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Electronic correlations control the normal state of bulk high-Tc cuprates. Strong correlations also suppress
the charge transport through cuprate grain boundaries (GBs). The question then arises if these correlations can
produce magnetic states at cuprate GBs. We analyze the formation of local magnetic moments at the GB of a
correlated two-dimensional electron system, which is represented by an inhomogeneous Hubbard model. The
model Hamiltonian is diagonalized after the implementation of a mean-field decoupling. The formation of local
magnetic moments is supported by a sufficiently strong variance in the bond kinetic energies at the GB. Local
scattering potentials can assist or suppress the formation of a magnetic GB state, depending on the details of
their spacial distribution. Grain-boundary-induced stripes are formed in the vicinity the GB and decay into the
bulk. Moreover, we observe the buildup of conducting channels which are confined by magnetic clusters. The
grain boundary resistance increases at decreasing temperatures. This low-temperature behavior is caused by the
suppression of current correlations in the state with local magnetic GB moments. The resistance upturn at low
temperatures is in qualitative agreement with experiments.
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I. INTRODUCTION

Interfaces of high-temperature copper oxide superconduc-
tors have been in the focus of intensive experimental and
theoretical research for more than 25 years (see the extended
reviews, for example Refs. [1,2], and references therein). In
this area of research application-oriented aspects as well as
fundamental theoretical issues are concerned and related in
an intriguing way. For instance, cuprate grain boundaries
display an exponential suppression of the critical current with
increasing misalignment angle between the grains [1,3]. This
behavior is of considerable importance for the determination of
the supercurrent through Josephson junctions and the design
of superconducting cables. Moreover, a detailed theoretical
understanding allows us to identify the nature of the recon-
structed electronic states at these grain boundary interfaces
and to make reliable predictions on the charge accumulated at
the interface, on the formation of magnetic moments, and on
the distribution of current densities through a grain boundary.

The exponential suppression of the supercurrent [1,3] is
related to static charge fluctuations along the grain bound-
ary [4], and the magnitude of the suppression is controlled by
electronic correlations [5]. The charge fluctuations originate
from potential fluctuations and a distribution of bond kinetic
energies, both of them produced by dislocation cores and a
nonstoichiometric composition of the grain boundary. The
charge profile across the grain boundary is dependent on the
misalignment angle [4]. Large-angle grain boundaries always
allow for narrow streaks in the charge profile where filling is
close to one hole per copper site. There, electronic correlations
are most effective and suppress transport through the grain
boundary, which explains the observed order of magnitude of
the exponential suppression [5].
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Strong electronic correlations in the bulk cuprates are
responsible for antiferromagnetism at and close to half-
filling. Consequently, it suggests itself that cuprate interfaces
and grain boundaries are also affected by strong electronic
correlations [6,7] and display magnetism [8], or are related
to nanoscopic phase separation [9]. It is difficult to verify
grain boundary magnetism directly. However, the observed
linear increase of the grain boundary resistance with de-
creasing temperature [10,11] has been tentatively related to
the formation of local moments [10]. On the other hand,
nonmagnetic impurities in bulk cuprates are well known to
generate magnetic moments (see Refs. [12–15], and references
therein). Yet grain boundaries are extended inhomogeneities,
and the electronic interface state may depend on the respective
properties of the rather one-dimensional (1D) grain boundary
structure.

In this work we investigate conditions on the microscopic
grain boundary (GB) setup that are favorable for the formation
of magnetic moments along the GB, then present the pattern of
charge currents through the GB, and analyze the temperature
dependence of the GB resistance. Actually, the properties of
cuprate GBs [10,11,16–19] at elevated temperatures above Tc

have not been investigated so intensively but it is in this regime
that magnetic moments possibly form.

Cuprate grain boundaries are characterized either as small
or large angle GBs: Small angle GBs with misorientation
angles up to 10◦ display a periodic series of dislocations
to match the two lattices, which are joined at the GB. In
the framework of continuous elasticity theory, Gurevich and
Pashitskii [20] modeled the dislocation cores as insulating,
antiferromagnetic regions and explain the suppression of the
critical current with increasing angle. The insulating core
regions naturally provide a strong barrier for current flow and
thereby produce current channels between the cores. However,
the cores start to overlap beyond approximately 10◦, and
the model does not apply in the large-angle regime. There,
a notable atomic scale reconstruction takes place to release
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strain, and a microscopic description is necessary. A molecular
dynamics approach [4] identifies well the structural units of
atomic configurations along the GB and allows us to set up a
microscopic modeling of the electronic phase in the presence
of a GB. The exponential dependence of the critical current
on the GB angle for large-angle GBs has been determined
within such a microscopic approach. The possible formation
of GB magnetic moments has, to our knowledge, not been
investigated microscopically.

To induce magnetism on the GB, we refer to a scenario
where the local kinetic energies (hopping matrix elements t

in the bulk) are homogeneously reduced along the GB with
respect to their bulk values. Assuming that the local Coulomb
interaction U between charge carriers is the same at the GB and
in the bulk, then a reduced value of the ratio of t/U at the GB
may well control interfacial magnetism sufficiently close to
half-filling. However, neither the hopping matrix elements nor
the local potential scatterers are homogeneously distributed
along the GB, and the formation of an inhomogeneous state
needs a more thorough analysis.

In the first part of this paper (Secs. II and III), we investigate
the formation of magnetic moments at the GB when varying
the bond kinetic energies and potential scattering amplitudes
in the structural units that are present in a large angle
GB. In the second part (Sec. IV) we discuss the buildup
of conducting channels through the GB in the presence
of a magnetic interface state and the implications for the
temperature dependence of the GB resistance (several details
are investigated in Ref. [21]).

II. GRAIN BOUNDARY MODEL

To assess the importance of electronic correlations on the
GB state we model the GB with an inhomogeneous one-band
Hubbard model with distinct hopping matrix elements at each
bond and local potential scatterers, which parametrize the
charge variations in distorted CuO2 plaquettes. The on-site
Coulomb interaction U is approximately independent of the
site although unequal screening through the neighboring O
sites may in principle modify U inhomogeneously. This
latter effect is neglected in our setup. The projection onto
a one-band model is a simplification, which is valid if the
energy scales for interband transitions are large with respect to
the excitation energies at the GB. For strong potential scatterers
this is not necessarily the case. However, we emphasize
that in previous work the projection onto the one-band
model produced excellent results for the dependence of the
critical current on the misalignment angle [4,5]. These results
suggest that interband excitations still have sufficiently low
weight to contribute significantly. In this paper we do not
elaborate further on the corrections from multiband behavior
but still consider it a valid concern to be investigated in the
future.

The inhomogeneous one-band Hubbard model with poten-
tial scatterers parametrized by Vi is

H = −
∑

〈i,j〉,σ
tij c

†
iσ cjσ + U

∑
i

n̂i↑n̂i↓ +
∑

i

(Vi − μ)n̂i , (1)

where n̂i = ∑
σ n̂i,σ = ∑

σ c
†
iσ ciσ .
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FIG. 1. (Color online) Distribution of hopping matrix elements
along the GB. The GB bonds are given by the two inner vertical
bonds and the horizontal bonds within the three lines of GB sites.

In this work we will focus exclusively on large-angle tilt
GBs where a sequence of structural units constitutes the
GB: [18,19] atomic patterns are repeated quasiperiodically
along the GB. We define the GB through the hopping matrix
elements tij for the bonds (see Fig. 1) and local potentials Vi

(see Figs. 4 and 5) for periodically repeated structural units
of three-sites width (perpendicular to the GB) and a length of
six sites (along the GB). The distribution of hopping matrix
elements tij for the bonds within the GB are approximately
adjusted to tilt GBs with misalignment angles of 30◦ (cf.
Ref. [4]). In our model setup the coordination number for sites
within the GB is always four. This assumption simplifies the
evaluation but does not modify our results on GB magnetism,
which we want to discuss rather qualitatively.

The electron-electron interaction is taken into account only
through the on-site Coulomb interaction U , which allows to
discuss the emergence of GB magnetism in the mean-field
evaluation of the model Hamiltonian (1). If not otherwise
specified, we take U = 2t , with t the bulk hopping value,
and adjust the chemical potential μ so that the average value
of the electronic density is fixed to n = 0.86. The value of U is
chosen rather moderate in order to keep the (inhomogeneous)
mean-field evaluation controlled and to prevent the system
to be overly biased towards a magnetic state. The mean-field
Hamiltonian for the GB model is

HMF = −
∑

〈i,j〉,σ
tij c

†
iσ cjσ +

∑
i,σ

[
U

2
(ni − σmi)

+ (Vi − μ)

]
c
†
iσ ciσ −

∑
i

U

4

(
n2

i − m2
i

)
(2)

where ni = ∑
σ 〈n̂i,σ 〉 and mi = ∑

σ σ 〈n̂i,σ 〉 are the local
expectation values of electron density and magnetic moment,
respectively. Both depend on the temperature T ; we set kB = 1
in this work. In the following section, we present the results
for the diagonalization of this mean-field Hamiltonian on a
42 × 20 site lattice, with 20 sites and open boundary conditions
in the direction perpendicular to the GB and 42 sites and
periodic boundary conditions in the direction parallel to the
GB. Larger systems (such as 60 × 40 sites) have been tested
to confirm the convergence of the presented results.
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FIG. 2. (Color online) Site-dependent magnetization mi for a
homogeneous GB: tij = 0.5t for two bonds across the boundary.
The on-site Coulomb interaction is globally U = 2t , the temperature
is set to T = 0.11t , and μ = −0.6t fixes a filling of n = 0.86. The
GB is in lines 9–11.

III. MAGNETIC STATES AT THE GB

As preliminary test we perform a diagonalization of HMF

with Vi = 0 and tij = 0.5t at all GB bonds of Fig. 1 and
determine the self-consistent solution. The values of U = 2t

and n = 0.86 are sufficiently high and close to half-filling,
respectively, that an antiferromagnetic magnetization pattern
is generated at the GB (see Fig. 2). In fact, the magnetic state
extends laterally into the bulk on further three atomic sites off
the GB, which indicates the nonlocal character of the magnetic
correlations. This observation will be readdressed below.

Next we investigate the relevance of a distribution of
bond kinetic energies on the formation of the magnetic
state. Exemplarily, we take the distribution of hopping matrix
elements, which is depicted in Fig. 1. Again sizable magnetic
moments are formed at the GB and decaying magnetic
oscillations are seen in the nearby bulk regions (Fig. 3). This
buildup of magnetic moments at the GB is expected in view of
the previous result. The moments are strongest where the bonds
to neighboring sites (parametrized by tij ) are weakest. The
rather antiferromagnetic character of the moment alignment
in each structural unit reflects the gain in kinetic energy of
antiparallel with respect to parallel alignment. The electronic
density, that is, the expectation value of the site occupation also
varies in the GB region: it is largest in the middle of the GB
where the magnetization is highest [see Fig. 3(b)]. Such an
association is anticipated from the homogeneous mean-field
solution. However, the variations are limited to a range of 0.81
to 0.93, and the highest occupation is not necessarily on the
sites with largest magnetic moment.

More compelling is the question if magnetic moments can
be formed through the variation of bond kinetic energies within
the GB. The essential issue is if disorder within the inter-
face can generate magnetism for given Coulomb interaction
strength. In fact, from Table I one learns that increasing the
variance 〈�t〉 of the bond kinetic energies induces a transition
from a nonmagnetic state at finite temperature T = 0.11t to
a state with robust magnetic moments for 〈�t〉c � 0.5t at
constant temperature and approximately the same average
bond energy 〈t〉 = 0.65t . Here, the maximal magnetic moment
in a structural GB unit is identified from m = maxi |mi |
where i is a site in the periodically repeated structural unit

FIG. 3. (Color online) Local magnetization mi (top) and electron
occupation number ni (bottom) at the GB defined through Fig. 1 for
a (60×40) site system with periodic and open boundary conditions
in the horizontal and vertical directions, respectively. The control
parameters are U = 2t , T = 0.11t , and the filling is n = 0.86. The
GB is confined to lines 20–22. The figure does not display the entire
(60 × 40) system.

along the GB. Average and variance are taken from sums
over the bonds of a structural unit: 〈t〉 = 1/Nb

∑
〈i,j〉 tij and

〈�t〉 = 1/Nb[
∑

〈i,j〉 t
2
ij ]

1
2 , where the sum runs over the Nb

bonds of the structural unit at the GB. The average magnetic
moments in the systems with a variance 〈�t〉 larger than the
critical variance 〈�t〉c are approximately independent of 〈�t〉.
However, they increase with increasing U .

Eventually, we introduce on-site scattering potentials Vi

to examine their impact on the magnetic state. They arise
from a nonstoichiometric composition of the structural units
at the GB and may act repulsively (positive potential) or
attractively (negative) for electronic GB states; the latter is,
for example, the case for missing oxygen ions (vacancies). It
is straightforward to include these local potential scatterers
in the diagonalization. Weak scattering with |Vi | < U does
not modify the magnetic state significantly. Here, we consider
rather strong scatterers with |Vi | > U , viz. |Vi | = 10t and 20t ,
which is in the same range as the scattering potentials identified
in Ref. [4] for cuprate large-angle GBs. For the analysis of the

TABLE I. GB magnetization m = maxi |mi | in dependence on the
variance 〈�t〉 of the hopping amplitudes tij within a GB structural
unit. Different configurations with approximately equal 〈t〉 have been
evaluated for T = 0.11t and U = 2t . The GB quantities 〈�t〉 and 〈t〉
are in units of the bulk t .

〈t〉 −0.64 −0.64 − 0.69 − 0.66 − 0.67
�t 0.36 0.40 0.50 0.57 0.59
m 0 0 0.5 0.4 0.4
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FIG. 4. (Color online) GB with hopping amplitudes from Fig. 1
and potential scatterers V1,2. (a) Scheme for the potential scatterers
in a GB structural unit. (b) Local magnetization mi and (c) electron
occupation number ni for a (42×20) site system. The scheme from (a)
translates into a potential V1 at each first site (modulo 6) of line ten and
V2 correspondingly in line 11. Here V1,2 = 20t , U = 2t , T = 0.11t ,
and the filling has been fixed to n = 0.86.

magnetic state, the sign is not relevant in the case of a strong
local potential: a positive potential produces a nearly empty
site whereas a negative potential attracts two electrons and
generates a doubly occupied site. In both cases the site is
nonmagnetic.

We distinguish two scenarios: assisted magnetization and
suppression of local moments. Obviously, the sites with
strong potentials do not allow for the formation of local
magnetic moments. This is confirmed by the magnetization
patterns in Fig. 4(b). For positive local potentials V1,2 [see
Fig. 4(a) for the assignment of the sites], we identify them
as empty sites Fig. 4(c)] where the magnetization is zero
[Fig. 4(b)]. The three sites across the GB that carry the
strongest magnetization display nearly unaltered magnetic
moments when the potentials are set [cf. Fig. 3(a) for Vi = 0
and Fig. 4(b) for V1,2 = 20t]. Surprisingly though, other sites
carry a stronger magnetic moment for finite potential—most
pronounced is the increase of magnetic moment on the site
which is on the left to the scatterer in line 10. The reason
for this increase is the additional inhomogeneity, which is
introduced through the potential scatterers. In particular, the
addressed site (line 10, row 4 modulo 6) suffers a decrease of

FIG. 5. (Color online) GB with hopping amplitudes from Fig. 1
and potential scatterers V1,2,3. (a) Scheme for the potential scatterers in
a GB structural unit. (b) Electron occupation number ni for a (42×20)
site system. The potentials are V1 = 10t in line 10, V2 = 20t in line
11, and V3 = 10t in line 12 according to the scheme of (a). The
occupation is minimal on the sites (in blue) where the potentials are
set. The control parameters are U = 2t , T = 0.11t , and the filling is
n = 0.86. The local magnetization is zero for this configuration and
is therefore not displayed.

bond kinetic energy as the nearest-neighbor site to the right
is constrained to stay empty on account of the strong positive
potential. In this scenario, the potential scatterers of either
sign assist the buildup of magnetism. We note that placing a
strong potential scatterer on a site that had a large magnetic
moment in the absence of the scatterer—for example, on the
site in line 11 and row 4, which carries the strongest moment
in Fig. 4(b)—quenches the moment on this site but does not
suppress magnetism substantially at other sites. In this respect,
GB magnetism appears to be robust.

A different scenario can be generated with a specific choice
of a scattering-potential profile. In Fig. 5 three potential
scatterers have been introduced in the GB structural unit. This
setup results in a suppression of magnetism along the GB (not
displayed in Fig. 5). The origin for this suppression is tied
to the distinct distribution of occupation numbers: the strong
on-site potentials not only annihilate the magnetic moments at
the respective sites of the scatterers but also induce a sizable
increase in the electronic occupation of nearby sites [Fig. 5(b)]
well beyond single occupation; there the occupation number
is close to 1.3. Consequently, in this setup, the occupation
numbers are either high or low at all the sites, which carried the
strong magnetic moment in the absence of on-site potentials.

It remains to be examined if the latter scenario with a
suppression of magnetism is more realistic for the actual
cuprate GBs than the scenario with robust magnetism. A
more detailed analysis with data from electronic structure
evaluations has to be implemented which, however, is not
feasible at present. Certainly, the potential scattering is strong
at sites where nearby oxygen atoms are missing. The oxygen

094205-4



FORMATION OF MAGNETIC MOMENTS AND RESISTANCE . . . PHYSICAL REVIEW B 90, 094205 (2014)

FIG. 6. (Color online) GB-induced stripes. Local magnetization
mi (left) and electron occupation number ni (right) at the GB defined
through Fig. 1 for U = 3t , T = 0.08t , and filling n = 0.86.

vacancies also misalign the positions of the Cu sites, which,
in the majority of the cases, leads to a smaller hopping
amplitude to nearest-neighbor sites (see Fig. 3 of Ref. [4]).
Those neighbor sites with a reduced hopping amplitude would
probably form magnetic moments but a higher occupation of
the sites could suppress the magnetic moment. Although such
correlations between sites with strong potentials and bonds
with reduced hopping amplitudes and sizable shifts in site
occupation exist, it is not clear from the previous evaluations
if magnetism is suppressed or rather assisted. This competition
has to be explored in a prospective investigation.

Finally, we readdress the magnetic oscillations, i.e. mag-
netic stripes, which extend from the GB into the bulk where
they decay after several periods. It is well established that
models with built-in electronic correlations display stripe
states [22–25] in real space mean-field evaluations (see, for
example, Refs. [26–28]). Here, the stripes are induced by
the inhomogeneity of the GB but the chosen value of U/t

is not sufficiently large to support them in the bulk phase. The
GB-induced stripes (Fig. 6) are separated by nonmagnetic lines
with lower electron occupation, which constitute antiphase
domain walls. The closer to half-filling the wider the stripes,
in agreement with previous results for the bulk stripe phase.
Moreover, stripes can be pinned or induced by impurities and
line defects [26,29].

IV. NORMAL STATE TRANSPORT AT THE GB

The resistance of a GB can be calculated either from the
Landauer approach to mesoscopic conductors and barriers

or from the Kubo formula for an inhomogeneous electronic
system (see Sec. V in the book by Y. Imry [30] for an
introductory discussion, and Refs. [31–33] for the compat-
ibility of the two approaches). It is not our intention to
investigate the normal state transport at the GB in depth.
In connection with the considered local moment formation
we want to find the pattern of current densities at the GB
and determine the GB resistance R(T ). For this purpose the
evaluation of the Kubo linear response formula is best suited.
Summation of the current densities over appropriate bonds in
a line parallel to the GB will allow us to identify the total
current and consequently the resistance of the GB system. The
resistance R(T ), as derived from the Kubo formula, is to be
identified with that from a two-terminal measurement in an
experimental determination of R(T ) [30–33]. However, with
the large number of channels in the 2D setup, the contact
resistance contributes little to R(T ), and the result of the
Kubo formula evaluation may be approximately associated
with the GB resistance. We like to mention that the criteria by
Scalapino, White, and Zhang [34], which allow beautifully to
distinguish between insulating, metallic, and superconducting
states through the zero-frequency limit of the current-current
correlation function, do not apply here, as the GB breaks
the translational invariance in all directions and one cannot
obtain the long-wavelength q → 0 limit. The evaluation of the
current-current response has to be performed in real space.

In linear response theory the nonlocal conductivity is
calculated from the commutator of the paramagnetic part of
the current operator jp through

σαβ(r,r′,ω) = 1

iω

(∫ ∞

−∞
d(t − t ′)eiω(t−t ′)

(−i

�

)
× θ (t − t ′)

)

×〈[
j p
α (r,t),j p

β (r′,t ′)
]〉

−
〈∑

σ

tr,r+aα
c†rσ cr+aασ + H.c.

〉
δα,βδr,r′

)
.

The paramagnetic component of the current operator is
expressed by

j p
α (r) = ie

2�
c†rσ (tr,r+aα

cr+aασ − tr,r−aα
cr−aασ ) + H.c., (3)

where the vector r + aα is the position of the nearest-neighbor
site to r in the direction indicated by the index α. With the
unitary transformation onto fermionic operators γ

†
mσ and γmσ :

c†rσ =
∑
m

u

mσrγ

†
mσ , crσ =

∑
m

umσrγmσ (4)

one diagonalizes the Hamiltonian (1). One finds for the
nonlocal dc conductivity:

σ dc
αβ(r1,r2) = e2π

4a2�
lim
ω→0

∑
m,n,σ

f (Em) − f (En)

�ω
× D(Em − En + �ω,�)

×[(
tr1,r1−aα

u∗
mσ (r1−aα ) − t∗r1,r1+aα

u∗
mσ (r1+aα )

)
unσr1u

∗
nσr2

(
tr2,r2+aβ

umσ (r2+aβ ) − t∗r2,r2−aβ
umσ (r2−aβ )

)
+ (

tr1,r1+aα
umσ (r1+aα ) − t∗r1,r1−aα

umσ (r1−aα )
)
u∗

nσr1
unσr2

(
tr2,r2−aβ

u∗
mσ (r2−aβ ) − t∗r2,r2+aβ

u∗
mσ (r2+aβ )

)
+(

tr1,r1−aα
u∗

mσ (r1−aα ) − t∗r1,r1+aα
u∗

mσ (r1+aα )

)
unσr1umσr2

(
tr2−aβ ,r2u

∗
nσ (r2−aβ ) − t∗r2,r2+aβ

u∗
nσ (r2+aβ )

)
+ (

tr1,r1+aα
umσ (r1+aα ) − t∗r1,r1−aα

umσ (r1−aα )
)
u∗

nσr1
u∗

mσr2

(
tr2,r2+aβ

unσ (r2+aβ ) − t∗r2,r2−aβ
unσ (r2−aβ )

)]
(5)
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In the absence of a magnetic field, the tri,ri±aα
are real and the

coefficients umσri may be chosen real.
The dissipative part of the response function (5) is con-

trolled by the Dirac δ function, i.e., D(Em − En + �ω,η)
is in fact δ(Em − En + �ω) for the system defined by the
Hamiltonian (2) with respective eigenvalues Em. As the system
is finite, the spectral function is composed of δ functions. The
true GB system is, however, coupled to a bath with a continuum
of excitations. This bath may be provided by phonons or by
the leads. The standard scheme to allow for dissipation of a
finite system coupled to a bath is to replace the δ functions
by Gauss functions D(Em − En + �ω,η) of width η so that
the spectrum becomes continuous. This has been discussed
extensively in the literature on mesoscopic electronic systems
(see, for example, Ref. [30], and references therein). We
consider the case where η is larger than the distance between
adjacent energy levels.

With the determination of σ dc
αβ(r,r′) through the eigenvec-

tors and eigenvalues of Hamiltonian (2) one may evaluate the
current density j(r) at any point in the system for given electric
field E(r′):

jα(r) =
∑

r′

∑
β

σ dc
αβ(r,r′)Eβ(r′). (6)

Here we assume a constant field E0 across the system.
This evaluation neglects charge inhomogeneities and the
corresponding screening. In order to cope with these effects
one would have to include nonlocal Coulomb interaction
terms, which, however, is beyond the present assessment based
on the Hubbard model. The values of screening lengths in the
cuprates are not precisely known but near optimal doping they
are expected to be of the order of a lattice spacing or less (cf.
Ref. [4]). Correspondingly, we estimate that the corrections
due to nonlocal Coulomb interactions do not change our
predictions qualitatively.

The pattern of local current densities is displayed in
Fig. 7. The apparent feature is the formation of conducting
channels. This property is anticipated because the hopping
amplitudes are small on the bonds in the area between the
channels. However, it is important to realize that the magnetic
moments are formed in this area. Correspondingly, we have
the scheme that reduced bond kinetic energies within the
GB allow for the formation of local magnetic moments if
the local electron occupations are not far from one and if
on-site Coulomb repulsion is not too small (larger than the
bond kinetic energies). These regions with reduced hopping
amplitudes block the current through the GB and give rise
to current channels with a width of interatomic Cu distances.
The current pattern for an electric field parallel to the GB
[Fig. 7(b)] is consistent with that for fields perpendicular to the
GB [Fig. 7(a)]. In both cases one observes interference patterns
from the periodically repeated conducting channels. These
patterns extend well into the bulk: the interference produces
deviations from the uniform bulk current density of 25% at
a distance of the order of the GB width (measured from the
GB edge). The GB is not mirror symmetric, and therefore one
observes slight deviations in the current patterns above and
below the GB in Fig. 7.

FIG. 7. (Color online) Current-density pattern for a GB with
hopping amplitudes from Fig. 1. The external field is perpendicular to
the GB in (a) and parallel to the GB in (b). The local current densities
(in a.u.) are determined for U = 2t , T = 0.05t and filling n = 0.86
from Eqs. (5) and (6).

The resistance of a GB is controlled by a number of
elastic and inelastic scattering processes, and not all of them
are included in our evaluation—certainly, scattering on local
phonon modes, on orbital or charge transfer excitations, and
Kondo screening are not included. Here, we focus on the
physics covered in our modeling, i.e., magnetic moment
formation and the buildup of conducting channels and barriers
at a GB with disorder in the hopping amplitudes. Again we
take the distribution of hopping matrix elements assigned to
the GB bonds in Fig. 1. The electric current I through the GB
system is identified from I = ∑

i∈L j⊥(ri) · a where we sum
over current-density components in the direction perpendicular
to the GB along a line L parallel to the GB (in the bulk area).
In fact, the current-density components parallel to the GB sum
up to zero for this situation with an E perpendicular to the GB.
The lattice constant in the bulk is a. The conductance results
from the relation I = GV where the voltage drop V across the
system is determined by E. The resistance R(T ) is 1/G(T ) and
we evaluated R(T ) in the temperature range 0.01t � T � 0.22t
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R
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FIG. 8. (Color online) Temperature dependence of the GB resis-
tance for U = 0 (blue dots) and U = 2t (red squares) at n = 0.86 for
a (60×40) site system. The resistance is normalized with respect to
its value at the lowest evaluated temperature for U = 0.

with finite GB magnetization. The magnetic moments are lost
for temperatures above approximately Tc ∼ 0.22t .

The resistance shows a nonmonotonous temperature be-
havior: it decreases slightly for decreasing temperatures (at
the high-temperature side) and then increases towards low
temperatures. This behavior is observed for both U = 0 and
U = 2t , however, the resistance minimum is shifted to higher
temperatures for the U = 2t and the increase on the low
temperature side is significantly more pronounced for the GB
with magnetic moments (see Fig. 8).

The correlation-independent increase of R(T ) at the high-
temperature side is expected for this system and is related to
the Fermi function factors in the expression for σ dc(T ). The
two curves for U = 0 and U = 2t converge for temperatures
above the magnetic transition. This temperature dependence at
the high-temperature side may be masked by that of inelastic
scattering processes in real systems.

The increase of R(T ) for temperatures well below 0.1t is
better suited to characterize the investigated GB system. The
local current at the GB is controlled by three distinct physical
factors in σ dc(T ) of Eq. (5): the density of states, the correlation
of electron momenta, which transit through the GB barrier, and
the relaxation time of inelastic scattering processes.

The latter is implemented in D(Em − En + �ω,η) through
a finite broadening η. We assume a temperature-independent
broadening in this work and focus on the impact of a magnetic
GB state on the density of states (DOS) and electronic
momenta.

The local density of states (LDOS) for a site i is calculated
from Ni(E) = ∑

m,σ u

i,m,σ ui,m,σ δ(E − Em) and one obtains

the DOS from N (E) = ∑
i Ni(E). Whereas the shape of the

LDOS at sites distant from the GB is a smoothed out DOS of
an infinite square lattice (see Fig. 9), the LDOS at GB sites
deviates significantly from the bulk DOS. Most prominently,
for sufficiently large values of U , the GB LDOS develops a dip
above the Fermi energy for temperatures below the transition
to a magnetic GB. This pseudogap behavior of the LDOS at
sites within the GB is expected, as it reflects the formation
of a magnetic state: a site with a magnetic moment has a

4 3 2 1 0 1 2 3 4

200

400

600 U 2t
U 0

E/t

U=2t

U=0
t · N(5,3)(E)

FIG. 9. (Color online) LDOS Ni(E) for a site far from the GB.
The site coordinate i is at (5,3) in a (60 × 40) site system. The blue
data points are calculated for U = 0, the red for U = 2t . The chemical
potential is at zero energy and T = 0.02t .

high LDOS close to the Fermi edge for the corresponding
spin direction whereas the opposite spin direction belongs to a
high-energy state above the pseudogap (see the spin-resolved
LDOS in Fig. 10).

Irrespective of the detailed dependence of Ni(E) on site
i, the DOS N (E) times the static current-current correlation
factor in Eq. (5) is a convex bended function at the Fermi
energy for U = 0. This function is not T dependent for
U = 0 but the convex bended function, when multiplied by
the derivative of the Fermi function, produces an increase
in

∑
i σ

dc
αβ(ri,rj) of Eq. (5) with increasing temperature. This

observation explains the temperature dependence of σ dc(T )
for U = 0—and evidently the low-temperature dependence of

4 3 2 1 0 1 2 3 4

100

200

300

400

500

T 0.10t,
T 0.07t,
T 0.02t,
T 0.10t,
T 0.07t,
T 0.02t,

E/t

t · N↑(3,21)(E)

t · N↓(3,21)(E)

T = 0.02t ↑
T = 0.07t ↑
T = 0.10t ↑
T = 0.02t ↓
T = 0.07t ↓
T = 0.10t ↓

FIG. 10. (Color online) Spin-resolved LDOS for a site at the GB
that is blocked by a local moment (between two conducting channels).
The site coordinate is at (3,21) in a (60 × 40) site system. The curves,
which are peaked below the chemical potential (at zero energy),
present the LDOS for the up-spin direction with blue points at T =
0.02t , red at T = 0.07t , and beige at T = 0.1t . The curves with
the major part of their weight above the chemical potential are the
corresponding LDOS data points for down-spin direction.
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R(T ) for U = 0. We emphasize that this effect is rather small
and may depend on the detailed DOS and the proximity of the
chemical potential to a van Hove singularity.

For finite on-site Coulomb interaction U = 2t , a different
mechanism causes the remarkably stronger increase of R(T )
in the range of the smallest temperatures at which R(T ) was
evaluated (Fig. 8). The temperature dependence of σ dc(T ) of
Eq. (5) and, consequently, of R(T ) is also controlled by the
magnitude of the current-density correlations. In Eq. (5), the
current-density correlations are expressed by the quartic terms
in the difference of neighboring state eigenvectors umri±aα

times the corresponding hopping matrix elements tri,ri+aα
at

two distinct sites r1 and r2 within the entire system. For the
purpose to estimate this contribution we introduce a correlation
function C

αβ

i , which is a local density of current correlations
and which depends on the direction aα of the local current and
aβ of the applied electric field [the current correlation factor of
Eq. (5) is taken real as we do not consider an external magnetic

(a)

4 3 2 1 0 1 2 3 4

0.0001

0.0002

0.0003

0.0004

U 2t
U 0

E/t

t · Cyy
(1,21)(E)

U=2t
U=0

(b)

4 3 2 1 1 2 3 4

U 2t
U 0

t · Cyy
(3,21)(E)

E/t

U=2t
U=0

0.00001

0.00001

FIG. 11. (Color online) Local density of current correlations
C

yy

i (E) of Eq. (7). The y direction is perpendicular to the GB. The
top panel displays C

yy

i (E) for a site i = (1,21) within a conducting
channel. The bottom panel shows C

yy

i (E) for a blocked site (3,21)
in between two conducting channels of the GB. The temperature is
T = 0.02t , the blue data points are at U = 0 and the red points at
U = 2t .

field here]:

C
αβ

i (E) =
∑
m,n,σ

∑
rj

δ(E − En)

×[
umσr1

(
tr1,r1−aα

unσ (r1−aα ) − tr1,r1+aα
unσ (r1+aα )

)
×(

tr2−aβ ,r2umσ (r2−aβ ) − tr2,r2+aβ
umσ (r2+aβ )

)
unσr2

+unσr1

(
tr1,r1+aα

umσ (r1+aα ) − tr1,r1−aα
umσ (r1−aα )

)
×(

tr2,r2−aβ
umσ (r2−aβ ) − tr2,r2+aβ

umσ (r2+aβ )
)
unσr2

]
.

(7)

Evidently, a site that is blocked by a local moment will
contribute less to the local current density than sites which form
a conducting channel through the GB barrier. In Figs. 11(a)
and 11(b) we display the energy resolved current-correlation
factor C

yy

i at various temperatures for sites i in a conducting
channel and blocked sites, respectively. The direction y is
perpendicular to the GB. Clearly, C

yy

i is reduced in the

(a)

4 3 2 1 0 1 2 3 4

0.0001

0.0002

0.0003

0.0004
U 2t
U 0

E/t

U=2t
U=0

t · Cyy
(5,3)(E)

(b)

4 3 2 1 0 1 2 3 4

0.0001

0.0002

0.0003

0.0004
U 2t
U 0

E/t

U=2t
U=0t · Cyy

(5,3)(E)

FIG. 12. (Color online) Local density of correlations C
yy

i (E) of
Eq. (7) for a site i = (5,3) far from the GB. The temperature is
T = 0.02t for (a) and T = 0.12t for (b), respectively; the blue points
were calculated at U = 0 and the red points at U = 2t .
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GB magnetic state. Also at sites i far from the GB, C
yy

i

is suppressed in the GB magnetic phase (see Fig. 12): the
transformation vectors umri at site ri depend on state m of
the system and therefore carry the information of the GB
state even though ri might be chosen far from the GB.
This suppression of the current correlations, expressed by
C

yy

i , is the dominant mechanism for the decrease of σ dc(T )
with decreasing temperature in the low-T regime in our GB
model. In fact, Fig. 11(a) clearly shows for T = 0.02t that the
current-density correlations C

yy

i close to the Fermi energy are
smaller for U = 2t as compared to U = 0.

At more elevated temperatures [see Fig. 11(b) with T =
0.12t] the current correlations C

yy

i may even be slightly larger
for finite U close to the Fermi energy, which is reflected in
the lower value of R(T ) for U = 2t for this temperature range
(see Fig. 8). Eventually, for T at the magnetic transition, the
resistance curves for U = 2t and U = 0 merge (not displayed
in Fig. 8), as C

yy

i is temperature independent for the disordered
state.

The temperature, at which the GB becomes magnetic,
provides a scale compatible with the temperature at the
minimum of R(T ) for intermediate values of U . However,
the exact turning point depends on the details of the setup of
the GB. In particular, this estimate is valid for GBs, which are
formed by a reduction of the bond kinetic energies at the GB.
A special distribution of the GB scattering potentials may have
a considerable impact on this temperature.

Chen et al. [35] attributed upturns in the resistivity of un-
derdoped cuprates at low temperature to randomly distributed
magnetic droplets. It is the enlarged cross section due to the
formation of local magnetic moments which generates these
upturns in their modeling. The underlying physics appears to
be similar to what we find for the GBs.

V. CONCLUSIONS

Grain boundaries of correlated electron systems, such as
those investigated in layered oxide (high-Tc) compounds, not
only pose a challenge for keeping the GB-related reduction of
the electrical current minimal but they are also of fundamental
interest in connection with inhomogeneous heterostructures
and their correlation controlled properties. In this article
we explored the normal conducting state of a GB system
artificially engineered by an inhomogeneous two-dimensional
Hubbard model in order to pursue a couple of basic but intricate
issues: When can one expect a formation of local magnetic
moments at the GB, and do they affect the transport properties
of the GBs in a characteristic manner? In particular, does the
formation of magnetic moments allow to interpret the observed
(linear) increase of the GB resistance?

It does not come as a surprise that an inhomogeneous Hub-
bard model with strong on-site interaction U generates local
moments at sites, which are least coupled to their surroundings.
This has already been analyzed in correlated disordered
systems, such as in heavily doped Si:P systems [36,37].

However, it has not been evident that a sufficiently strong
variance 〈�t〉 of the bond kinetic energies at a quasi-one-
dimensional GB structure induces a transition from a nonmag-
netic state to a magnetic GB state at a critical value of the
variance 〈�t〉c. The mean-field evaluation may overestimate

the transition temperature to the magnetic GB state but we
found a transition already for a moderate value of U = 2t

(where t is the bulk value of the hopping amplitude) for
〈�t〉c � 0.5t .

The formation of local moments also depends on the
distribution of site potentials Vi . It is apparent that a sizable
Vi (with |Vi | � t,U ) suppresses local moments as the site
occupation is either considerably smaller or larger than 1 for
positive and negative potentials, respectively. Nevertheless, we
also identified site-potential profiles that assist the formation of
magnetic GB states. The site-potential-related inhomogeneity
can reduce the bond kinetic energies for specific profiles and
allow stronger magnetic moments at nearby sites. Future work,
implementing a realistic nonstoichiometric GB composition,
has to settle if either scheme applies and, consequently, if
GB magnetism is suppressed or enhanced in the high-Tc

cuprates.
The diagonalization of the GB system reveals that mag-

netism is not exclusively local in its appearance. The magnetic
pattern reaches out into the vicinity of the GB on the scale of
a few lattice constants. Moreover, the GB induces magnetic
stripes in its proximity with a magnitude decaying with
distance from the GB. The decay length of this phenomenon
depends on U , which signals that beyond a critical value of
U/t > 3 the bulk develops the much investigated stripe state.
The nonmagnetic lines in between the magnetic stripes exhibit
lower electron occupation and form antiphase domain walls,
which is consistent with previous findings.

A distribution of hopping amplitudes and local scatterings
potentials at the GB produces conducting channels if the
effective barrier is not so strong as to block the current and
allow only for tunneling processes. For the GB profiles, which
are considered in this work, we observe a distinct pattern of
the current density at the GB. The three-site-wide channels
also carry a current density when the electric field is applied
in the direction parallel to the GB. The bulk current density
is recovered only within one to two units of the GB width,
which is approximately the same length scale for an effective
GB width as deduced from the magnetic pattern.

The most striking result of the transport properties is the
increase of the resistance for decreasing temperature in the
regime T � 0.1t . For finite on-site repulsion U we identify a
strong enhancement of R(T )—a 50% increase at T/t = 0.01
from its minimal value at T/t � 0.1. We relate this result
to the formation of local magnetic moments at the GB.
The prominent transport feature is the suppression of the
current correlations in the magnetic GB state. This suppression
controls the low-temperature resistance R(T ).

We find a linear increase of R(T ) for the smallest tempera-
ture range in which we could analyze the transport properties.
Our results rely on an atomic-scale reconstruction of the
GB with the formation of structural units of approximately
3 × 6 sites extension, a property that was observed for
large-angle GBs. It is tempting to relate these findings to
the experimental observations of an increasing GB resistance
below approximately 300 K. It needs to be noted that the
increase of the resistance is not as strong as in the experiments.
This may result from an underestimate of the on-site repulsion
(U = 2t). However, we also expect that the formation of
magnetic moments at the GB induces correlation effects for
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larger values of U , which have not been implemented in the
present scheme. Specifically, the formation of singlets between
nearby moments with the strongest exchange coupling and
a Kondo-like screening of remaining moments is speculated
to modify the temperature-dependent resistance. In fact, a
distribution of Kondo temperatures TK can produce a linear
resistance up to the highest value of TK [38]. With a measured
linear resistance up to 300 K, this scenario is rather hard
to implement. In a different approach, Hirsch [39] applied
a scheme, which builds on a dynamic Hubbard model, an
extension of the standard Hubbard model that implements the

expansion of atomic orbitals upon double occupancy. He finds
that the hole density near the GB increases as temperature
increases. However, it is not yet obvious if this scheme will
generate a linear R(T ) at low temperatures.
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[37] A. Langenfeld and P. Wölfle, Ann. Phys. (NY) 4, 43 (1995).
[38] E. Miranda, V. Dobrosavljević, and G. Kotliar, Phys. Rev. Lett.
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