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Role of magnetic degrees of freedom in a scenario of phase transformations in steel
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The diversity of mesostructures formed in steel at cooling from a high-temperature austenite (γ ) phase is
determined by the interplay of shear reconstructions of crystal lattice and diffusion of carbon. Combining
first-principles calculations with large-scale phase-field simulations we demonstrate a decisive role of magnetic
degrees of freedom in the formation of energy relief along the Bain path of γ -α transformation and, thus, in
this interplay. We show that there is the main factor, namely, the magnetic state of iron and its evolution with
temperature which controls the change in character of the transformation. Based on the computational results we
propose a simple model which reproduces, in good agreement with experiment, the most important curves of the
phase transformation in Fe-C, namely, the lines relevant to a start of ferrite, bainite, and martensite transformations.
Phase-field simulations within the model describe qualitatively typical patterns at these transformations.
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I. INTRODUCTION

Despite a broad distribution of numerous new materials,
steel, known from ancient times, remains the main construction
material of our civilization [1] due to high availability of
its main components (Fe and C) and diversity of prop-
erties reached by a realization of various (meso)structural
states [2,3]. One can control the structural state of steel
due to a rich phase diagram of iron with several structural
transformations at cooling from moderately high temperatures
(δ → γ → α); the presence of carbon adds carbide phases,
cementite Fe3C being the most important one. Development
of the phase transformations in steel includes two main types of
processes: the crystal lattice reconstruction and redistribution
of carbon between the phases. Depending on the rates of these
processes metallurgists separate the transformations into three
main types, namely, ferrite, bainite, and martensite [2–4].
In practice, all transformations (except the martensitic one)
involve both shear and diffusion mechanisms, their relative
importance being changed with the temperature increase [4].
The difference between these types of transformations de-
termines the diversity of properties of steel and therefore is
of crucial importance for our understanding of metallurgical
processes. However, there is still no commonly accepted
quantitative theory which could describe the change of
transformation mechanism with temperature from martensitic
(lattice instability) to ferrite (nucleation and growth).

Here we demonstrate that the main factor determining the
scenario of the phase transformations in steel is the magnetic
state of Fe and its temperature dependence. Empirically, the
temperature of γ -α transformation in elemental Fe is close
to the Curie temperature of α-Fe; therefore the idea on the
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decisive role of magnetism in phase transformations for pure
iron looks natural and was discussed many times (for a review,
see Ref. [5]).

Based on state-of-the-art first-principles calculations and
combining it with the phase-field simulations [6] we build
a consistent model which allows us to estimate (with sur-
prisingly high accuracy, keeping in mind its simplicity)
temperature ranges corresponding to the three types of
transformation. This model includes a generalized Ginzburg-
Landau functional for the Bain transformation path with ab
initio parametrization and nonlinear elasticity equations for
the tetragonal deformation, as well as a diffusion equation for
the carbon concentration. Therefore it takes into account both
carbon diffusion and lattice and magnetic degrees of freedom
of iron.

II. METHODS

A. Generalized Ginzburg-Landau functional for the Bain
transformation path

The minimal set of variables which is necessary to describe
the γ -α transformation in steel includes Bain tetragonal
deformation and carbon concentration. Other relevant degrees
of freedom are volume per atom and magnitude of magnetic
moment but we assume (following Ref. [5]) that they are fast
and can therefore be taken into account just by optimization
of the total energy along the Bain transformation path. The
parameter of short-range magnetic order is introduced as for
the case of pure iron [5].

A generalized Ginzburg-Landau functional for the total
energy can be represented in the form [7]

G =
∫ (

ge + kt

2
(∇et )

2

)
dr, (1)
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where ge is the energy density of lattice deformations and
kt is a parameter determining the width of the interphase
boundary [7]. We restrict ourselves to a two-dimensional
model when ge can be chosen as [8,9] ev = (εxx + εyy)/

√
2:

ge = gt (et ,c,T ) + Av

2
e2
v + As

2
e2
s , (2)

where ev = (εxx + εyy)/
√

2 is dilatation, et = (εxx − εyy)/
√

2
is tetragonal deformation, es = εxy is shear deformation, and
gt (et ,c,T ) is the energy density depending on the tetrago-
nal deformation parameter, local carbon concentration, and
temperature. Using a two-dimensional model is, of course, a
simplification which does not provide the complete picture of
morphology after transformation since we have two orientation
options for the α phase. Nevertheless, this model correctly
gives the thermodynamic condition of transformation and
describes the main qualitative features of microstructure
formation [5,8,9]. Similar to Ref. [5], we assume that in the
γ phase (the initial phase for the transformation) et = 0 and
in the α phase et = 1 − 1/

√
2. The coefficients Av,As are

expressed via elastic moduli [7], Av = C11 + C12, As = 4C44.
Following Ref. [5], we determine the energy density of
tetragonal deformation as

gt (et ,c,T ) = gPM(et ,c) − J̃ (et ,c)Q(T ), (3)

where J̃ (et ,c) = m2z1J1/� = gPM(et ,c) − gFM(et ,c) is ex-
change energy, � is the volume per atom, z1 is the nearest-
neighbor number, J1 is the exchange integral, m is the magnetic
moment, and

Q(T ) ≡ 〈m0 · m1〉/m2 (4)

is the spin correlation function dependent on temperature. We
have improved our model for the temperature dependence
of the nearest-spin correlator Q(T ) in comparison with our
previous work [5]. Namely, we use the Oguchi model [10] and
determine Q(T ) as Q(T ) ∼ 1/T for T > TC ; for T < TC we
use the empirical formula for magnetization [11], choosing
parameters in such a way that Q(TC)�0.4, according to
Ref. [10]. Thus, at T = TC the dependence Q(T ) has a cusp.
Curie temperature TC is related to the exchange parameter
as kTC(et ) = λJ̃ (et )�, with the numerical factor for α-Fe
λα = 0.472; this choice of λα provides an agreement of the
Curie temperature with the experiment, TC = 1043 K. The
correlator for γ -Fe is chosen in a similar way, with the Curie
temperature T fcc

C �300 K, according to the calculations [12]
for the atomic volume � ≈ 12 Å3; λγ = 0.606 according to
Ref. [13]. The temperature dependencies of the correlators are
shown in Fig. 1.

To calculate free energy, we have to add entropy con-
tributions to Eq. (1). The magnetic entropy is calculated,
as in Ref. [5], from the Hellmann-Feynman theorem. The
configurational entropy of carbon is found from the model
of ideal solutions, assuming that for T >300 K carbon is
equally distributed among all three interstitial sublattices in
α-Fe whereas in γ -Fe carbon atoms can occupy only a quarter
of the interstitial positions [14]. As a result, we obtain the

FIG. 1. (Color online) Temperature dependencies of the spin
correlator Q(T ) for α-Fe (1) and γ -Fe (2).

following formula for the local density of free energy:

f (c,et ,T ) = gPM − T s0fs(et )

−
∫ J̃

0
Q(J̃ ′,T )dJ̃ ′ + kT

{
c ln(4c)

+
[
c ln

c

3
− c ln(4c)

]
[1 − fs(et )]

}
. (5)

Here fs(et ) is a function provided a gradual switching of
the entropy contribution from fcc to bcc [fs(et ) = 1 in fcc
and fs(et ) = 0 in bcc phase]; s0 is the high-temperature
limit of the entropy difference between the phases including
phonon contribution. It is commonly accepted (see, e.g.,
Ref. [15]) that the value s0 is almost temperature independent
at T > TD , where TD is the Debye temperature (equal to
473 and 324 K for the bcc and fcc phases, respectively).
We will assume that it is a constant. The latter has been
chosen such that the start of the transformation determined
by the condition �f (T ) = f fcc(T ) − f bcc(T ) ≡ 0 agrees with
the experimental value for elemental Fe, T0 = 1184 K. This
gives us the value s0 = −0.19k, quite close to the experimental
estimate [16].

The resulting Ginzburg-Landau functional for the free
energy reads

F =
∫ (

f (c,et ,T ) + Av

2
e2
v + As

2
e2
s + kt

2
(∇et )

2

)
dr. (6)

The quantities gPM(et ,c),gFM(et ,c) are found from the
energy curves along the Bain path for para- and ferromag-
netic states, respectively. Carbon shifts the thermodynamic
potentials of γ and α phases of Fe in accordance with
its solution enthalpy. As was shown in Ref. [17], carbon
turns out to have a dramatic effect on the magnetic state
of γ -Fe; it can create a locally ferromagnetically polarized
region with tetragonal distortions. Thus, the thermodynamics
of the γ -Fe-C system—in particular, the solution enthalpy
of carbon—should be strongly dependent on local magnetic
order. Here we include the dependence of the energies of γ
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and α phases on carbon concentration into the model based on
first-principles electronic structure calculations of the solution
enthalpy.

B. First-principles calculations

The calculations of the energetics of a Fe-C system were
performed by density functional theory in the pseudopotential
code SIESTA [18], similar to our previous work [17]. All
calculations were carried out using the generalized gradient
approximation (GGA-PBE) with spin polarization [19]. Full
optimization of the atomic positions was performed. During
the optimization, the ion cores were described by norm-
conserving pseudopotentials [20] and the wave functions were
expanded with a double-ζ plus polarization basis of localized
orbitals for iron and carbon. Optimization of the forces and
total energy was performed with an accuracy of 0.04 eV/Å
and 1 meV, respectively. All calculations were carried out
with an energy mesh cutoff of 300 Ry and a k-point mesh of
4 × 4 × 4 in the Mokhorst-Park scheme [21]. For the modeling
of all configurations a 3 × 3 × 3 supercell of 108 iron atoms in
fcc configuration was used. Variation of the concentration of
carbon was realized by changing the number of interstitial
carbon atoms in the voids from one (�1 at. %) to three
(�3 at. %). For the modeling of paramagnetic configuration
five possible special quasirandom structures [22] of magnetic
moments were generated by reinitializing the pseudorandom
number generator each time. The structure with the lowest
total energy has been defined as a ground state and the energy
difference per iron atom has been used to estimate the error of
the modeling of paramagnetic iron. The modeling of the Bain
pathways was performed by the method previously employed
for the pure iron [12]. In contrast to Ref. [12], to take into
account thermal expansion effects the elementary cell volume
was chosen close to experimental values for γ - and α-Fe at the
temperature of the γ -α transition and linearly interpolated for
1/

√
2 < c/a < 1 (actually, the change of the lattice constant

along the path is within 1%). The difference of the energies
between the ferromagnetic and paramagnetic states agrees well
with the “exchange energy” calculated in Ref. [12], thus, the
different choice of the lattice constant is not essential.

The energies found from the first-principles calculations for
pure iron were approximated by the following polynomials:

g̃PM(FM)(φ) = gfcc
PM(FM)

+ 2

(
gbcc

PM(FM) − gfcc
PM(FM) + cPM(FM)

6

)

×
(

φ2 − φ4

2

)
+ cPM(FM)

(
φ6

3
− φ4

2

)
. (7)

Here the order parameter −1 < φ < 1 related to the Bain
tetragonal deformation as φ = √

2/(
√

2 − 1)et . Positive and
negative values of φ correspond to two possible (mutually
orthogonal) directions of the Bain deformation in the two-
dimensional case. Its form guarantees extrema at the points
φ = 0 or φ = ±1; parameters gfcc

PM, gfcc
FM, gbcc

PM, gbcc
FM, cPM, and

cFM were found by fitting to the ab initio computational results.

We do not take into account carbon-carbon interactions, due
to a smallness of carbon concentration. Thus, its contribution
was taken as linear:

gPM(FM)(φ,c) = g̃PM(FM)(φ) + cεfcc
PM(FM)

+ c
(
εbcc

PM(FM) − εfcc
PM(FM)

)
[1 − fs(φ)]. (8)

Function fs(φ) has been chosed in the form fs(φ) = (1 − φ2)2.
Within the approximation (8) the effect of carbon on Bain-path
energetics is determined only by carbon solution energies
in the γ and α phases. We deal with the temperatures
T > 400 K where carbon equally fills all three sublattices
of octahedral interstitials and therefore we do not take
into account the tetragonality of martensite which arises at
T �300 K [14].

Parametrization of these formulas from ab initio calcula-
tions leads to the following values: gbcc

PM = 0.19, gfcc
PM = 0.14,

gfcc
FM = 0.095, gbcc

FM = 0 (in eV/atom) and cPM = 0.05,
cFM = −0.08 (all in eV/atom). These data were slightly
different from those calculated by us earlier [12] by VASP

(the energy gbcc
PM coincides with Ref. [12]; the energy gfcc

PM
differs by −0.02 eV/atom). The solution energies of carbon
in different phases εbcc

FM = 0.8, εbcc
PM = 0.7, εfcc

FM = −0.2, and
εfcc

PM = 0.22 (in eV/atom) were chosen on the basis of similar
calculations for iron with carbon concentration �1% at. The
value εbcc

FM agrees with the result of the previous first-principles
calculations [23]; εfcc

PM agrees with the result [17], but is lower
than the experimental value 0.4 eV/atom [24].

C. Kinetic equations

It was shown in Refs. [7,25] that at the description of atomic
displacements in solids one cannot take into account only the
order parameter (in our case, tetragonal deformation) since
other components of the deformation tensor are coupled to
the order parameter by Saint Venant compatibility equations.
The latter result in effective long-range interactions which
are crucial for the pattern formation at the transition [6,8,25].
Therefore, following Ref. [6] we write the dynamical equations
for atomic displacements in a form similar to Newton equa-
tions rather than an Allen-Cahn time-dependent Ginzburg-
Landau relaxation equation for the order parameter [26,27].
It allows taking into account automatically the Saint Venant
compatibility equations.

We exploit the equations of motion used by us earlier for
elemental iron [5] plus the equation of carbon diffusion:

ρ
∂2ui(r,t)

∂t2
=

∑
j

∂σij (r,t)
∂rj

(9)
∂c

∂t
= −∇I.

Here ρ is the mass density of iron; elastic stresses σij and a flow
of carbon atoms I are calculated via variational derivatives of
the Ginzburg-Landau functional:

σij (r,t) = δF

δεij (r,t)
, I = − D

kT
c(1 − c)∇

(
δF

δc

)
, (10)

where D is the carbon diffusion coefficient (see Appendix);
the deformations εij introduced above are connected with the
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variable of our model as

φ =
√

2/(
√

2 − 1)et , ev = (εxx + εyy)/
√

2,

et = (εxx − εyy)/
√

2, (11)

εxx = ∂ux

∂x
, εyy = ∂uy

∂y
, εxy = 1

2

(
∂ux

∂y
+ ∂uy

∂x

)
.

(12)

As a result,

σxx = 1

(
√

2 − 1)

df (c,φ,T )

dφ
+ Ãvev − k̃t∇2φ, (13)

σyy = − 1

(
√

2 − 1)

df (c,φ,T )

dφ
+ Ãvev + k̃t∇2φ, (14)

σxy = Ases, (15)

where Ãv = Av/
√

2, k̃t = kt (
√

2 − 1)/2, kt = 10−3 (in
the units of L2�J̃ α where L is the sample size,
�J̃ α = 0.19 eV/atom). We pass further to dimensionless
units ri → ri/L, ui → ui/L, t → t

√
J̃ α/L2ρ, ρ → 1, D →

D
√

ρ/L2J̃ α , and σij → σij /J̃
α .

To maximize the size of the system under simulation for
given computer resources we restrict ourselves to the two-
dimensional case. It is enough to clearly distinguish patterns
typical for different transformations in Fe-C. The details of the
simulations are presented in the Appendix.

III. RESULTS AND DISCUSSION

A. Bain path and free energy in Fe-C

The Bain path is the tetragonal deformation accomplished
γ -α lattice reconstruction, which changes from c/a = 1 for
fcc (γ ) to c/a = 1/

√
2 for bcc (α) structures. Dependencies

of the energy (g) and free energy (f ) per Fe atom on tetragonal
distortion calculated according to formulas (3)–(5) and (7)–(8)
are shown in Fig. 2. One can see that the ratio of the
energies for the α and γ phases changes strongly with the
temperature decrease and the α phase becomes preferable
at T < TC . Figure 3 displays the temperature dependence
of the energy �g(T ) = gfcc(T ) − gbcc(T ) and free energy
difference �f (T ) = f fcc(T ) − f bcc(T ) in comparison with
the data [16] for elemental iron. One can see in this figure
that the model constructed with correlator Q(T ) (see Fig. 1)
correctly describes the thermodynamics of both phases of pure
Fe within the temperature range 600–1200 K and agrees well
with the results of CALPHAD [16]. It turns out that the mag-
netic contribution dominates at T � TC and is compensated
essentially by the phonon contribution at T > TC .

In elemental Fe, for the ferromagnetic state the γ phase
corresponds to the maximum of the total energy, instead of
local minimum and therefore the transition to α phase happens
without a barrier [28]. It turns out that doping by carbon
does not change this important peculiarity. Moreover, carbon
decreases the energy of ferromagnetic γ -Fe, with the enthalpy
solution of the order of −0.2 eV per carbon atom (Fig. 2). It is
not surprising since carbon creates a strong local ferromagnetic
order in paramagnetic or antiferromagnetic γ -Fe [17]. For the
other cases (α phase and paramagnetic γ -Fe) the solution
enthalpy of carbon is positive. It is common wisdom that
interstitial impurities (including carbon) always prefer a fcc
surrounding compared to bcc, just for geometric reasons (the

FIG. 2. (Color online) Energy (a) resulting from the first-principles calculation for the Bain path in ferromagnetic (curves 1,2) and
paramagnetic (3,4) states for carbon concentration C = 0 (1,3) and C = 3 at. % (2,4). Free energy (b) as functions of tetragonal deformation for
temperatures T = 600 K (curves 1,1′), 800 K (2,2′), 1000 K (3,3′), and 1400 K (4,4′) found from Eq. (5) and the first-principles computational
results for carbon concentration C = 0 and C = 3 at. %, respectively. Symbols correspond to the computational results; solid lines are
approximations used in the model.
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FIG. 3. (Color online) The energy difference �g(T ) = gfcc(T ) −
gbcc(T ) (curve 1) and free energy difference �f (T ) = f fcc(T ) −
f bcc(T ) (curve 2) at γ → α transition in elemental iron in comparison
with known data (dotted lines 1′,2′) [16]; contribution of magnetic
entropy to the free energy (curve 3) and the contribution from phonon
entropy (curve 4).

voids are larger in a fcc lattice than in bcc with the same
density) [29]. This is for sure correct, also for carbon in iron
and results in a more pronounced effect of carbon addition
on energy bcc-Fe. What is much less trivial is that carbon
solubility in fcc iron is very sensitive to the magnetic state
being maximal in a ferromagnetic surrounding.

B. Construction of the phase diagram and scenarios of
transformations in steel

Now we are ready to discuss the difference between sce-
narios of phase transformations in our model. This difference
originates from the strong temperature dependence of driving
force for the transformation, the rate of carbon diffusion, and
plastic relaxation of transformation strain. As discussed above,
the strong temperature dependence of the former (followed
from the strong temperature dependence of the potential
transformation relief) is magnetic in origin: The temperature
enters our model mainly via the parameter of a short-range
magnetic order.

Ferrite transformation kinetics is controlled by carbon
diffusion. Without the redistribution of carbon, α phase is
not thermodynamically favorable and therefore ferrite formed
by the mechanism of heterogeneous nucleation, usually at
grain boundaries. At a low enough overcooling below the
temperature A3 [2,3], determined by the condition of equality
of chemical potentials for α phase depleted by carbon and γ

phase enriched by carbon, and restricting the two-phase γ+α

region, the ferrite transformation proceeds slowly since its
driving force is small and a realization of the transformation
requires a redistribution of carbon at large distances. Thermo-
dynamic potentials of α phase without carbon and γ phase with
nominal carbon concentration are equalized at a temperature

TF < A3, when f (eγ
t ,c0,T ) = f (eα

t ,c = 0,T ), and c0 is the
initial (average over the sample) carbon concentration. One
can expect that at T �TF the γ -α transformation accelerates
essentially since in this case the short-range carbon diffusion
is sufficient. Therefore we identify the temperature TF with the
start of rapid ferrite transformation. It should be noted that TF

appears to be close to Curie temperature TC in a broad range
of carbon concentration.

Further decrease of temperature results in a slowdown
of carbon diffusion and enhancement of the transformation
driving force. At intermediate temperatures, a crucial role in
determining the temperature of the start of transformation [4]
is played by a temperature of paraequilibrium T0 where the free
energies of α and γ phases with the same carbon concentration
become equal, f (eγ

t ,c0,T ) = f (eα
t ,c0,T ). Temperature T0 was

introduced in Ref. [30] as a precondition for the start of
bainite transformation. In this case, as is assumed in [4,30], the
diffusion is slower than the shear transformation and therefore
there is no redistribution of carbon between the α and γ phases
during the growth of α-phase plates. The value of A3 and T0

calculated by us agrees well with the experimental quantity
A

expt.
3 and T0Z (Fig. 4).
At last, the martensite transformation is characterized by

mechanical instability of the γ phase with carbon, that is, the
free energy as a function of tetragonal deformation should
have a maximum instead of minimum at the fcc point,
∂2f (et ,c,T )/∂e2

t = 0. This condition is attained by quenching
of the γ phase to the temperature MS where ferromagnetic
short-range order in the γ phase becomes important. One can

FIG. 4. (Color online) The left panel shows calculated lines
(solid) corresponding to the start of ferrite transformation, paraequi-
librium, and the start of martensitic transformation. Ms and Ms′ are
the temperatures at the start of lattice instability and martensitic-like
transformation. Dashed lines show the experimental boundary of
the two-phase region (A3) [36], the experimental paraequilibrium
temperature (T0Z) [37], and the experimental temperature of the start
of martensitic transformation (Mexpt.

s ) [35]. The right panel shows
microstructures forming as a result of transformation at various
temperatures: T0 < T < A3 (1,2), Ms′ < T < T0 (3,4; 5,6), and
T < Ms′ (7,8). The left and right columns in this panel correspond
to tetragonal strain (black and white are two orthogonal directions
of tetragonal deformation in bcc phase; gray shows fcc regions) and
carbon distribution (the darker the smaller), respectively.
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see that the temperature MS found in this way is actually lower
than the experimental value (see Fig. 4). One has to keep in
mind, however, that the martensitic transformation observed
in steel does not follow the scenario of lattice instability
and is developed, rather, by a heterogeneous nucleation and
“replication” mechanism discussed previously [5]. Indeed, it
was shown in Ref. [5] that above MS a broad temperature range
exists where the transformation is martensite-like but includes
nucleation and growth processes. We follow the concept
of isothermal martensitic transformation [31–34] and accept
the condition of martensite start as f

γ→α

barrier = C0kT where
parameter C0 = 0.04 is chosen by fitting to the experiment
for pure Fe [35]. The temperature MS ′ determined in this way
agrees well with the experiment in a broad interval of carbon
concentration.

With these definitions, the curves A3,T0,TF do not depend
on the energy relief along the Bain path and are determined
only by terminal values gfcc

PM,gfcc
FM,gbcc

PM,gbcc
FM. Contrarily, the

martensitic curves MS ′ ,MS depend on the energetics at inter-
mediate et . For the concentration range under consideration
the magnetic order effects in γ -Fe are negligible, for the
temperatures above T �400 K. Therefore the general shape of
the phase diagram (the lines A3,Tf ,T0,MS ′) are determined,
first of all, by the evolution of a magnetic state in α-Fe.
In particular, the γ → α transition turns out to be possible
above Curie temperature (T bcc

C �1043 K) due to the short-
range ferromagnetic order in α-Fe (see also Ref. [5]). The
short-range magnetic order in γ -Fe becomes important at
T �400 K, which determines the temperature of the start of
the martensitic transformation MS , developing via the lattice
instability.

The results presented in Fig. 4 are purely thermodynamic
for the lines A3,T0,TF and do not take into account the internal
strain produced by transformation which plays a crucial role
in phase morphology and transformation kinetics. Due to the
requirements following from Saint Venant compatibility equa-
tions, the resulting Ginzburg-Landau functional for the free
energy should include different components of the deformation
tensor as well as their gradients (6). In addition, the plastic
relaxation of elastic stresses accompanying the formation of
the new phase is another important factor which was taken
into account in a model way (see Appendix). We use the
phase-field model formulated earlier for the elemental iron [5],
generalizing it with taking into account diffusive redistribution
of carbon. Therefore, we describe the transformation kinetics
by equations for atomic displacements, plus a diffusion
equation for carbon, using the Ginzburg-Landau functional (6)
(see Methods section for details).

In the right side of Fig. 4 we show the typical patterns of
tetragonal deformation (first column) and carbon distribution
(second column) obtained in our phase-field simulations for
different temperatures. The ferrite transformation starts as a
heterogeneous nucleation of the α phase. One can see, indeed,
that at the temperature T < A3 carbon leaves the α phase and
this process controls the formation of a new phase. For this
situation we see arising polygonal particles of carbon-free α

phase surrounded by carbon-reach shells that are really typical
for ferrite transformation [3].

For the temperature range MS ′ < T < T0 the model demon-
strates several possible scenarios. At small cooling below T0

the transformation develops by the diffusion mechanism. In
this case, due to incomplete relaxation of the internal stresses
the α phase has a plate shape. For deeper cooling a fast
growth of the plate via the shift mechanism is possible and
redistribution of carbon between the α and γ phases happens
only after the plates are formed. Most of the carbon atoms
sit at the interphases of plates with different orientations. All
these features are indeed characteristic of the early stage of
bainite transformation [2,4]. For a longer exposure time the
formation of the cementite particles takes place that is beyond
the scope of our consideration. Finally, at T < MS ′ local
fluctuations initiate martensite transformation which results
in the formation of a lenticular colony of tweens with carbon
homogeneously distributed over the sample.

IV. DISCUSSION

To conclude, we propose a microscopic model describing,
in agreement with experiment, the curves at Fe-C phase dia-
gram separating regions of ferrite, paraequilibrium (bainite),
and martensite transformations. We were able not only to
describe these phenomena but, to some extent, understand
them separating the main factor, namely, the temperature
dependence of magnetic short-range order. The curves of
the start of ferrite, paraequilibrium (bainite), and martensite
transformations are shown in Fig. 4, together with known
experimental data. This is the main result of our work. Keeping
in mind that our model is ab initio based (does not contain
fitting parameters except the threshold value of energy barrier
for martensitic transformation) one can consider the agreement
as amazingly good. One should stress that this agreement is
reached for the model where the main temperature dependence
enters via the degree of short-range magnetic order. Thus,
the closeness of the Curie temperature in bcc iron to the
temperature of structural transformation is not accidental but
is related with the essence of phase transformations both in
elemental iron [5] and steel.
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APPENDIX: SIMULATION OF
TRANSFORMATION KINETICS

Relaxation processes of elastic fields play an essential
role in transformation kinetics and morphology of the new
phase. The main channel of such a relaxation is a plastic
deformation arising when the stresses exceed the yield stress.
A consequent description of the plastic deformation requires
an essential complication of the model, by adding parame-
ters describing the plastic deformation to the corresponding
dynamic equations [38,39]. Instead, we take into account
the plastic deformation in a phenomenological way. Since
the contribution of the elastic stresses to the Ginzburg-
Landau functional is determined by the coefficients Av ,As , we

094101-6



ROLE OF MAGNETIC DEGREES OF FREEDOM . . . PHYSICAL REVIEW B 90, 094101 (2014)

TABLE I. The parameters used in the simulations.

T L �f 0
GB �f 0

loc Dα Dγ

(K) с (nm) (eV/atom) (eV/atom) λ
Aeff

v

Av

Aeff
s

As
(m2/s) (m2/s)

T0 < T < A3 1000 0 0 1.2 × 10−1 4.0 × 10−13

Ms′ < T < T0 (I) 850 0.005 0.005 1.6 × 10−11 1.5 × 10−14

Ms′ < T < T0 (II) 800 0.01 500 0.01 0.03 50 0.015 0.015 7.1 × 10−12 3.9 × 10−15

MS < T < Ms′ 700 0.050 0.050 1.1 × 10−12 1.4E × 10−16

T < MS 350 1 1 3.5 × 10−19 4.6 × 10−28

replace the real values of these parameters by some effective,
temperature-dependent values. The scheme proposed provides
the stress relaxation assuming that the relaxation processes are
faster than typical times of development of the transformation
and that the lattice remains coherent during the whole process.
We assume that for ferritic temperatures (T > T0) where the
transformation velocity is limited by the carbon diffusion
the stresses have enough time to relax completely, choosing
therefore Aeff

v = Aeff
s ≈ 0. Contrarily, the martensitic transfor-

mation occurs with the velocities comparable with the speed of
sound and therefore for T < MS there is no relaxation within
the relevant time interval, therefore Aeff

v = Av , Aeff
s = As . The

values of the parameters Av ,As were chosen as in Ref. [5].
For the temperature range MS < T < T0 intermediate values
of the coefficients Aeff

v ,Aeff
s were used (see Table I, lines I

and II). Parameters Aeff
v ,Aeff

s for martensite (Fig. 4, fragments
numbered 7 and 8) were chosen in such a way that the average
elastic energy over the sample was equal to the experimental
value of the stored energy in martensite, 0.007 eV/atom [40].
For the other temperature ranges these parameters were
chosen according to the experimentally known values of
the stored energies for Widmanstaetten ferrite, bainite, and
martensite [41].

The diffusion coefficient of carbon D is different in
α and γ phases and temperature dependent. We use a
simple expression D = Dγ + (Dα − Dγ )φ2(2 − φ2), where
Dα ,Dγ are handbook data [42], for which we use approxi-
mations (m2/s): Dγ = 4.5 × 10−5 exp(−18530/T ), log Dα =
−4.9 − 0.52X + 1.61 × 10−3X2, X = 104/T . In particular,
at T = 1000 K the ratio Dα/Dγ �300, that is, at the
precipitation of α phase, carbon is expelled into the boundary
layer but only weakly diffuses into the bulk of the γ phase.

We do not take into account temperature-induced lattice
fluctuations. The latter are mostly important for homogeneous
nucleation whereas we deal with inhomogeneous nucleation
at grain boundaries. Indeed, it is known experimentally that
ferrite nucleates preferably at grain boundaries and their triple
joints. To describe this process we consider a region with two
triple joints of grains and introduce an additional contribution
to the free energy near the grain boundary,

�fGB(x) = �f 0
GBφ2(2 − φ2)P (x),

(A1)

P (x) = 4 4
√

3

3

λx

1 + (λx)4

where x is the distance from the grain boundary (in dimen-
sionless units as described above) in the direction perpen-
dicular to the boundary, �f 0

GB is the maximal amplitude

of the perturbation, and λ is the parameter characterizing
the width of the grain boundary. This means that a near-
boundary region is favorable for the transformation but its
penetration through the boundary is suppressed by the change
of crystal lattice orientation. Apart from this, we use the
local perturbation initiating the start of the transformation as
�floc(r) = �f 0

locφ/[1 + (λr)6], where r is the distance from
the center of the perturbation region.

The phase-field simulations show that the ferrite transfor-
mation observed in the temperature range T0 < T < A3 is
controlled by the diffusion of carbon and requires an essential
stress relaxation; for homogeneous distribution of carbon and
without stress relaxation the ferrite embryos have no thermo-
dynamic motivation to grow. In this case, we restrict ourselves
to the consideration of diffusive kinetics only and calculate the
distribution of deformations from quasistationary equations∑

j (∂σij (r,t)/∂rj ) = 0 for a given (time-dependent) carbon
distribution (Fig. 4, fragments numbered 1 and 2). Since
Dα � Dγ , a carbon shell is formed around precipitates of
α phase during the transformation.

For the temperatures T < T0 the transformation can pro-
ceed even for homogeneous distribution of carbon. However,
to find the temperature T0 from thermodynamic condition
f (c,φ = 0,T0) = f (c,φ = 1,T0) is not enough since this
condition does not take into account the contribution of elastic
stresses to the free energy. Our simulations show that the
stresses shift the start of the shear transformation towards
lower temperatures T < T0. The transformation scenario is
dependent on the degree of overcooling. For higher tem-
perature when the relaxation is strong enough (the case I
in Table I) the transformation is developed similar to the
ferrite one; it is controlled by the redistribution of carbon
but the α phase has a plate shape similar to Widmanstaetten
ferrite [41,43] (Fig. 4, fragments numbered 3 and 4). For lower
temperatures (weaker stress relaxation, case II in Table I), γ -α
transformation starts as a shear one and is developed with
a formation of one or several twinned plates dependent on
magnitude �f 0

loc. By analogy with bainite transformation, one
should expect that the plate stops its growth after reaching
a critical size due to the loss of coherence at γ -α interface
after a plastic deformation; further evolution is determined by
diffusion of carbon, up to formation of a new plate. In this
case, we perform simulations in two stages. At the first stage
(t < 5, dimensionless time was determined in Sec. II C) we
solve the full set of equations with real parameters Dα ,Dγ ;
only weak redistribution of carbon takes place at this stage.
At the second stage (t > 5) the distribution of deformations is
frozen and only the diffusive part of the dynamical problem
is considered. At this stage, carbon moves from the bulk of α
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plates to the host of γ phase (Fig. 4, fragments numbered 5
and 6).

In reality, in steel within the temperature range MS ′ <

T < T0, apart from Widmanstaetten ferrite, the bainites
are observed, with coexistence of shear transformation and
carbon diffusion, as well as a formation of cementite [41].
To simulate the growth of a bainite colony one needs to

include cementite in the model and to consider in a more
consistent way plastic relaxation. This issue is therefore
beyond the scope of our consideration. Nevertheless, our
model is applicable at the stage of nucleation and predicts
two possible scenarios of the transformation. Depending
on temperature, it can follow either shear or diffusive
mechanisms.

[1] O. Kwon, Nat. Mater. 6, 713 (2007).
[2] W. C. Leslie and E. Hornbogen, in Physical Metallurgy of Steels,

edited by R. W. Cahn and P. Haasen, Physical Metallurgy Vol. 2
(Elsevier, New York, 1996), pp. 1555–1620.

[3] R. W. K. Honeycombe and H. K. D. H. Bhadeshia, Steels: Mi-
crostructure and Properties, 2nd ed. (Butterworth-Heinemann,
Oxford, 1995).

[4] H. K. D. H. Bhadeshia, Bainite in Steels (IOM Communications
Ltd., London, 2001), pp. 460.

[5] I. K. Razumov, Yu. N. Gornostyrev, and M. I. Katsnelson, J.
Phys.: Condens. Matter. 25, 135401 (2013).

[6] M. Bouville and R. Ahluwalia, Phys. Rev. Lett. 97, 055701
(2006).

[7] S. Kartha, J. A. Krumhansl, J. P. Sethna, and L. K. Wickham,
Phys. Rev. B 52, 803 (1995).

[8] K. Ø. Rasmussen, T. Lookman, A. Saxena, A. R. Bishop, R. C.
Albers, and S. R. Shenoy, Phys. Rev. Lett. 87, 055704 (2001).

[9] J. A. Krumhansl and R. J. Gooding, Phys. Rev. B 39, 3047
(1989).

[10] T. Oguchi, Progr. Theor. Phys. (Kyoto) 13, 148 (1955).
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