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Study of off-diagonal disorder using the typical medium dynamical cluster approximation
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We generalize the typical medium dynamical cluster approximation and the local Blackman, Esterling, and
Berk method for systems with off-diagonal disorder. Using our extended formalism we perform a systematic
study of the effects of nonlocal disorder-induced correlations and off-diagonal disorder on the density of states
and the mobility edge of the Anderson localized states. We apply our method to the three-dimensional Anderson
model with configuration-dependent hopping and find fast convergence with modest cluster sizes. Our results
are in good agreement with the data obtained using exact diagonalization and the transfer-matrix and kernel
polynomial methods.
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I. INTRODUCTION

Disorder, which is inevitably present in most materials,
can dramatically affect their properties [1,2]. It can lead to
changes in their electronic structure and transport. One of the
most interesting effects of disorder is the spatial confinement
of charge carriers due to coherent backscattering off random
impurities, which is known as Anderson localization [3,4].
Despite progress over the past decades, the subject of Anderson
localization remains an active area of research. The lack
of quantitative analytical results has meant that numerical
investigations [5–11] have provided a significant role in
understanding the Anderson transition [12–14].

The simplest model used to study the effects of disorder in
materials is a single-band tight-binding model with a random
on-site disorder potential [15]. Such a model is justified when
the disorder is introduced by substitutional impurities as in a
binary alloy. The substitution of host atoms by impurities only
leads to changes in the local potential on the substitutional
site and, on average, does not affect the neighbors [15,16].
In this situation, the disorder appears only in the diagonal
terms of the Hamiltonian and hence is referred to as diagonal
disorder. However, when the bandwidth of the dopant is very
different from the one of the pure host, such substitution
results not only in the change in the local potential, but also
in affecting the neighboring sites [15]. Consequently, a simple
model to capture such effects should include both random local
potentials and random hopping amplitudes which depend on
the occupancy of the sites. The dependence of the hopping
amplitude on the disorder configuration is usually referred to
as off-diagonal disorder. It is apparent that a proper theoretical
description of realistic disordered materials [15,17–20] (for,
e.g., many substitutionally disordered alloys and disordered
ferromagnets) requires the inclusion of both diagonal and
off-diagonal randomnesses. Although the role of the diagonal
disorder has been extensively studied over the past several
decades [21], the effect of off-diagonal disorder is not well
studied, although the effect is expected to be different. It has
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been shown [18,22] that off-diagonal randomness can lead
to the delocalization of the states near the band center. Also
recently, there has been a growing interest in the effect of the
off-diagonal randomness in graphene systems where studies
show that different types of disorder can induce different
localization behaviors [23–25].

The coherent-potential approximation (CPA) is a widely
used single-site mean-field theory for systems with strictly
diagonal disorder [16]. Blackman, Esterling, and Berk (BEB)
[26] have extended the CPA to systems with off-diagonal
disorder. However, being single-site approximations, the CPA
and the BEB theories neglect all disorder-induced nonlocal
correlations.

There have been a number of attempts to develop systematic
nonlocal extensions to the CPA. These include cluster exten-
sions, such as the molecular coherent-potential approximation
(MCPA) [27,28], the dynamical cluster approximation (DCA)
[29–31], etc. Self-consistent mean-field studies of off-diagonal
disorder have been conducted by a number of authors [28,32–
34]. However, all these studies have been performed at the local
single-site BEB level. To include the effects of off-diagonal
disorder, Gonis and Garland [27] extended the molecular CPA,
which uses a self-consistently embedded finite-size cluster
to capture nonlocal corrections to the CPA. However, they
criticized the MCPA for violating translational invariance and
other critical properties of a valid quantum cluster theory
[15,35]. In order to take into account such nonlocal effects on
off-diagonal-disorder models while maintaining translational
invariance, we extend the BEB formalism using the DCA
scheme [29–31].

Although the CPA, DCA, and BEB have shown to be
successful self-consistent mean-field theories for the quan-
titative description of the density of states (DOS) and elec-
tronic structure of disordered systems, they cannot properly
address the physics of Anderson localization. These mean-field
approaches describe the effective medium using the average
density of states, which is not critical at the transition [12,35–
37]. Thus, theories which rely on such averaged quantities
will fail to properly characterize Anderson localization. As
noted by Anderson, the probability distribution of the local
density of states must be considered, focusing on the most
probable or the typical value [3,38]. Close to the Anderson
transition, the distribution is found to have very long tails
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characteristic of a log-normal distribution [10,39,40]. In fact,
the distribution is log-normal up to ten orders of magnitude
[41], and so the typical value [40,42–44] is the geometrical
mean. Based on this idea, Dobrosavljević et al. [45] formulated
a single-site typical medium theory (TMT) for the Anderson
localization. This approximation gives a qualitative description
of the Anderson localization in three dimensions. However,
it fails to properly describe the trajectory of the mobility
edge (which separates the extended and localized states) as
it neglects nonlocal corrections and so does not include the
effects of coherent backscattering [46]. It also underestimates
considerably the critical strength of the disorder at which the
localization happens. In addition, TMT is only formulated for
diagonal disorder.

Recently, by employing the DCA within the typical medium
analysis, we developed a systematic typical medium dynam-
ical cluster approximation (TMDCA) formalism [35]. The
TMDCA provides an accurate description of the Anderson
localization transition for modest cluster sizes in three-
dimensional models with diagonal disorder while recovering
the TMT for a one-site cluster. In this paper, we generalize our
recently proposed TMDCA scheme to address the question
of electron localization in systems with both diagonal and
off-diagonal disorders.

In this paper, to go beyond the local single-site CPA-like
level of the BEB formalism, we employ the DCA [29–31]
scheme which systematically incorporates nonlocal spatial
correlation effects. We first present an extension of the DCA
for systems with both diagonal and off-diagonal disorders.
Comparing our single-site and finite cluster results, we
demonstrate the effect of nonlocal correlations on the density
of states and the self-energy.

Here we develop a typical medium formalism for sys-
tems with off-diagonal disorder. So far, the typical medium
analysis has been applied to systems with only diago-
nal disorder [35,45]. In this paper, we develop a typical
medium dynamical cluster approximation formalism capa-
ble of characterizing the localization transition in systems
with both diagonal and off-diagonal disorders. We perform
a systematic study of the effects of nonlocal correlations
and off-diagonal randomness on the density of states and
electron localization. By comparing single-site and finite
cluster results for the typical density of states and the extracted
mobility edges, we demonstrate the necessity of including
the nonlocal multisite effects for proper and quantitative
characterization of the localization transition. The results of
our calculations are compared with the ones obtained with
other numerical methods for finite-size lattices, including
exact diagonalization, kernel polynomial, and transfer-matrix
methods.

The paper is organized as follows: Following the Introduc-
tion in Sec. I we present the model and describe the details
of the formalism we used in Sec. II. In Sec. III A we present
our results of the average density of states for both diagonal
and off-diagonal-disorder cases. In Sec. III B we consider the
effects of diagonal and off-diagonal disorders on the typical
density of states, from which we extract the mobility edges
and construct a complete phase diagram in the disorder-energy
parameter space. We summarize and discuss future directions
in Sec. IV.

II. FORMALISM

A. Dynamical cluster approximation for off-diagonal disorder

The simplest model widely used to study disordered
systems is the single-band tight-binding Hamiltonian,

H = −
∑
〈i,j〉

tij (c†i cj + H.c.) +
∑

i

vini, (1)

where disorder is modeled by a local potential vi which is a
random variable with probability distribution function P (vi).
We will focus on the binary disorder case where some host
A atoms are substituted with B impurities with a probability
distribution function of the form

P (vi) = cAδ(vi − VA) + cBδ(vi − VB), (2)

where cB = 1 − cA. For the diagonal-disorder case when the
bandwidth of the pure host A is about the same as the
bandwidth of the B system, such substitution results only
in a change in the local potential vi at the replaced site i.
This corresponds to changes in the diagonal elements of the
Hamiltonian. In this case it is assumed that substitution of
impurity atoms on average has no effect on hopping amplitudes
to the neighboring atoms.

For systems with off-diagonal disorder, the randomness is
introduced not only locally in the random diagonal potential vi ,
but also through the hopping amplitudes. To model this, BEB
[26] introduced the disorder-configuration-dependent hopping
amplitude of electrons tij as

tij = tAA
ij , if i ∈ A, j ∈ A,

tij = tBB
ij , if i ∈ B, j ∈ B,

(3)
tij = tAB

ij , if i ∈ A, j ∈ B,

tij = tBA
ij , if i ∈ B, j ∈ A,

where tij depends on the type of ion occupying sites i and j .
For off-diagonal-disorder BEB [26] showed the scalar CPA
equation becomes a 2 × 2 matrix equation with corresponding
AA, AB, BA, and BB matrix elements. In momentum space,
if there is only near-neighbor hopping between all ions,
the bare dispersion can be written as (the underbar denotes
matrices)

εk =
(

tAA tAB

tBA tBB

)
εk, (4)

where in three dimensions εk = −2t[cos(kx) + cos(ky) +
cos(kz)] with 4t = 1 which sets our unit of energy and
tAA, tBB, tAB , and tBA are unitless prefactors.

The BEB approach is local by construction, hence all
nonlocal disorder-induced correlations are neglected [26]. In
order to take into account nonlocal physics, we extend the
BEB formalism to a finite cluster using the DCA scheme.
Here in the following, we present the algorithm and details
of our nonlocal DCA extension of the BEB formalism for
off-diagonal disorder. Just as in the DCA scheme [31], the first
Brillouin zone is divided into Nc = LD (D is the dimension,
and L is the linear cluster size) coarse-grained cells with
centers K surrounded by points k̃ within the cell so that an
arbitrary k = K + k̃.
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For a given DCA K-dependent effective medium hybridiza-
tion �(K,ω) matrix we use an underline to denote a 2 × 2
matrix in momentum space),

�(K,ω) =
(

�AA(K,ω) �AB(K,ω)
�BA(K,ω) �BB(K,ω)

)
, (5)

and we solve the cluster problem, usually in real space. For
this we stochastically sample random configurations of the
disorder potential V and calculate the corresponding cluster
Green’s function by inverting the Nc × Nc matrix, i.e.,

Gij = (ωI − t ′ − �′ − V )−1
ij , (6)

where V is a diagonal matrix for the disorder site potential.
The primes stand for the configuration-dependent Fourier-
transform (FT) components of the hybridization and hopping,
respectively. I.e.,

�′
ij =

⎧⎪⎪⎨
⎪⎪⎩

FT[�AA(K,ω)], if i ∈ A, j ∈ A,

FT[�BB(K,ω)], if i ∈ B, j ∈ B,

FT[�AB(K,ω)], if i ∈ A, j ∈ B,

FT[�BA(K,ω)], if i ∈ B, j ∈ A,

(7a)

and

t
′
ij =

⎧⎪⎪⎨
⎪⎪⎩

FT[εAA(K)], if i ∈ A, j ∈ A,

FT[εBB(K)], if i ∈ B, j ∈ B,

FT[εAB(K)], if i ∈ A, j ∈ B,

FT[εBA(K)], if i ∈ B, j ∈ A,

(7b)

with

ε(K) =
(

tAA tAB

tBA tBB

)
Nc

N

∑
k̃

εk, (7c)

where �′
ij and t

′
ij are Nc × Nc real-space matrices (where

Nc is the cluster size), and, e.g., FT[�AA(K,ω)] =∑
K �AA(K,ω)eiK(ri−rj ). The hopping can be long ranged, but

since they are coarse-grained quantities, they are effectively
limited to the cluster. Physically, �′

ij represents the hybridiza-
tion between sites i and j , which is configuration dependent.
For example, the AA component of the hybridization corre-
sponds to both A species occupying sites i and j , whereas the
AB component means that site i is occupied by an A atom and
site j by a B atom. The interpretation of the hopping matrix is
the same as for the hybridization function.

In the next step, we perform averaging over the disorder
〈(· · · )〉, and in doing so we reexpand the Green’s function
[Eq. (6)] into a 2Nc × 2Nc matrix,

Gc(ω)ij =
(〈

GAA
c (ω)

〉
ij

〈
GAB

c (ω)
〉
ij〈

GBA
c (ω)

〉
ij

〈
GBB

c (ω)
〉
ij

)
. (8)

This may be performed by assigning the components
according to the occupancy of sites i and j ,(

GAA
c

)
ij

= (Gc)ij , if i ∈ A, j ∈ A,(
GBB

c

)
ij

= (Gc)ij , if i ∈ B, j ∈ B,
(9)(

GAB
c

)
ij

= (Gc)ij , if i ∈ A, j ∈ B,(
GBA

c

)
ij

= (Gc)ij , if i ∈ B, j ∈ A,

with the other components being zero. Because only one of the
four matrix elements is finite for each disorder configuration
(each site can be occupied by either an A or a B atom), only the
sum of the elements in Eq. (8) is normalized as a conventional
Green’s function.

Having formed the disorder-averaged cluster Green’s func-
tion matrix, we then Fourier transform each component to
K space (which also imposes translational symmetry) and
construct the K-dependent disorder-averaged cluster Green’s
function matrix in momentum space,

Gc(K,ω) =
(

GAA
c (K,ω) GAB

c (K,ω)
GBA

c (K,ω) GBB
c (K,ω)

)
. (10)

Once the cluster problem is solved, we calculate the coarse-
grained lattice Green’s function matrix as

G(K,ω) =
(

G
AA

(K,ω) G
AB

(K,ω)

G
BA

(K,ω) G
BB

(K,ω)

)

= Nc

N

∑
k̃

[Gc(K,ω)−1 + �(K,ω) − εk + ε(K)]−1,

(11)

here we use an overbar to denote the cluster coarse-grained
quantities. It is important to note that each component of the
Green’s function matrix above does not have the normalization
of a conventional, i.e., scalar, Green’s function. Only the sum
of the matrix components has the conventional normalization
so that G(K,ω) ∼ 1/ω with the total coarse-grained lattice
Green’s function being obtained as

G(K,ω) = G
AA

(K,ω) + G
BB

(K,ω) + G
AB

(K,ω)

+G
BA

(K,ω). (12)

Next, to construct the new DCA effective medium �(K,ω),
we impose the BEB DCA (2 × 2) matrix self-consistency
condition, requiring the disorder-averaged cluster and the
coarse-grained lattice Green’s functions to be equal

Gc(K,ω) = G(K,ω). (13)

This is equivalent to a system of three coupled scalar equations,

G
AA

(K,ω) = GAA
c (K,ω), (14a)

G
BB

(K,ω) = GBB
c (K,ω), (14b)

and

G
AB

(K,ω) = GAB
c (K,ω). (14c)

Note G
BA

(K,ω) = G
AB

(K,ω) automatically if tAB = tBA.
We then close our self-consistency loop by updating the

corresponding hybridization functions for each component as

�AA
n (K,ω) = �AA

o (K,ω) + ξ
[
G−1

c (K,ω)AA − G
−1

(K,ω)AA
]

�BB
n (K,ω) = �BB

o (K,ω) + ξ
[
G−1

c (K,ω)BB − G
−1

(K,ω)BB
]

�AB
n (K,ω) = �AB

o (K,ω) + ξ
[
G−1

c (K,ω)AB − G
−1

(K,ω)AB
]

�BA
n (K,ω) = �AB

n (K,ω), (15)
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where “o” and “n” denote old and new, respectively, and ξ is a
linear mixing parameter 0 < ξ < 1. We then iterate the above
steps until convergence is reached.

There are two limiting cases of the above formalism which
we carefully checked numerically. In the limit of Nc = 1,
we should recover the original BEB result. Here the cluster
Green’s function loses its K dependence so that(

GAA
c (ω) 0

0 GBB
c (ω)

)
= 1

N

∑
k

[Gc(ω)−1 + �(ω) − ε(k)]−1,

(16)

which is the BEB self-consistency condition. Here we used
that ε(K) = 0 for Nc = 1. The second limiting case is when
there is only diagonal disorder so that tAA = tBB = tAB = 1.
In this case the above formalism reduces to the original DCA
scheme. We have verified numerically both limits.

B. Typical medium theory with off-diagonal disorder

To address the issue of electron localization, we recently
developed the TMDCA and applied it to the three-dimensional
Anderson model [35]. In Ref. [35] we confirmed that the
typical density of states vanishes for states which are localized
and it is finite for extended states. In the following we

generalize our TMDCA analysis to systems with off-diagonal
disorder to address the question of localization and the mobility
edge in such models.

First, we would like to emphasize that the crucial difference
between the TMDCA [35] and the standard DCA [31]
procedure is the way the disorder-averaged cluster Green’s
function is calculated. In the TMDCA analysis instead of
using the algebraically averaged cluster Green’s function in the
self-consistency loop, we calculate the typical (geometrically)
averaged cluster density of states,

ρc
typ(K,ω) = e(1/Nc)

∑
i 〈ln ρii (ω)〉

〈
− 1

π
Im Gc(K,ω)

1
Nc

∑
i

[− 1
π

Im Gii(ω)
]
〉

,

(17)

with the geometric averaging being performed over the local
density of states ρii(ω) = − 1

π
Im Gii(w) only. Using this

ρc
typ(K,ω) the cluster-averaged typical Green’s function is

constructed via a Hilbert transform,

Gc(K,ω) =
∫

dω′ ρ
c
typ(K,ω′)

ω − ω′ . (18)

In the presence of off-diagonal disorder, following BEB,
the typical density of states becomes a 2 × 2 matrix, which we
define as

ρc
typ(K,ω) = exp

(
1

Nc

Nc∑
i=1

〈ln ρii(ω)〉
)⎛

⎜⎜⎝
〈

− 1
π

Im GAA
c (K,ω)

1
Nc

∑Nc
i=1(− 1

π
Im Gii (ω))

〉 〈
− 1

π
Im GAB

c (K,ω)
1

Nc

∑Nc
i=1(− 1

π
Im Gii (ω))

〉
〈

− 1
π

Im GBA
c (K,w)

1
Nc

∑Nc
i=1(− 1

π
Im Gii (ω))

〉 〈
− 1

π
Im GBB

c (K,ω)
1

Nc

∑Nc
i=1(− 1

π
Im Gii (ω))

〉
⎞
⎟⎟⎠. (19)

Here the scalar prefactor depicts the local typical (geomet-
rically averaged) density of states (TDOS), whereas the matrix
elements are linearly averaged over the disorder. Also notice
that the cluster Green’s function (Gc)ij and its components
GAA

c , GBB
c , and GAB

c are defined in the same way as in
Eqs. (6)–(10).

In the next step, we construct the cluster average Green’s
function Gc(K,ω) by performing a Hilbert transform for each
component,

Gc(K,ω) =
⎛
⎝

∫
dω′ ρAA

typ (K,ω′)
ω−ω′

∫
dω′ ρAB

typ (K,ω′)
ω−ω′∫

dω′ ρBA
typ (K,ω′)
ω−ω′

∫
dω′ ρBB

typ (K,ω′)
ω−ω′

⎞
⎠. (20)

Once the disorder-averaged cluster Green’s function
Gc(K,ω) is obtained from Eq. (20), the self-consistency steps
are the same as in the procedure for the off-diagonal-disorder
DCA described in the previous section: We calculate the
coarse-grained lattice Green’s function using Eq. (11), which
is then used to update the hybridization function with the
effective medium via Eq. (15).

The above set of equations provides us with the generaliza-
tion of the TMDCA scheme for both diagonal and off-diagonal
disorders, which we test numerically in the following sections.
Also notice that for Nc = 1 with only diagonal disorder
(tAA = tBB = tAB = tBA) the above procedure reduces to the
local TMT scheme. In this case, the diagonal elements of the
matrix in Eq. (19) will contribute cA and cB , respectively,

with the off-diagonal elements being zero (for Nc = 1 the
off-diagonal terms vanish because a given site can only be
either A or B). Hence, the typical density reduces to the local
scalar prefactor only, which has exactly the same form as in
the local TMT scheme.

Another limit of the proposed ansatz for the typical density
of states of Eq. (19) is obtained at small disorder. In this case,
the TMDCA reduces to the DCA for off-diagonal disorder as
the geometrically averaged local prefactor term numerically
cancels with the contribution from the linearly averaged local
term in the denominator of Eq. (19).

Finally, we also want to mention that the developed
cluster TMDCA fulfills all the essential requirements expected
of a successful cluster theory [15] including causality and
translational invariance.

We note that in our formalism, instead of performing the
very expensive enumeration of the disorder configurations
which scales as 2Nc, we instead perform a stochastic sampling
of the disorder configurations which greatly reduces the
computational cost enabling us to study larger systems. Larger
system sizes need fewer realizations. Since the convergence
criterion is achieved when the TDOS (ω = 0) does not
fluctuate anymore with iteration number, within the error
bars, our computational cost does not even scale as Nc. For a
typical Nc = 64 size cluster, about 500 disorder realizations
are needed to get reliable data, and this number decreases with
increasing cluster size.
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III. RESULTS AND DISCUSSION

To illustrate the generalized DCA and TMDCA algorithms
described above, we present our results for the effects of
diagonal and off-diagonal disorders in a generalized Anderson
Hamiltonian [Eq. (1)] for a three-dimensional system with
binary disorder distribution (VA = −VB) and random hopping
(tAA �= tBB, tAB = tBA) with other parameters as specified.
The results are presented and are discussed in Secs. III A and
III B.

A. DCA results for diagonal and off-diagonal disorders

The effect of off-diagonal disorder on the average DOS
calculated within the DCA for a cubic cluster (Nc = 43) is
presented in Fig. 1. The DOS we present in our results is a
local density of states calculated as

DOS(ω) = − 1

πNc

Nc∑
K=1

[Im G
AA

(K,ω) + Im G
AB

(K,ω)

+ Im G
BA

(K,ω) + Im G
BB

(K,ω)]. (21)

Notice that our DCA procedure for Nc = 1 reduces to the
original CPA-like BEB. For a fixed concentration cA = 0.5,
we examine the effects of off-diagonal disorder at two fixed
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FIG. 1. (Color online) The effect of off-diagonal disorder on the
average density of states calculated in the DCA scheme with Nc = 43.
Our DCA results for Nc = 1 corresponds to a single-site CPA BEB
scheme. We consider two values of local disorder potential below
(VA = 0.4) and above (VA = 0.9) the band-split limit and examine
the effect of changing the off-diagonal hopping strength (which
amounts to a change in the nonlocal potential). We start with the
diagonal-disorder case tAA = tBB = tAB = 1.0 and then consider
two off-diagonal-disorder cases: tAA = 1.5, tBB = 0.5 and tAA =
1.8, tBB = 0.2, respectively. We fix tAB = tBA = 0.5(tAA + tBB ) and
cA = 0.5. For this parameter range of off-diagonal disorder, we do not
observe a significant difference between the CPA (Nc = 1) and the
DCA (Nc = 43) results indicating that nonlocal intersite correlations
are weak.

values of the diagonal-disorder potential VA = 0.4 (below the
split-band limit) and VA = 0.9 (above the split-band limit).
The off-diagonal randomness is modeled by changes in the
hopping amplitudes tAA,tBB with tAB = 0.5(tAA + tBB). For
a diagonal-disorder case (top panel of Fig. 1) with tAA =
tBB = tAB = tBA we have two sub-bands contributing equally
to the total DOS; whereas as shown in the middle and bottom
panels, the change in the strength of the off-diagonal disorder
leads to dramatic changes in the DOS. An increase in the AA

hopping results in the broadening of the AA sub-band with
the development of a resonance peak at the BB sub-band.
For this parameter range both the DCA (Nc = 64) and the
CPA (Nc = 1) provide about the same results indicating that
disorder-induced nonlocal correlations are negligible.

In Fig. 2 we show the average density of states calculated for
fixed off-diagonal-disorder parameters and different diagonal-
disorder potentials VA. We again compare the local CPA
(Nc = 1) and the DCA (Nc = 43) results. To benchmark our
off-diagonal extension of the DCA, we also compare our
results with those obtained from exact diagonalization. For
small VA, there is no difference between the CPA (Nc = 1)
and the DCA (Nc = 43) results. As local potential VA is
increased, noticeable differences start to develop. We can
see that for larger VA a gap starts to open and is more
dramatic in the CPA scheme; whereas in the DCA (Nc =
43) this gap is partially filled due to the incorporation of
nonlocal intersite correlations which are missing in the CPA.
Furthermore, the DOS obtained from the DCA procedure
provides finer structures which are in basic agreement with
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FIG. 2. (Color online) The effect on the average density of states
of an increasing diagonal-disorder potential VA for a fixed off-
diagonal disorder calculated with our modified DCA scheme with
tAA = 1.5, tBB = 0.5, tAB = 0.5(tAA + tBB ), and cA = 0.5. Results
are obtained for Nc = 1 (corresponding to the CPA) and Nc = 43

cluster sizes. We also compare our DCA average DOS with the DOS
obtained using exact diagonalization (ED) for a 123 cubic lattice
cluster with 48 disorder realizations. For ED results, we used a
η = 0.01 broadening in frequency.
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FIG. 3. (Color online) The imaginary part of the self-energy
vs frequency ω for Nc = 1 (red dashed line) and Nc = 43 (solid
lines) at various K momenta points: (0,0,0), (π,0,0), (π,π,0), and
(π/2,π/2,π/2) for VA = 0.1 (top) and VA = 0.6 (bottom) diagonal-
disorder potential with tAA = 1.5, tBB = 0.5, tAB = 0.5(tAA + tBB ),
and cA = 0.5. For small disorder VA = 0.1, the self-energy for Nc = 1
is essentially the same as that of the various K points of the Nc = 43

cluster, indicating that nonlocal effects are negligible for such small
disorder. For a larger value of the disorder VA = 0.6, the single-site
and the finite cluster data differ significantly, which illustrates that
at larger disorder, the momentum dependence of the self-energy
increases and becomes important.

the DOS calculated with exact diagonalization for a cluster
of size 12 × 12 × 12. The agreement we get with ED results
is a good indication of the the accuracy of our extension of
the DCA to off-diagonal disorder. The additional structures
observed in the DOS for Nc > 1, which are absent in the CPA,
are believed to be related to the local order in the environment
of each site [15,31]. Notice that, although the DCA accounts
for nonlocal backscattering effects which lead to the Anderson
localization, the average local DOS does not capture the
transition as it is not an order parameter for the Anderson
localization.

To further illustrate the important effect of the nonlocal
contributions from the cluster, we also show in Fig. 3 the
imaginary part of the self-energy Im �(K,w) for Nc = 1
(dashed line) and for (Nc = 43) (solid lines) at different
values of cluster momenta K = (0,0,0), (π,0,0), (π,π,0), and
(π/2,π/2,π/2) for small VA = 0.1 (top) and larger VA = 0.6
(bottom) disorder potentials. At small disorder VA = 0.1, there
is a little momentum dependence for the Nc = 43 self-energy,
and different K momenta curves practically fall on top of
each other. The results for Nc = 1 and Nc = 43 are essentially
the same, which indicates that for small disorder the CPA still
presents a good approximation for the self-energy. On the other
hand, for larger disorder VA = 0.6 the Nc = 1 and Nc = 43

results differ significantly with the Nc = 43 self-energy having
a noticeable momentum dependence, indicating that nonlocal
correlations become more pronounced for larger disorder
values.

B. Typical medium finite cluster analysis of diagonal
and off-diagonal disorders Typical medium analysis

of diagonal disorder

To characterize the Anderson localization transition, we
now explore the TDOS calculated within our extension of the
TMDCA presented in Sec. II B. In the typical medium analysis,
the TDOS serves as the order parameter for the Anderson
localization transition. In particular, the TDOS is finite for
extended states and zero for states which are localized.

First we consider the behavior of the TDOS and compare it
with the average DOS for diagonal disorder. In Fig. 4 we show
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FIG. 4. (Color online) Diagonal-disorder case: The average den-
sity of states (dashed-dotted line) calculated within the DCA for
Nc = 1 (left panel) and Nc = 43 (right panel) and the typical density
of states shown as shaded regions for Nc = 1 (left panel) and
Nc = 43 (right panel), and the dashed lines for Nc = 63 (right
panel) are calculated within the TMDCA for diagonal disorder
tAA = tBB = tAB = tBA = 1, cA = 0.5, and various values of the
local potential VA = −VB . The TDOS is presented for several cluster
sizes Nc = 1, Nc = 43, and Nc = 63 in order to show its systematic
convergence with Nc. The average DOS converges for cluster sizes
beyond Nc = 43. The TDOS is finite for the extended states and zero
when the states are localized. The mobility edges extracted from the
vanishing of the TDOS are marked by the arrows (we show arrows
for Nc = 43 only). The extended states region with a finite TDOS is
always narrower for Nc = 1 as compared to the results of the Nc > 1
clusters, indicating that a single-site TMT tends to overemphasize the
localized states.
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our results for Nc = 1 (left panel) and Nc > 1 (right panel).
To demonstrate a systematic convergence of the TDOS with
increasing cluster size Nc, we present our data of the TDOS
for Nc = 1,43,63. Notice that Nc = 1 results for the TDOS
correspond to the single-site TMT of Dobrosavljević et al. [45],
and for average DOS they correspond to the ordinary CPA.
As expected [35,45], for small disorder (VA = 0.15) there
is not much difference between the DCA (Nc = 43) and the
TMDCA (Nc = 43) or between the CPA and the TMT for the
Nc = 1 results. However, there are subtle differences between
the results for finite Nc = 43 and single site Nc = 1 clusters
due to incorporation of spatial correlations. As the disorder
strength VA is increased (VA = 0.6), the TDOS becomes
smaller than the average DOS and is broader for the larger
cluster. Moreover, the finite cluster introduces features in the
DOS which are missing in the local Nc = 1 data. Regions
where the TDOS is zero while the average DOS is finite
indicate Anderson localized states, separated by the mobility
edge (marked by arrows). For Nc > 1 these localized regions
are wider, which indicates that the localization edge is driven
to higher frequencies. This is a consequence of the tendency of
nonlocal corrections to suppress localization. For even larger
disorder VA = 1, a gap opens in both the TDOS and the average
DOS leading to the formation of four localization edges, but
again the region of extended states is larger for the finite cluster,
indicating that local TMT (Nc = 1) tends to underestimate the
extended states region.

To further benchmark our results for the diagonal disorder,
we show in Fig. 5 a comparison of the average and typical
DOS calculated with the DCA and the TMDCA (Nc = 43)
as compared with the KPM [47–50]. In the KPM analysis,
instead of diagonalizing the Hamiltonian directly, the local
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FIG. 5. (Color online) Diagonal-disorder case. Comparison of
the average and typical DOS calculated with the DCA/TMDCA
and kernel polynomial methods (KPMs) [47] for diagonal disorder
with tAA = tBB = tAB = tBA = 1 at various values of local potential
VA and concentrations cA for cluster size Nc = 63. The kernel
polynomial method used 2048 moments on a 483 cubic lattice and 200
independent realizations generated with 32 sites randomly sampled
from each realization.

DOS is expressed in terms of an infinite series of Chebyshev
polynomials. In practice, the truncated series leads to Gibbs
oscillations. The KPM damps these oscillations by a mod-
ification of the expansion coefficients. Following previous
studies on the Anderson model, the Jackson kernel is used
[48]. The details of the implementation are well discussed in
Ref. [48]. The parameters used in the KPM calculations are
listed in the caption of Fig. 5. As is evident from the plots,
our TMDCA results reproduced those from the KPM nicely
showing that our formalism offers a systematic way of studying
the Anderson localization transition in binary-alloy systems.
Such good agreement indicates a successful benchmarking of
the TMDCA method [35].

Typical medium analysis of off-diagonal disorder

Next, we explore the effects of the off-diagonal disorder.
In Fig. 6, we compare the typical TDOS from the TMDCA
and average DOS from the DCA for several values of the
diagonal-disorder strength VA at fixed off-diagonal-disorder
amplitudes tAA = 1.5, tBB = 0.5, and tAB = 1.0. To show
the effect of a finite cluster with respect to incorporation
of nonlocal correlations, we present data for the single site
Nc = 1 and finite clusters Nc = 43 and 53. The TMT (Nc = 1)
again underestimates the extended states regime by having a
narrower TDOS as compared to Nc > 1. We also see that
the mobility edge defined by the vanishing of the TDOS
(marked by arrows for Nc = 43) systematically converges with
increasing cluster size Nc. For small disorder VA, both the
DOS and the TDOS are practically the same. However, as VA

increases, significant differences start to emerge. Increasing
VA leads to the gradual opening of the gap which is more
pronounced in the Nc = 1 case and for smaller disorder VA =
0.6 is partially filled for the Nc > 1 clusters. As compared to
the diagonal-disorder case (cf. Fig. 4), the average DOS and
TDOS become asymmetric with respect to zero frequency due
to the off-diagonal randomness.

In Figs. 7 and 8 we present the disorder-energy phase
diagram for both diagonal (Fig. 7) and off-diagonal (Fig. 8)
disorders calculated using the single TMT (Nc = 1) and the
nonlocal TMDCA (Nc > 1). To check the accuracy of the
mobility edge trajectories extracted from our typical medium
analysis, we compare our data with the results obtained with
the TMM.

The TMM [13,51,52] is a well-established numerical
method for calculating the correlation length and determining
the mobility edge of the disorder Anderson model. Its main
advantage is in its capability of capturing the effects from
rather large system sizes. Thus, the TMM provides good data
for a finite-size scaling analysis to capture the critical points
and the corresponding exponents. In our calculations, the
transmission of states down a three-dimensional bar of widths
M = [6,12] and length L = 2 × 104M are studied by adding
the products of the transfer matrices with random initial states.
The multiplication of transfer matrices is numerically unstable.
To avoid this instability, we orthogonalized the transfer-matrix
product every five multiplications using a LAPACK QR decom-
position [7]. The localization edge is obtained by calculating
the Kramer-MacKinnon scaling parameter �M [51]. This is
a dimensionless quantity which should be invariant at the
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FIG. 6. (Color online) Off-diagonal-disorder case. The left panel
displays results for Nc = 1, and the right panel displays results for
Nc > 1. The average density of states (dashed-dotted line) and the
typical density of states (shaded regions) for Nc = 1 (left panel),
Nc = 43 (right panel), and blue dashed lines for Nc = 53 (left panel)
for various values of the local potential VA with off-diagonal-disorder
parameters: tAA = 1.5, tBB = 0.5, tAB = 0.5(tAA + tBB ), and cA =
0.5. As in Fig. 4, we show the TDOS for several cluster sizes
Nc = 1, 43, and 63 in order to show its systematic convergence with
increasing cluster size Nc. The average DOS converges for cluster
sizes beyond Nc = 43. The TDOS is finite for the extended states
and zero for the localized states. The mobility edges are extracted as
described in Fig. 4.

critical point, that is, �M scales as a constant for M → ∞ [52].
Thus, we determine the boundary of the localization transition
vis-à-vis the critical disorder strength [53] by performing a
linear fit to �M vs M data: Localized states will have a negative
slope and vise versa for extended states. The transfer-matrix
method finite-size effects are larger for weak disorder where
the states decay slowly with distance and so have large values
of �M that carry a large variance in the data. Notice that
the CPA and the DCA do not suffer such finite-size effect
limitations for small disorder and are in fact exact in this limit.

The mobility edges shown in Figs. 7 and 8 were extracted
from the TDOS with boundaries being defined by zero TDOS.
As can be seen in Figs. 7 and 8, although the single-site TMT
does not change much under the effect of off-diagonal disorder,
the TMDCA results are significantly modified. The bands for
a larger cluster become highly asymmetric with significant
widening of the A sub-band. The local Nc = 1 boundaries are
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FIG. 7. (Color online) Disorder-energy phase diagram for the
diagonal-disorder case. Parameters used are as follows: tAA = tBB =
tAB = 1.0, and cA = 0.5. We compare the mobility edges obtained
from the TMT Nc = 1 (black dashed line), TMDCA with Nc =
43 (green dot-dashed line) and Nc = 63 (red solid line), and the
transfer-matrix method (TMM) (blue dotted line). The single site
Nc = 1 results strongly underestimate the extended states region
when compared with TMDCA results for Nc > 1. The mobility
edges obtained from the finite cluster TMDCA (Nc > 1) show
good agreement with those obtained from the TMM, in contrast to
single-site TMT. See the text for parameters and details of the TMM
implementation.

narrower than those obtained for Nc > 1, indicating that the
TMT strongly underestimates the extended states regime in
both diagonal and off-diagonal disorders. On the other hand,
comparing the mobility edge boundaries for Nc > 1 with those
obtained using TMM, we find very good agreement. This again
confirms the validity of our generalized TMDCA.

Next, we consider the effect of off-diagonal disorder for
various concentrations cA. In Fig. 9, we show the typical
and average DOS for several values of cA calculated with the
TMDCA and the DCA, respectively. As expected, when cA →
0, we obtain a pure B sub-band contribution (the top panel).
Upon gradual increase in the cA concentration, the number of
states in the A sub-band grows until the B sub-band becomes
a minority for cA > 0.5 and completely disappears at cA → 1
(the bottom panel). Again, we see that a finite cluster Nc = 53

provides a more accurate description (with finite details in
DOS and broader regions of extended states in TDOS) in
both average DOS and TDOS. The associated contour plots
for the evolution of the TDOS in the concentration range
of 0 � cA � 1 are shown in Fig. 10. The essence of these
plots is to show the overall evolution of the typical DOS for a
fixed local potential and off-diagonal-disorder parameters as
a function of the concentration cA. In the limit of cA → 0,
only the B sub-band centered around ω = −VA survives, and
for cA → 1, only the A sub-band centered around ω = VA

is present. For intermediate concentrations, we clearly have
contributions to the total typical density of states from both
species as expected.
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FIG. 8. (Color online) Disorder-energy phase diagram for the
off-diagonal-disorder case. Parameters used are tAA = 1.5, tBB =
0.5, tAB = 1.0, and cA = 0.5. The mobility edges obtained from
the TMT Nc = 1 (black dashed line), TMDCA Nc = 33 (green dot-
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(red solid line), and the TMM (blue dotted line). The single site
Nc = 1 strongly underestimates the extended states region especially
for higher values of VA. The mobility edges obtained from the finite
cluster TMDCA (Nc > 1) converge gradually with increasing Nc and
show good agreement with those obtained from the TMM, in contrast
to single-site TMT. See the text for parameters and details of the
TMM implementation.

Finally, we would like to comment on the possible further
development of the presented scheme. After certain gener-
alizations our current implementation of the typical medium
dynamical cluster approximation for off-diagonal disorder can
serve as the natural formalism for multiband (multiorbital)
systems [17]. Such an extension is crucial for studying disorder
and localization effects in real materials. Further development
towards this direction will be the subject of future papers.

IV. CONCLUSION

A proper theoretical description of disordered materials
requires the inclusion of both diagonal and off-diagonal
randomnesses. In this paper, we have extended the BEB single-
site CPA scheme to a finite cluster DCA that incorporates
the effect of nonlocal disorder. Applying the generalized
DCA scheme to a single-band tight-binding Hamiltonian
with configuration-dependent hopping amplitudes, we have
considered the effects of nonlocal disorder and the interplay
of diagonal and off-diagonal disorders on the average density
of states. By comparing our results with those from exact
numerical methods, we have established the accuracy of our
method. We found that nonlocal multisite effects lead to the
development of finite structures in the density of states and
the partial filling of the gap at larger disorder. Utilizing the
self-energy, we show as a function of increasing disorder
strengths, the importance of a finite cluster in characterizing
the Anderson localization transition. For small disorder the
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FIG. 9. (Color online) The average DOS (dot-dashed lines) and
the typical DOS (shaded regions) for various values of the concentra-
tion cA with off-diagonal-disorder parameters tAA = 1.1, tBB = 0.9,
and tAB = 1.0 at fixed local potential VA = 1.0 for Nc = 1 (left panel)
and Nc = 53 (right panel).

single-site and finite cluster results are essentially the same,
indicating that the CPA is a good approximation in the small
disorder regime. However, for a larger disorder we observe a
significant momentum dependence in the self-energy resulting
from the nonlocal correlations which are incorporated in the
DCA.

FIG. 10. (Color online) The evolution of the typical density of
states for Nc = 1 (left panel) and Nc = 53 (right panel) with the
change in the concentration 0 < cA < 1 at fixed diagonal- and off-
diagonal-disorder parameters: tAA = 1.1, tBB = 0.9, tAB = 1.0, and
VA = 1.0.
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Electron localization for off-diagonal-disorder models from
the typical medium perspective has been studied here. In
this paper, we generalized the TMDCA to systems with both
diagonal and off-diagonal disorders. Our developed method
can quantitatively and qualitatively be used to study the effects
of disorder on the electron localization, effectively for systems
with both diagonal and off-diagonal randomnesses.

We demonstrate that within the TMDCA, the typical
DOS vanishes for localized states and is finite for states
which are extended. Employing the typical DOS as an order
parameter for Anderson localization, we have constructed the
disorder-energy phase diagram for systems with both diagonal
and off-diagonal disorders. We have also demonstrated the
inability of the single-site CPA and the TMT methods to
accurately capture the localization and disorder effects in
both the average and the typical DOS, respectively. We
note that the single-site TMT, while being able to capture
the behavior for the diagonal and off-diagonal disorders,
strongly underestimates the extended regions. Also the TMT
is less sensitive to the off-diagonal randomness with the
mobility edges being only slightly modified as compared to the
diagonal case. In contrast, the finite cluster TMDCA results
are able to capture the considerable changes with a pronounced
asymmetry of the extended state region in the disorder-energy
phase diagram under the effect of the off-diagonal disorder as
compared to the diagonal case. Most importantly, the TMDCA
results are found to be in a quantitative agreement with the

exact numerical results. Comparing our results with kernel
polynomial, exact diagonalization, and transfer-matrix meth-
ods we find a remarkably good agreement with our extended
DCA and TMDCA. We numerically accurately investigate the
Anderson localization in systems with off-diagonal disorder
within the framework of the typical medium analysis. We
believe that the extended TMDCA scheme presents a powerful
tool for treating both diagonal and off-diagonal disorders on
equal footing and can be easily extended to study localization
in multiband systems.
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[14] P. Markoš, J. Phys. A 33, L393 (2000).
[15] A. Gonis, Green Functions for Ordered and Disordered Systems

(North-Holland, Amsterdam, 1992).
[16] P. Soven, Phys. Rev. 156, 809 (1967).
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