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Effect of nitrogen and vacancy defects on the thermal conductivity of diamond:
An ab initio Green’s function approach
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We show that impurities and vacancies affect the thermal conductivity much more strongly than what is
predicted by widely accepted models. When local distortions around point defects are strong, standard perturbative
approaches fail, and phonon scattering can only be accounted for by an exact Green’s function calculation. We
apply the theory to the study, from first-principles, of nitrogen and vacancy defects in diamond. The thermal
conductivity is computed by solving the linearized Boltzmann transport equation. The Born approximation
underestimates the phonon scattering cross sections of nitrogen and vacancies by factors of 3 and 10, respectively.

Thermal conductivity calculations are in good agreement with experiment.
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I. INTRODUCTION

Thermal conductivity « is currently the focus of intense
research [1,2] due to its crucial role in many technologies.
For example, microelectronic cooling requires materials with
high « [1], whereas very low « is desired for high-efficiency
thermoelectric materials [3]. From a structural point of view,
these materials can be quite complex [4]. Alloying, matrix
precipitates, grain boundaries, and finite size are some of
the structural features present in these materials that strongly
influence k. An accurate computation of « is then essential
to quantify the effect of the different scattering sources,
to understand experimental results, and to investigate new
materials with targeted applications.

For insulators and many semiconductors, it is usually
enough to compute the lattice thermal conductivity «; since in
these systems most of the heat is carried by phonons. k;, can be
computed by solving the Boltzmann transport equation (BTE),
an approach that has proven to be very fruitful in understanding
thermal transport [5]. Before the advent of modern computers,
exact solutions of the BTE were unfeasible, and crude
approximations for both phonon dispersion and scattering rates
were needed [6,7]. Although these approximations afford poor
predictive power, they make quantitative estimates possible
and are useful in the interpretation of experimental results
[8-10]. Parametrized and ab initio numerical solutions of the
BTE have been obtained in recent years for bulk crystals
[11-14], proving that the BTE can provide very accurate
estimates of k. SHENGBTE, a software package based on a full
iterative solution of the BTE for any crystalline bulk material,
was released recently [15-17]. Despite all this progress in
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the ab initio computation of k there are still problems that
must be addressed, such as the calculation of the phonon
scattering arising from the presence of structural defects. For
a long time, the theoretical treatment has been based on the
work of Klemens [18], who obtained analytical expressions
for the elastic scattering cross section o of point defects,
dislocations, and grain boundaries using perturbation theory.
To keep the problem tractable analytically, such calculations
were restricted to the long-wavelength limit, and simplified as-
sumptions about crystal structure and atomic interactions were
made. An extension to the whole frequency range, by interpo-
lating between o for the long- and short-wavelength limits, has
been suggested [19]. Recently, an exact calculation of o using
the Green’s function approach has been proposed [20-22]. The
main limitation is the requirement of a localized perturbation
in real space and a low concentration of defects to make
multiple scattering between them negligible. Otherwise, some
approximations are needed, for example, the virtual crystal ap-
proximation in the case of nondilute alloys [7]. Also molecular
dynamics simulations with interatomic force constants (IFCs)
obtained from first principles represent an alternative [23].
Among structural defects, point defects are best suited for
the Green’s function approach. The perturbation they induce
is localized in a small region around the defect, and usually
their concentration is very low, on the order of thousands
of parts per million. An important case is the vacancy, for
which an accurate computation of o has not yet been carried
out. Previous theoretical calculations were based on low-order
perturbation theory and simplified phonon bands [24,25]. In
addition, these studies did not compute the change in IFCs
and its effect on the phonon scattering. They only considered
a mass perturbation, which greatly simplifies the problem.
However, for vacancies the changes in IFCs are large and
cannot be neglected. For this reason, it was proposed to set
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the perturbing mass to three times the host mass [25] rather
than equal to the host mass [24]. A recent work [26] was
still based on the seminal work of Klemens with only a mass
perturbation term, although the calculation was refined by
estimating bond relaxation effects. Here we demonstrate how
such traditional perturbative approaches fail for vacancies and
for any perturbation for which changes in harmonic IFCs
are large. In addition, we avoid the use of any effective
mass by computing directly the changes in IFCs from first
principles. To test the theory, we have studied diamond because
available experimental data relate x; to the N and vacancy
concentrations. Both kinds of defects strongly affect the k;, of
diamond, mainly due to harmonic IFCs effects.

II. METHODS

In the harmonic approximation, the dynamical equation for the
vibrational modes can be expressed as

Kia, j
@ Uiy = Z WW’ (1)
iB
where w is the mode frequency, u;, is the mass-normalized
atomic displacement of atom i in direction «, and K and M
refer to the corresponding harmonic IFCs and atomic masses.
When a substitutional impurity is introduced, generally, the
mass and IFCs involving the impurity are different from those
of the host lattice. In the general case two terms must be

added to the right-hand side of Eq. (1): a mass term, Vy; =

M—M,

K o —Kiy i
2 ia, ia,jB
——L—w’, and an IFC term, Vx = —5/

. M;MHZ °
prime refers to the values of the system \(Jvith/t)he impurity. Vg
must obey the translational invariance rule [27], and when it
is computed numerically or approximated using some cutoff
radius to limit the size of the matrix, this symmetry must be
enforced. This can be done by adding small corrections to the
harmonic IFCs of the perturbed system. These corrections can
be computed by applying the Lagrange multiplier method as
proposed in Ref. [5].

The procedure to calculate o using the Green’s function
approach is explained in detail in Ref. [21]. Here we summarize
the main formulas. o is expressed as

where the

Q
o= EZ|<q/|T+<w2)|q>|28<w/2 - o), )
"

where |g) and |q’) represent the incident and scattered
phonons, respectively. @ is the volume into which |g) is
normalized, and v is the group velocity of |g). T* is the T
matrix, defined by

TH=U-VGH) 'V, 3)

where [ is the identity matrix, V is the perturbation matrix,
and G{ is the retarded Green’s function of the unperturbed
system. In the general case, V = Vi + Vg. An important
point concerns the frequency dependence of the perturbation
matrix. V), scales as w?, and it becomes smaller and smaller
as the frequency approaches zero. A low-order perturbative
approach, such as the Born approximation, is then justified at
low frequency. However, the situation for Vi is different since
this term does not depend on frequency. If changes in IFCs
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are large, the perturbation cannot be considered small at any
frequency.

Once o is calculated, we use SHENGBTE to compute the
phonon lifetimes t; and «; by solving the linearized BTE.
Technical details are given in Ref. [15].

III. RESULTS

A. Failure of the low-order perturbative approach

As a reference model for the following discussion, we
consider the one-dimensional (1D) monoatomic chain. In its
simplest form, all the atoms of the chain are of the same type,
with mass M, and only first-neighbor interactions are included,
with a harmonic IFC denoted by K. We consider the following
perturbation. Given an atom at site i, we modify its bonds with
atoms at sites i — 1 and i + 1 by decreasing K to K’. The
perturbation matrix is a 3 x 3 matrix whose elements are

AK AK
M M 0
_ AK 2AK AK
V=1-% S ~a “)
AK AK
0 W

where AK = K’ — K. A vacancy is created when AK = —K.
The Green’s function G§ can also be calculated analyti-
cally [28]. Once V and G(}L have been computed, the 7" matrix
and o are obtained using Egs. (3) and (2), respectively. In
one dimension the incident phonon can be either transmitted
or reflected. Then o can also be expressed in terms of
the reflection (p) and transmission (t) coefficients as [28]
o =|t =12+ |p/>. When AK = —K, the atom at site i
is completely disconnected from its neighbors, and then the
phonon cannot be transmitted. Note that this conclusion does
not depend on the actual mass of the impurity. For AK = —K
and no matter what AM is, wehave 1 =0, p = 1,and 0 = 2
for all phonons. Therefore for the vacancy case Vi is the
only term affecting the scattering since AM can always be
set to zero. There is no mention of this fact in the previous
perturbative studies, where V), is invariably set to w? and
seems to play a role in the scattering. Figure 1(a) shows o
as a function of w for different values of AK, calculated
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FIG. 1. (Color online) (a) Cross section for the 1D chain.
(b) Cross section times group velocity for Si Keating potential,
longitudinal phonon branch along the [100] direction. Solid line:
T -matrix calculation. Dotted line: Born approximation. From bottom
to top: AK/K = —0.10 (black), —0.50 (red), —0.95 (green), —1.00
(blue).
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using both the 7 matrix and the Born approximation. As AK
approaches — 1, the failure of the Born approximation becomes
more dramatic. It can be seen that in this case the 7'-matrix
calculation shows a strong peak in o at low w, which is absent
from the perturbative calculation. This is the signature of a low
resonance state, and it explains why the perturbative approach
fails since it cannot be applied when resonances appear.

A much more realistic but still simple model is the Keating
potential [29], which was developed to describe the elastic
energy in diamond and zinc-blende crystal structures. In this
model a vacancy is created by removing the interaction of
one atom with its 4 nearest and 12 second-nearest neighbors.
Neglecting the relaxation after the creation of the vacancy, the
perturbation matrix can still be obtained analytically, but the
Green’s function must be obtained by numerical integration.
In this work we have used the tetrahedron approach of Lambin
and Vigneron [30]. Figure 1(b) shows v times ¢ as a function
of w for Si at the same AK /K ratios as for the 1D chain. A
picture with similarities to the 1D case is obtained. Again, just
before the creation of a vacancy (AK/K = 0.95), the large
differences in IFCs between the host and the impurity give
rise to a resonance state that shows up in the cross section
as a strong peak. However, the effect is less dramatic than
in one dimension since in three dimensions the creation of a
vacancy cannot totally disconnect one part of the crystal from
the other. Thus it is clear that when dealing with vacancies
or, more generally, large variations in IFCs, a perturbative
approach cannot provide an accurate description of o, and a
T-matrix approach must be used.

B. Ab initio modeling of N and vacancy defects in diamond

We have modeled point defects using the supercell ap-
proach. All density functional theory (DFT) calculations
in this work were carried out in the generalized gradient
approximation (GGA), using the projector-augmented-wave
pseudopotentials supplied by VASP [31]. The energy cutoff
was set to 500 eV, and we used a 4 x 4 x 4 supercell and
a 2 x 2 x 2 k-point grid for both the impurity and the bulk
systems. The supercell volume was set to the diamond bulk
value predicted by VASP.

Nitrogen is the main impurity in natural and many synthetic
diamonds. They are classified as type I or II depending on
whether they contain substantial amounts of N or not. If N
is mainly aggregated, as dimers (A center) or associated with
vacancies (N3 and B centers), it is classified as type la. On
the other hand, if N is arranged as neutral single substitutional
impurities (C center), the diamond is classified as type Ib. Type
Ib is paramagnetic and shows electron spin resonance, while
type Ia does not. In our calculations we have considered N to
be an isolated substitutional impurity, i.e., type Ib.

The C center has been extensively studied by magnetic
resonance techniques [32]. It is well established that the
point symmetry around the N changes from 7, to C3,. The
distortion which lowers the symmetry consists of an elongation
of one N-C bond along one of the (111) directions, which
becomes the C3, principal symmetry axis. As the N and C
atoms move away from each other towards the plane of their
other three neighbors, these three bonds are shortened. To
obtain the correct point symmetry around the impurity, after
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FIG. 2. (Color online) (a) and (b) The [100] projection view of
the N impurity and vacancy defects after the ab initio relaxation.
Green: N atom. Blue: first coordination shell. Yellow: second and
third coordination shells. (c) and (d) Bond distances and angles as a
function of the distance to the defect. Dashed line: bulk values for
diamond, 1.547 A and 109.47°.

substitution of one C atom by N, the N atom was slightly
displaced from its site along one (111) direction. Then we
carried out a relaxation of all the atoms of the supercell.
The results of the ab initio relaxation are shown in Fig. 2.
It can be seen that the perturbation extends up to around
5A away from the impurity. The short N-C bond distance
is 1.482 A, and the long one is 1.998 A, 29% longer than the
bond distance in bulk diamond. The bond angle for N is 114.6°,
whereas for the tricoordinated C it is 115.7°. These structural
parameters are in agreement with previous first-principles
calculations [33,34].

For the neutral vacancy a Jahn-Teller distortion which
reduces the point symmetry from 7, to D,, is expected [35].
This distortion can be accomplished by moving pairs of
first neighbors closer together along the corresponding (110)
direction. However, when in our calculations the system is
relaxed after the D,,; symmetry is imposed, the 7, symmetry
is recovered. This is in agreement with previous ab initio
calculations [36], where it was reported that the D,; symmetry
is obtained in Si but not in C. They found that the four nearest
neighbors move outwards 0.12 A along the corresponding
(111) direction, in perfect agreement with our results. For
the tricoordinated C atoms, the bond distance is reduced from
1.547 to 1.496 A, and the bond angle increased from 109.7°
to 113.8°, as it must be expected from a reduction in the
coordination number.

C. Thermal conductivity of diamond with N
and vacancy defects

Harmonic and anharmonic IFCs were computed using the
small-displacement method. We used a 4 x 4 x 4 supercell.
From the DFT results, harmonic and anharmonic IFCs were
obtained using PHONOPY [37] and THIRDORDER.PY [15],
respectively. Interactions up to fourth-nearest neighbors were
considered for the anharmonic IFCs. The perturbation matrix
was built from the difference between the two sets of harmonic
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FIG. 3. (Color online) Cross sections times group velocity for
substitutional N and vacancy defects in diamond, derived from the
T matrix and from the Born approximation. The arrow points at the
resonance state (see text for details).

IFCs (defect and bulk). We have considered changes in har-
monic [FCs for first- and second-nearest-neighbor interactions
of all atoms belonging to the six nearest shells around the
defect (~4.5 A cluster radius around the defect). The cross
section times group velocity is shown in Fig. 3. It can be
seen that the Born approximation fails at low frequency by
factors of around 3 and 10 for N and the vacancy, respectively.
This is because Vi is frequency independent and changes
in harmonic IFCs are large. For the vacancy case there is a
small resonance peak at 4 THz (arrow in Fig. 3) since the
vacancy was not totally disconnected from the lattice. An
extrapolation at low frequency can be used to overcome this
problem. Comparing our results with the previous work of
Ratsifaritana and Klemens [25], we find that the T -matrix
result is reproduced at low frequency using AM = —6M,
twice the value suggested by them.

To compute «k; we used a 28 x 28 x 28 q grid to reach
convergence. Figure 4 shows k; of diamond as a function
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FIG. 4. (Color online) «; of diamond as a function of de-
fect concentration. N and V stand for nitrogen and vacancy,
respectively.
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of N content. The theoretical curves demonstrate that the
decrease in k. is mainly due to changes in the harmonic IFCs.
The same calculation was done by Turk and Klemens [38].
They suggested a factor of around 3.5 between Vi and Vy,
contributions, whereas we found a somewhat larger difference,
a factor of 5. For N content higher than 0.1% the differences
between taking into account changes in harmonic IFCs and
not taking them into account can be as large as 200%—-300%.
On the other hand, the Born approximation overestimates
kr by 40% for the highest N content. When compared
with experimental data [39—42], the T-matrix calculation
overestimates k; by just 25%. Most of the experimental data
correspond to type Ia. The few type Ib data we have found seem
to indicate that no significant differences exist between types
Ia and Ib. However, the existence of other types of defects in
experimental samples has been reported [40]. Spikes on x-ray
diffraction patterns were ascribed to planar defects in {100}
planes, and platelets were shown by transmission electron
microscopy. Nickel atoms were detected on type Ib diamonds.
The existence of defects other than single substitutional N
could explain the small discrepancies between theory and
experiment.

For the vacancy case, we have only found one experimental
work where measurements of «; as a function of single-
vacancy concentration has been reported [43]. Figure 4 shows
that the agreement with our calculations is rather good. The
theoretical curve corresponding to the Born approximation is
not plotted for the sake of clarity. For the highest concentration,
0.04%, the Born approximation overestimates the 7'-matrix
result almost by a factor of 2.

IV. CONCLUSIONS

The standard theoretical approaches used to study phonon
scattering by defects, based on low-order perturbation theory,
fail when they are applied to perturbations where changes in
IFCs are large, underestimating the cross sections. In these
cases the perturbation matrix is mainly described by Vk,
which does not depend on w. This explains why Vg does
not become small at low frequency and why perturbative
approaches fail. Large changes in IFCs must be expected when
bonds are broken (vacancies), formed (interstitials), or strongly
distorted (atomic substitution by atoms with different bonding
properties, such as atoms belonging to different groups of the
periodic table). In these systems the 7-matrix approach is
required. In the particular case of vacancies, we have shown
that V), has no influence as long as the atom at the vacancy site
is totally disconnected from the lattice. Therefore, to compute
the phonon scattering arising from vacancies only Vg must
be taken into account. Our results show good agreement with
experiment, which singles out this method by virtue of its
predictive power.
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