations of the effective average
action in two ways. First, studies of the BKT transition [20,23]
have shown that it is important not to truncate in the power
of the fields, and we therefore include local terms to arbitrary
power in the invariant ρ. The reason for this is that in d = 2
all local terms are relevant since in d = 2 the engineering
dimension of the fields vanishes, as measured relative to the
Gaussian fixed point. Second, we extend the terms present in
Eq. (2.3) to fully nonlocal ones, which effectively includes
terms to arbitrary order in the spatial derivatives. This gives a
more accurate approximation of the model than if one would
only keep leading-order derivatives and is also not too difficult
to implement. We therefore write � as a sum of a local and a
nonlocal part,

��[�1,�2] = �loc
� [�1,�2] + �nloc

� [�1,�2], (3.1)

where the local part is of the form

�loc
� [�1,�2] =

∫
x

U�(ρ,τ ), (3.2)

and U� is a function of the two invariants ρ and τ . These two
invariants are, in fact, the only local O(N ) × O(2) invariants
in the sense that all higher-order invariant local terms can be
expressed by them [16].

A. Approximation for the local potential

Ideally, one would like to solve the full local potential
exactly, which is numerically very difficult and which we
therefore did not pursue. We have instead tried two different
approaches, the first based on a field expansion of U�(ρ,τ )
up to eighth order in the field. However, we found that the
field expansion to a given finite order does not work very
well since the higher-order vertices become dominant and
drive either μ� or λ� to negative values, which leads to a
breakdown of the flow at still quite large values of �. This
is discussed in Appendix B. In the other, more successful,
approach, we approximate the local potential as U�(ρ,τ ) ≈
V�(τ ) + W�(ρ). We then keep the full field dependence of
W�(ρ), but approximate V�(τ ) by its leading term in a field
expansion,

U�(ρ,τ ) ≈ μ0
�τ/4 + W�(ρ). (3.3)

This choice is based on the assumption that the ρ dependence
of the local potential is more important than the τ dependence
since it controls the symmetry-breaking expectation value κ�.
Within such an ansatz, one avoids the problems coming from
the large higher-order terms which appear in a finite-order
field expansion. Note that such a scheme could also be carried
out to a higher order in τ , which, at least for smaller powers
of τ , would be significantly less numerically demanding than
keeping the full local potential. Here, however, we limit the
analysis to the approximation (3.3).

B. Approximation of the nonlocal terms

The nonlocal part contains terms up to quartic order in
the fields and, as a direct generalization of Eq. (2.3), is
approximated as

�nloc
� [�1,�2] = 1

2

∫
k

z�(k)[�1,k · �1,−k + �2,k · �2,−k]

+ 1

4

∫
x,x ′

λ�(x − x ′)[ρx/2 − κ�][ρx ′/2−κ�]

+ 1

4

∫
x,x ′

μ�(x − x ′)
2

TrAxAx ′

− 1

8

∫
x,x ′

ω�(x − x ′)

×[�1(x) · �2(x ′) − �2(x) · �1(x ′)]2, (3.4)

where
∫
k

= (2π )−d
∫

ddk, ρx = �2
1,x + �2

2,x is the x-
dependent “density” which measures the local fluctuating
moment of the 120◦ magnetization, andAx = txx − 1ρx/2
are x-dependent matrices. The μ part of the action can also be
written as

1
2 TrAxAx ′ = (

�2
1,x − �2

2,x

)(
�2

1,x ′ − �2
2,x ′

)
/4

+�1,x · �2,x �1,x ′ · �2,x ′ . (3.5)

The coupling functions z�, μ�, λ�, and �� are all defined
to be completely nonlocal; i.e., after a Fourier transform they
have a vanishing contribution at momentum k = 0. The local
contributions are included in U� and will be denoted by μ0

�

and λ0
�. For later convenience we also introduce the functions

μ̄�(k) = μ�(k) + μ0
�, (3.6a)

λ̄�(k) = λ�(k) + λ0
�. (3.6b)

The derivative terms present in the action (2.3) correspond
to the approximation

z�(k) = Z�k2 + O(k4), (3.7a)

ω�(k) = ��k2 + O(k4), (3.7b)

and μ�(k) = λ�(k) = 0. To keep also the leading-order k2

terms of μ�(k) and λ�(k) is equivalent to introducing the
derivative terms

(�1 · ∂x�1 + �2 · ∂x�2)2,

(�1 · ∂x�1 − �2 · ∂x�2)2 + (�1 · ∂x�2 + �2 · ∂x�1)2,

in the action (2.3).

C. Derivation of the flow equations

The NPRG is based on an exact flow equation for the
effective average action ��[] [29],

∂���[] = 1

2
Tr

[
∂�R�

(
∂2��

∂∂
+ R�

)−1]
, (3.8)

where the trace is over momenta and internal indices. For
notational brevity we omitted internal indices and momenta in
the field derivatives as well as in R� in Eq. (3.8). Note that the

094404-4



INTERPLAY OF TOPOLOGY AND GEOMETRY IN . . . PHYSICAL REVIEW B 90, 094404 (2014)

second-order field derivative of �� on the right-hand side in
Eq. (3.8) is also a functional of the field . If both sides of this
equation are expanded in the fields, one obtains flow equations
for the irreducible vertices. The derivation of Eq. (3.8) is
based on an approach where the cutoff is introduced into the
model via a regulator R�, which is added to the bare two-point
function. At the initial UV scale �0, the action is assumed to be
the bare one, whereas the full irreducible vertices are obtained
from Eq. (3.8) when the flow of �� is integrated from � = �0

down to � = 0. While Eq. (3.8) is exact, it is almost always
impossible to solve it exactly and approximation techniques
are required. The most common ones are either based on an
expansion of �� to a finite order in the fields or an expansion in
the derivatives; for reviews, see, e.g., [16,23,24]. Here we use
a combination of both, where we take into account both terms
which are not restricted to a finite order in the fields but also
nonlocal terms to arbitrarily order in the derivatives [30]. The
regulator R� removes IR divergent terms arising from modes
with k < � and for numerical stability we use an analytic
regulator. A standard choice [23] is

R�(q) = Z�

q2

exp(q2/�2) − 1
. (3.9)

The flow equations are most easily derived in a basis where
the two-point functions are diagonal. Following Ref. [16] we
therefore first introduce the two N -component fields �a(x) =
ϕa(x) + χa , where χa are the finite expectation values which
we assume to have the form

tχ1 = (
κ

1/2
� ,0, . . . ,0

)
, (3.10a)

tχ2 = (
0,κ

1/2
� ,0 . . . ,0

)
. (3.10b)

Diagonalization of the two-point functions is achieved by a
switch to the basis ϕ̃α

a (with a = 1,2 and α = 1, . . . ,N),

ϕ̃1
1 = 1√

2

(
ϕ1

1 + ϕ2
2

)
, (3.11a)

ϕ̃1
2 = 1√

2

(
ϕ1

1 − ϕ2
2

)
, (3.11b)

ϕ̃2
1 = 1√

2

(
ϕ2

1 + ϕ1
2

)
, (3.11c)

ϕ̃2
2 = 1√

2

(
ϕ2

1 − ϕ1
2

)
, (3.11d)

and ϕ̃α
a = ϕα

a for α > 2. In the rotated basis only one
component has a finite expectation value, χ̃ a

α = √
2κ�δa1δα1.

The two-point vertices are now diagonal in the a,α space and
have the form

�
αβ

ab (k) = ∂ (2)

∂ϕ̃α
a (k)ϕ̃β

b (−k)
��|ϕ=0

= δabδαβ{z�(k) + κ�[δa,1δα,1λ̄�(k) + ηaαμ̄�(k)

+ δa,2δα,2ω�(k)]}, (3.12)

where we introduced ηaα , which has as nonzero entries only
η12 = η21 = 1. The functions μ̄�(k) and λ̄�(k) are defined in
Eqs. (3.6).

The flow of the local potential is obtained by evaluating
Eq. (3.8) for constant fields [23]. The initial form of the
local potential at � = �0 coincides with the interaction
term of the bare action and is given by U�0 = λ0

�0
(ρ/2 −

κ�0 )2/4 + μ0
�0

τ/4. The flow of the local terms present in the
two-parameter function U� is greatly simplified if we employ
the approximation Eq. (3.3). The flow of W�(ρ) is then found
to be

∂�W�(ρ) = 1

2

∫
k

∂�R�(k)
∑

a=1,2,α=1,...,N

Gaα
� (k,ρ), (3.13)

with

G11
� (k,ρ) = [A�(q,ρ) + ρW ′′

�(ρ) + ρλ�(q)/2]−1, (3.14a)

G12
� (k,ρ) = [A�(q,ρ) + ρμ̄�(q)/2]−1, (3.14b)

G22
� (k,ρ) = [A�(q,ρ) + ρ��(q)/2]−1. (3.14c)

The remaining functions are G21
� (k,ρ) = G12

� (k,ρ) and
there are 2(N − 2) modes of the form Gaα

� = A�(q,ρ)−1 for
α > 2, with

A�(q,ρ) = R�(q) + z�(q) + W ′
�(ρ). (3.15)

The flow of κ� is obtained from the requirement that
(d/d�)W ′(ρ = 2κ�) = 0, i.e., that κ� is for all � the position
of the minimum of W� [23].

To solve the flow equations numerically, we need to have
an accurate resolution of the local potential around the flowing
minimum κ�. Since for d = 2 this minimum vanishes for N �
3 at some finite �∗, reflecting the finite correlation length, we
need to rescale the local potential. This is achieved by writing

W�(ρ) = κ2
�w�(y = ρ/κ�) (3.16)

so that the rescaled potential w�(y) always has its minimum
at y = 2. Choosing a linear grid for y proved then sufficient to
obtain converged and stable flows. At low temperatures, w�(y)
rapidly approaches a convex form and becomes essentially flat
for y < 2.

To derive the flow equations of the nonlocal terms in ��,
i.e., of the functions μ�(k), λ�(k), and ��(k), we invoke a
field expansion [23,24]. We need the vertices up to fourth order
in an expansion in ϕ̃α

a ; they can be found in Appendix A. From
the explicit form of all vertex functions up to the four-point
vertex, we can determine the flows of the nonlocal coupling
functions directly from the standard flows of the two-particle
vertices using Eq. (3.12), this is discussed in detail in Ref. [30]
and, in connection with membranes [31], by the first two works
in Ref. [31]. The flow of the self-energy �22

11(k = 0) also yields
the flow of the local coupling constant μ0

�. We emphasize that
the obtained flow equations are uniquely determined by the
effective average action specified through Eqs. (3.1)–(3.4). The
flow equations are rather lengthy and not very illuminating,
and we therefore do not present them here. For an alternative
approach to include the momentum dependence of vertices,
which is not based on a truncation of the effective average
action but on an approximation at the level of a field expansion
in presence of a background field; see Refs. [32].
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IV. RESULTS AND DISCUSSION

We have integrated the NPRG flow equations corresponding
to Eqs. (3.1)–(3.4) for different temperatures, ranging from
T = 0.6J down to T = 0.24J . The lower the temperature,
the smaller the logarithmic step size δ� (with � = − ln �/�0)
had to be chosen in the partial differential equation solver
routine. If δ� is chosen too large in comparison with the
discretization δy in the representation of the local potential
w�(y), small oscillations in the derivatives of w�(y) appear,
which quickly grow and lead to numerical instabilities. Thus,
we had to choose rather small step sizes at low temperatures,
down to δ� � 4 × 10−5 for T = 0.24J , and we could not
reach arbitrarily low temperatures since at T � 0.24J it takes
already more than 1 week to calculate the flow for a given
temperature (using a single core of the CPU). We also note
that an adaptive step solver turned out to be problematic since
it generally cannot cope well with the instabilities which arise
at larger step sizes.

We are interested in the spin-correlation length ξ which
characterizes the decay of the spin correlation function 〈Sxi

·
Sxj

〉, where xi and xj belong to the same sublattice of the 120◦
order. The relations (2.5) imply that 〈�x · �y〉 decays with the
same correlation length as 〈Sxi

· Sxj
〉. We can thus extract the

spin correlation length directly from our NPRG analysis as the
scale �∗ where the order parameter κ�∗ vanishes. In Fig. 1
we show results for ξ as a function of temperature. At low
temperatures the correlation length grows exponentially and
follows a ξ ≈ exp BJ/T behavior. We compare this with the
correlation length of the NLσM applied to the HAFT, which,
at two-loop order, has the form [27]

ξHAFT/a ≈ Cξ

√
T/J exp(6.9943J/T ), (4.1)

with an undetermined constant Cξ . The exponent B = 6.9943
is the same also in the one-loop approximation. Our NPRG
analysis yields the slightly smaller value B ≈ 6. As we discuss
in more detail below, the NPRG flow deviates from the NLσM
flow already at moderate temperatures and also at small spatial
scales, although they do coincide at small temperatures and
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FIG. 1. The correlation length as a function of temperature has
an exponential dependence on the temperature but a much weaker
temperature dependence at larger temperature, with a crossover
temperature of T ≈ 0.35J separating the two regimes.

large scales. Since the NLσM prediction for ξ (T ) is based on
the integration of the flow equation starting from the lattice
scale, a small deviation of the correlation length exponent B

is not unexpected.
What can be clearly observed is a pronounced crossover at

around Tcross ≈ 0.35J , from the low-temperature exponential
temperature dependence to a much more modest decay
of ξ at larger temperatures. This crossover happens in a
relatively narrow temperature range, yet ξ (T ) is smooth and
continuous, with no sign of an underlying thermodynamic
singularity. This crossover is similar to the sharp increase of
the correlation length seen in MC simulations for temperatures
T � 0.3J [5,18]. The finite size limitations in MC combined
with the exponential growth of the correlation length, however,
make it difficult to obtain converged results for ξ (T ) from
MC and it was not clear if ξ (T ) or its temperature derivative
would be smooth in the thermodynamic limit. A recent
theory [6] has proposed that the spin correlation length is a
convolution of two correlation lengths, ξ = ξvξsw/(ξv + ξsw).
The vortex correlation length ξv is assumed to diverge at a
finite temperature Tc while the spin-wave correlation length
ξsw remains finite for all T > 0. The resulting form of
the magnetic correlation length would have a nonmonotonic
function d ln(ξ�0)/dT with a maximum near Tc. Our NPRG
analysis does not show such a behavior. We emphasize that
this crossover cannot be obtained within a NLσM approach
and neither in a finite order field expansion, as discussed in
Appendix B.

The flow of the free energy can also readily be obtained
from our analysis, it corresponds to the flow of �� evaluated
at ρ = 2κ� and τ = 0. Thus, the flow of the free energy
follows from Eq. (3.13) with ρ = 2κ . As a result of keeping
the nonlocal coupling functions μ�(k), λ�(k), and ��(k) in
our analysis, the thus evaluated free energy is sensitive to a
broad range of energy scales beyond the IR limit. Since the
NPRG breaks down at some finite scale �∗ where κ�∗ = 0, we
cannot follow the free energy flow down to � = 0. To extract
the contributions to the free energy coming from 0 < � < �∗,
we took advantage of the fact that all propagators are gapped in
this regime because of the finite correlation length ξ and thus
no IR divergences are present. We therefore approximated
the propagators in this regime simply by introducing a finite
correlation length ξ−1 = 2π�∗ into the self-energies and by
replacing all flow parameters by their values at � = �∗. We
note that the region � < �∗ contributes only a very small
fraction to the total free energy at low temperatures, which
has no noticeable effect on the shape of the specific heat in
the temperature range considered here. From the thus-obtained
free energy we calculate the specific heat C = −T (∂2f/∂T 2),
which required some local smoothing of the f (T ) data to avoid
noise in C(T ). Our result for C(T ) is plotted in Fig. 2 and shows
a well-defined but relatively broad peak, again rather similar to
what is obtained from MC simulations [6]. While the specific
heat typically shows a singularity near a second-order phase
transition with a divergent correlation length, the broad peak
observed here is a consequence of the rapid crossover of the
spin correlation length in that temperature regime rather than
a true divergence.

The behavior of both the correlation length and the specific
heat thus suggest that there is no true phase transition at Tcross
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FIG. 2. The specific heat as a function of temperature. It shows
a well-defined broad peak in the same temperature range where the
correlation length ξ (T ) has the crossover.

but rather a crossover from a purely spin-wave-dominated
regime (the NLσM regime) to a high-temperature regime
where defects and massive excitations play an important role.
This picture is also supported by comparing our NPRG flow
to the one obtained from the NLσM. In Fig. 3 we show the
flow of the two parameters η1 and η2 from the NPRG and
for the NLσM, at different temperatures. Since we have data
from the full NPRG flow only down to T = 0.24J , we also
show data obtained from the derivative expansion of ��, using
only the parameters which enter in Eq. (2.3). In the limit of
large masses λ0

� and μ0
� the NPRG flow equations in the

derivative expansion approximation reduce to the one-loop
NLσM flow [16]. This is clearly seen at T = 0.12J . However,
the large mass limit of the flow equations is reached only
very slowly and at moderately small temperatures finite-
mass corrections are visible. Already at T = 0.18J one sees
deviations from both the one-loop and the two-loop NLσM
flow, which become quite substantial at T = 0.24J . At this
temperature we have calculated the NPRG flow both in the
full approximation, corresponding to Eqs. (3.3) and (3.4), as
well as in the derivative approximation (2.3). Both NPRG
flows show similar deviations from the NLσM results. The
deviations grow at even larger temperatures when compared
to the full NPRG flow. At T = 0.30J , η1 and η2 vanish at a
� scale where the NLσM results still predict sizeable finite
stiffnesses.

The crossover at Tcross has often been argued to be caused
by unbound Z2 defects which start to proliferate at Tcross [4,6].
MC simulations have found evidence of a vortex unbinding at
this temperature. Southern and Xu [4] have extracted a vorticity
modulus from their MC data which was shown to vanish near
Tcross, which was interpreted as an unbinding of vortices. While
the spin stiffness is always zero for any T > 0, in finite-sized
systems the spin stiffness vanishes only at sufficiently large
T . For system sizes comparable to those of Ref. [4] the
spin stiffness vanishes at roughly the same T as the vorticity
modulus [5]. The vortex unbinding at low temperatures is
prevented by a logarithmic interaction among the vortices
which is, however, only present for length scales smaller than
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FIG. 3. (Color online) Flow of the parameters η1, η2 (with η2 >

η1), from NPRG calculations (solid black lines) and from perturbative
one-loop (dotted blue lines) and perturbative two-loop (dashed red
lines) RG calculations for the NLσM. For the NLσM η1,2 are
the spin stiffnesses, whereas for the NPRG we extracted η1,2 via
Eqs. (2.7a) and (2.7b). For low temperatures T � 0.24J the NPRG
flows are those of the derivative expansion (DE) [see (2.3), whereas
for T � 0.24J we show the flow calculated in the full approximation
Eqs. (3.1)–(3.4). The one- and two-loop NLσM results are always
very similar and strongly overlap in the plots for T � 24. For
T = 0.12 all approximations strongly overlap.

the correlation length [33]. To gain further insight into the
physics behind the crossover, we plot the flowing anomalous
dimension η. For a true second-order phase transition ξ → ∞
and η would become a critical exponent. It characterizes the
spin-spin correlation function at criticality, which behaves for
k → 0 as 1/k2−η. Here for any finite T the spin correlation
length is finite and η does not reach a constant for k → 0.
Yet, for low temperatures, η changes only very modestly for
momenta k < 1/ξ and both ξ and 2π/k much larger than the
microscopic lattice spacing. The scale-dependent anomalous
dimension η is defined through

η = �∂� ln Z�. (4.2)

We plot it as a function of the rescaled order parameter κ̃ ,
defined in Eq. (2.8a), for different temperatures in Fig. 4. For
the XY model, these plots show a characteristic flow which,
for temperatures below the critical one, quickly reaches a
line of η(κ̃), where the flow of κ̃ essentially stops [20]. This
line signifies thus a line of fixed points where the anomalous
dimension reaches a finite value for � → 0. The line of fixed
points terminates around a value η = 0.287, beyond which the
flow is away from the line of fixed points. What we find in
the present model is in some ways similar to the XY flow,
however with important differences. At low temperatures we
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FIG. 4. Anomalous exponent η vs the rescaled order parameter
κ̃ . The upper curve shows results for large temperatures; the lower
curve shows results at smaller temperatures.

do find a common curve η(κ̃) to which all flows are attracted.
However, while the flow along this line is slower than the initial
approach to that line, the flow never stops but remains sizable,
in accordance with the asymptotic freedom of the model. Thus,
one never actually reaches a fixed point and no transition or
critical behavior can be associated with the common curve.

The maximal value of ηmax ≈ 0.34, is close to the value
ηmax ≈ 0.33 found in the XY model (the line of fixed point
ends in the XY model at a smaller value ≈ 0.287, rather close
to the exact value 1/4). This may be seen as an indication
that indeed some enhanced stability against defect unbinding
exist along the line η(κ̃). In this interpretation, for temperatures
lower than roughly T ≈ 0.27J , a large part of the flow is along
the common curve η(κ̃) and only at sufficiently small � it
deviates, owing to the vanishing of the order parameter and the
appearance of a finite correlation length. While defects would
certainly be present at scales larger than the correlation length,
the fact that the maximal value of η systematically decreases
with lowering the temperature below T = 0.27J indicates a
stability against vortex unbinding. Thus, the correlation length
in this regime is limited by the asymptotic freedom of the
model rather than an unbinding of vortices. The stability to
vortices (for scales smaller than the correlation length) is then
similar to the XY model where along the critical line T < Tc

the anomalous dimension reaches a fixed point whose value
is proportional to the temperature. We also find that over a
large momentum range the spin correlation decay is algebraic
with anomalous exponents and only at large distances does the
finite correlation length induce an exponential decay.

At larger temperatures (see the upper plot in Fig. 4), the flow
starts to deviate slowly from the common curve η(κ̃) of the low-
temperature regime. At around T ≈ 0.30J it never reaches it
and moves further away from it the higher the temperature.
This indicates that at these temperatures the regime where
gapless excitations dominate the flow is never reached and
massive and/or topological excitations become ubiquitous. For
T = 0.35 the maximum is approximately η = 0.28, similar
to the NPRG estimate of the critical temperature of the XY

model. All this is consistent with a correlation length which
is, at high temperatures, primarily determined by a vortex
unbinding. That the correlation lengths actually decrease more
slowly at higher temperatures where vortices are abundant, as
is also observed in MC simulation [5,18], can be understood
on the grounds that the flow ceases to be controlled by the low-
temperature NLσM model and its strong, asymptotic freedom-
dominated temperature dependence of the correlation length.

Thus, we see in the flow of η support for the scenario
of vortex unbinding somewhere in the temperature interval
0.3J–0.35J , where also the crossover in the correlation length
dependence on temperature is observed. In the NPRG we have,
however, no direct access to vortex degrees of freedom, so that
we can only say that our results are consistent with a vortex
unbinding scenario.

V. SUMMARY

We have analyzed two-dimensional frustrated Heisenberg
magnets within a NPRG framework, using initial values for
the flow as appropriate for the antiferromagnetic Heisenberg
model on the triangular lattice. We follow the general NPRG
approach for frustrated magnets as developed in Refs. [16,22],
which makes it possible to recover the NLσM flow equations
at sufficiently low temperatures. We extend this analysis in
two ways: Instead of expanding the action to a given order
in a field expansion, we keep the full local dependence of the
effective action on the invariant ρ, which is the local fluctuating
magnitude of the ordered moments of the magnet. Further,
we replace the coupling parameters of the standard Landau-
Ginzburg action with nonlocal coupling functions.

The primary goal of our analysis is to clarify the nature
of the finite temperature crossover in the correlation length
dependence of the MC simulations of the HAFT at around
a temperature T ≈ 0.3J and to investigate a possible role of
topological defects. Our analysis reproduces the key feature
of the MC simulations. As expected, at low temperatures we
recover the flow of the NLσM which was shown to be in
accordance with MC simulations in Refs. [5,18]. The NPRG
flow deviates further and further from the NLσM predictions
upon increasing the temperature and we find a crossover of the
temperature dependence of the correlation length at around
Tcross ≈ 0.35J . Although this temperature is slightly larger
than the one observed in MC, which is not surprising in
view of the approximations inherent in the mapping of the
lattice model into a continuum theory, our NPRG approach
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does capture the crossover qualitatively. The specific heat,
which shows a broad peak around the crossover, is also in
qualitative agreement with MC simulations [6]. As discussed
in Sec. IV closer inspection of the flow of the anomalous
dimension shows that for temperatures slightly lower than
Tcross the flows collapse over a wide range of scales on
a common curve η(κ̃), where κ̃ is the rescaled local-order
parameter. In this regime the (large) correlation length arises
from the asymptotic freedom of the model and thus from the
geometry of the order parameter space. In contrast, at around
temperatures 0.3J–0.35J , the flow starts to deviate from the
common curve η(κ̃). The maximal anomalous dimension is
reached around this temperature and is similar to that of the XY

model at the vortex unbinding transition. While a topological
origin of this behavior is plausible, we find no indication of
a finite temperature fixed point and all our results are instead
consistent with a crossover. Physically, this is not completely
unexpected since a true phase transition would usually require
a logarithmic interaction among the vortices, as it occurs within

the BKT scenario. In view of the finite correlation length the
logarithmic interaction is cut off at large distances, which
would result in a crossover rather than a phase transition, and
there would be no diverging length scale associated with the
crossover. How can this be reconciled with the presence of two
phase transitions which are clearly observed in MC simulations
at small but finite fields [7,8]? A likely scenario is that for
vanishing fields the two critical points meet and merge into a
crossover point instead. This is consistent with the vanishing
of the order parameters of both low-temperature phases in the
zero-field limit [7]. Further analysis of the low-field regime
with the NPRG would certainly be desirable.
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APPENDIX A: FORM OF HIGHER-ORDER VERTICES

Here we give the expressions for the symmetrized vertices which are required to derive the flow equations of the nonlocal
coupling functions. Besides the two-point vertex, given in Eq. (3.12), these are the three- and four-point vertices. The three-point
vertex, in the basis defined in Eqs. (3.11), is

�α1α2α3
a1a2a3

(k1,k2,k3) =
√

κ/2
{[

δa11δα12
(
δ>
α2α3

ηa2a3 + ηα2α3δa2a3ξa2

) + δa12δα11
(
δ>
α2α3

δa2a3ξa2 + δ<
α2α3

ηa2a3

)]
μ(k1)

+ δa11δα11δa2a3δα2α3

[
λ(k1) + 32κU ′′′

� (ρ = 2κ)δa21δα21
]

+ δa12δα12εa2a3

[
δα2α3 − �(α2 � 2)�(α3 � 2)

]
[�(k2) − �(k3)] + (1 ↔ 2) + (1 ↔ 3)

}
, (A1)

where δ<
αβ = δαβ�(α � 2), and δ>

αβ
= δαβ�(α > 2). We further defined the vector ξa = (1, − 1)t and εab = −εba is the

antisymmetric tensor with ε12 = 1. The tensor ηaα has nonzero entries only for η12 = η21 = 1. The notation (1 ↔ 2) is short for
(k1,a1,α1 ↔ k2,a2,α2). The four-point vertex in the basis defined in Eqs. (3.11) is

�α1,...,α4
a1,...,a4

(k1, . . . ,k4) = 1
2

{[(
ηa1a2δ

>
α1α2

+ δa1a2ξa1ηα1α2

)(
ηa3a4δ

>
α3α4

+ δa3a4ξa3ηα3α4

)

+ (
δa1a2δ

>
α1α2

ξa1 + ηa1a2δ
<
α1α2

)(
δa3a4δ

>
α3α4

ξa3 + ηa3a4δ
<
α3α4

)]
μ(k12)

+ δa1a2δa3a4δα1α2δα3α4

[
λ(k12) + 32κU ′′′

� (ρ = 2κ)
(
δa11δα11 + δa31δα31

)

+ 128κ2U ′′′′
� (ρ = 2κ)δa11δa32δα11δα31

] + [
δα1α2 − �(α1 � 2)�(α2 � 2)

]

×[
δα3α4 − �(α3 � 2)�(α4 � 2)

]
εa1a2εa3a4 [�(k14) − �(k13)] + (1 ↔ 3) + (1 ↔ 4)

}
. (A2)

APPENDIX B: FIELD EXPANSION
OF LOCAL POTENTIAL

Here we discuss the flow equations if we approximate the
local potential U�(ρ,τ ) up to eighth order in the fields. To that
order, we have, up to a field-independent constant,

U�(τ,ρ/2 − κ) =
∫

x

[
λ0

�

4
(ρ/2 − κ)2+μ0

�

4
τ+c(3)

ρ

12
(ρ/2 − κ)3

+ cρτ

8
(ρ/2 − κ)τ + c(4)

ρ

24
(ρ/2 − κ)4

+ c(2)
τ

32
τ 2 + c(2)

ρτ

16
(ρ/2 − κ)2τ

]
. (B1)

Higher-order terms can be readily included, but the resulting
flow equations become rather long if the full k dependence
of the coupling functions μ�(k), λ�(k), and ��(k) is kept.
To compare the different approximations, we introduce the
rescaled and (in d = 2) dimensionless local coupling parame-
ters

μ̃ = μ
(0)
� �−2Z−2

� , (B2a)

λ̃ = λ
(0)
� �−2Z−2

� . (B2b)

In Fig. 5 we show the flow of λ̃ from the field expansion
to both order 6 [setting c(4)

ρ , c(2)
τ , and c(2)

ρτ equal to zero in
Eq. (B1) and order 8. In both cases λ̃ is driven rapidly to
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FIG. 5. (Color online) Flow of λ̃ at T = 0.275J within different
approximations. Shown are the results of a field expansion to order
6 and 8 (dashed blue lines) compared to the full dependence on ρ

to first order in τ (red solid line).

zero by a divergence of a higher-order vertex, much faster
than in the approximation given by Eq. (3.3), where all powers
of ρ are kept. The same behavior is also observed in the flow
of μ̃; see Fig. 6. In the 8 approximation the suppression
is even faster than in the 6 truncation and what limits the
flow is not the vanishing of the order parameter ρ0 but the
divergence of the higher-order vertices. This clearly shows that
a fixed-order field expansion is not useful in this case. In Fig. 7
we show that, in contrast, the expansion on just the invariant
ρ shows better convergence properties. The best alternative
would be to directly explore the flow of U�(ρ,τ ) without any
restrictions, which would, however, be numerically very costly.
As we discuss now, the higher-order derivative terms are also
important; one would thus have to analyze the full flow of
U�(ρ,τ ) in conjunction with the full momentum dependence
of the coupling functions μ�(k), λ�(k), and ��(k), or at least
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FIG. 6. (Color online) Flow of μ̃ at T = 0.275J within a field
expansion to order 6 and 8 (dashed blue lines) compared to the
full dependence on ρ to first order in τ (red solid line).
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FIG. 7. (Color online) Flow of λ̃ at T = 0.275J within an expan-
sion in ρ to order ρ2, ρ3, and ρ4 (dashed blue lines) compared to the
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first order in τ .

with including also higher-order derivative terms, which is
numerically extremely challenging.

To gauge the importance of the k-dependent vertices, we
finally compare the flow within an approximation where
only the leading-order derivative terms present in Eq. (2.3)
are kept with the approximation where the full momentum
dependence of λ�(k), μ�(k), and ��(k) is included. In both
approximations all local terms up to order 6 or 8 are
included. As shown in Fig. 8, there are clear differences
and the flow with the full momentum dependence is more
stable. It thus seems that the higher-order derivative terms are
non-negligible.
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FIG. 8. (Color online) Flow of λ̃ at T = 0.275J with (red solid
lines) and without (dashed blue lines) higher-order derivative terms
(see text; DE stands for first-order derivative expansion). Shown
are results including all local terms up to order 6 and to
order 8.
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G. Lapertot, A. Cervellino, and A. Amato, Phys. Rev. B 77,
092403 (2008).

[13] H. Yamaguchi, S. Kimura, M. Hagiwara, Y. Nambu, S. Nakat-
suji, Y. Maeno, and K. Kindo, Phys. Rev. B 78, 180404(R)
(2008).

[14] M. Schmidt, Z. Wang, Ch. Kant, F. Mayr, S. Toth, A. T. M. N.
Islam, B. Lake, V. Tsurkan, A. Loidl, and J. Deisenhofer, Phys.
Rev. B 87, 224424 (2013); M. Hemmida, H.-A. Krug von Nidda,
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