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We propose a model for a superconductor where both spin-singlet and chiral triplet pairing amplitudes can
coexist. By solving the Bogoliubov–de Gennes equations with a general pair potential that accounts for both spin
states we study experimental signatures of normal metal and superconductor hybrids. The interplay between the
spin-singlet and triplet correlations manifests in the appearance of two effective gaps. When the amplitude of the
spin-triplet component is stronger than that of the spin singlet, a topological phase transition into a nontrivial
regime occurs. As a result, the normal metal–superconductor conductance evolves from a conventional gap profile
onto an unconventional zero-bias peak. Additionally, in the topologically nontrivial phase, Andreev bound states
formed at Josephson junctions present zero-energy modes; the number of those modes depends on the relative
chirality of the junction. Finally, we present results for the current-phase relation and the temperature dependence
of the Josephson critical current within both topological phases for several system parameters.

DOI: 10.1103/PhysRevB.90.085438 PACS number(s): 73.63.−b, 74.45.+c, 75.70.Tj, 73.23.−b

I. INTRODUCTION

The symmetry of a Cooper pair is traditionally classified
into spin singlet with orbital even parity and spin triplet with
odd parity [1]. This classification is valid when the wave
function of the Cooper state can be decomposed into orbital
and spin parts. New systems with broken inversion symmetry
have been discovered where this classification no longer holds.
The Cooper pair in these systems is, therefore, a mixture of
singlet and triplet spin states. Such systems include noncen-
trosymmetric superconductors (NCS) and surface states of
topological insulators (TI) in electrical contact with s-wave
superconductors.

NCS are superconductors with broken inversion symmetry
[2]. In these materials, the reduced symmetry of the crystal
structure, which lacks an inversion center, allows for a robust
asymmetric spin-orbit interaction; therefore, the supercon-
ducting pair potential mixes singlet and triplet states [3]. The
relative amplitude between the spin-singlet component of the
pair potential �s and that of the spin triplet �p becomes
crucial to determine the properties of the NCS [4–6]. The
surface of a NCS with a mixed singlet and chiral triplet
has been predicted to lead to spin-polarized currents [7–9].
Furthermore, a two-dimensional time-reversal symmetric NCS
is expected to host an even number of Majorana fermions
[10–12]. The family of NCS is rapidly increasing and the exact
pairing potentials describing many of these materials remains
unknown [13].

The possibility to induce a triplet state using a conventional
superconductor has recently triggered an intense research
activity. The most common approach requires conventional
s-wave superconductors in proximity with two-dimensional
(2D) materials with strong spin-orbit coupling [14–17]. The
interest in these systems dwells in the possibility to control
the spin-orbit coupling and, hence, the induced pair potential
by means of external magnetic fields. Up to now, the main
research line has been focused on engineering an effective
spinless p + ip superconductor, which is expected to host

topologically protected zero-energy Majorana bound states
[18]. Topologically protected zero-energy boundary modes
have been also predicted in NCS [12,19]. Evidently, there
is a strong relationship between superconductivity on the
surface of a three-dimensional topological insulator and two-
dimensional NCS [11].

The interplay between the isotropic singlet and the
anisotropic triplet spin states is especially relevant near a
surface or an interface [7]. At the boundary of a supercon-
ductor, Andreev reflection opens the possibility for particle-
hole coherent conversion. These Andreev states manifest in
the tunneling spectroscopy of normal metal–superconductor
junctions (NS junctions). A zero-bias conductance peak char-
acterizes the junction between a metal and an unconventional
superconductor when the triplet part of the pairing dominates
[6,20,21]. Moreover, Andreev bound states (ABS) are formed
at the interface between two superconductors (SNS junctions)
notably affecting the Josephson current through the junction.
The Josephson current in a junction between superconductors
with dominant triplet pairing has been predicted to be carried
by single electrons instead of Cooper pairs [22]. Therefore,
the transport properties of hybrid contacts provide a useful
technique for the study of the pairing state.

Here, we assume that the pair potential at the supercon-
ductor is a mixture of spin-singlet isotropic s wave and spin-
triplet chiral p wave with out-of-plane orientation. Within this
assumption, we study transport signatures of both NS and SNS
junctions. The former are revealed in the tunnel conductance
of the NS junction and the latter in the Josephson current.
The mixing manifests as the appearance of two gaps that
can be detected via NS spectroscopy. The ABS at Josephson
junctions, on the other hand, are greatly affected by the mixing,
inducing a spin asymmetry in the current. As a consequence,
the Josephson current-phase relation becomes unconventional
at low temperatures. Transport signatures in both NS and SNS
junctions depend on the degree of mixing of the pair potential,
controlled by the amplitudes of each spin state �s and �p. We
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show that the case �s = �p is a quantum critical point that
distinguishes the topologically trivial phase with �s > �p

from the nontrivial phase with �s < �p. Transport signatures
strongly depend on this quantum phase transition.

This article is organized as follows. In Sec. II, we describe
the pairing potential for a mixture of singlet and out-of-
plane triplet spin states and explain how the Bogoliubov–de
Gennes (BdG) equations in spin and Nambu (electron-hole)
spaces decouple for this particular choice. We solve the
BdG equations for a normal metal–superconductor junction
in Sec. III and explore the impact of the mixture on the
conductance of this system. In Sec. IV, we find the conditions
for the formation of ABS in a Josephson junction and their
contribution to the supercurrent. We describe the temperature
dependence of the Josephson current for several values of
the mixing and barrier strength. Finally, we conclude with a
summary of our results in Sec. V.

II. MODEL

A. General considerations

We work in Nambu (electron-hole) space with basis
�(k) = [u↑(k),u↓(k),v↑(k),v↓(k)]T , where uσ (k) and vσ (k)
are, respectively, the electron- and holelike components with
spin σ =↑ ,↓, and k the wave vector. In momentum space,
the low-energy excitations of a superconductor are described
by the Hamiltonian

H (k) =
(

[ε(k) − μ]σ̂0 �̂(k)
�̂†(k) [μ − ε(−k)]σ̂0

)
, (1)

where ε(k) is the band energy measured from the chemical
potential μ, ˆ. . . denotes 2 × 2 matrices, and σ̂0 is the unit
matrix in spin space. For a mixture of spin-singlet and
triplet states, the pairing potential adopts the general form
[1,3] �̂(k) = i[�s(k)σ̂0 + ∑3

j=1 dj (k)σ̂j ]σ̂2e
iφ , with Pauli

matrices σ̂1,2,3 acting on spin space and φ the superconducting
phase. The singlet pairing field �s(k) is an even function
of the wave vector. To represent the conventional s-wave
superconductivity, we assume the pairing potential to be
independent of the wave vector and, thus, �s(k) = �s with
�s constant and real. On the other hand, the triplet pairing is
parametrized [23] by an odd vector function d(k) = −d(−k).

In our work, we study a combination of singlet and triplet
spin states that allows us to decouple the different spin channels
of H (k). Since the singlet state only affects the ↑↓ and ↓↑
channels, we consider, for simplicity, a chiral triplet state
of the form d(k) = �p

kx+iχky

|k| ẑ = �peiχθ ẑ with �p � 0 the
amplitude of the pairing potential and where χ = ± labels
the opposite chiralities, i.e., the orientation of the angular
momentum of the Cooper pairs. Consequently, the pairing
matrix is

�̂(k) = i[�sσ̂0 + �peiχθ σ̂3]σ̂2e
iφ, (2)

which is purely off diagonal. The resulting band dispersion
becomes

E1,2(k) =
√

ε2(k) + �2
s + �2

p ± 2�s�p cos θ. (3)

As a consequence, Eq. (1) is decoupled into two spin
channels ↑↓ and ↓↑ with different energies E1(k) and E2(k),

respectively. Notice that the change k → −k exchanges the
energy spectra between spin channels due to d(k) = −d(−k).
From our point of view, this particular choice of the pairing
potential is the simplest option that captures the essential and
nontrivial physics of mixed pairings at NS and SNS interfaces.

Interestingly, the interplay between s- and p-wave pairing
yields different energy spectra for each spin projection. As
a consequence, �̂(k) is not a unitary matrix, i.e., �̂�̂† =
(�2

s + �2
p)σ̂0 + 2�s�p cos θσ̂3, and the electronic excitations

are affected by two complex pair potentials

�1,2(θ ) = (�s ± �peiχθ )eiφ = s1,2|�1,2(θ )|e±iβ1,2(θ)eiφ,

(4)
with |�1,2(θ )|2 = �2

s + �2
p ± 2�s�p cos θ , s1,2 = sgn(�s ±

�p cos θ ), and

β1,2(θ ) = s1,2 tan−1 �p sin θ

|�s ± �p cos θ | . (5)

One can immediately see that �2(θ ) changes sign if �s <

�p cos θ . For �s = �p cos θ , the pair potential vanishes for
one of the spin channels.

The Hamiltonian H (k) defined in Eq. (1) satisfies particle-
hole symmetry if PHT (k)P † = −H (−k) with P a unitary
operator. There are two possible choices for the particle-hole
operator, namely, P1 = τ̂1 with P1P

∗
1 = 1 and P2 = τ̂2σ̂3 with

P2P
∗
2 = −1 (τ̂1,2,3 are Pauli matrices acting in Nambu space).

On the other hand, it only satisfies time-reversal symmetry
either for θ = nπ , with n = 0,1, . . . , or for θ = nπ/2. In
the former case, the ky component of the chiral spin-triplet
state vanishes, while in the latter it is the kx component.
Consequently, in the one-dimensional case, H (k) can be
classified either in class C, class D, or class DIII, according
to Cartan-Altland-Zirnbauer [24], depending on the choice
of θ . For the case with θ = 0, the Hamiltonian belongs to
the nontrivial DIII symmetry class if �p > �s [25]. The
transport results presented in the next sections correspond to a
two-dimensional system where no specific choice of θ can be
realized. Therefore, H (k) belongs to the overlapping regime
between class C or class D. To distinguish between these two
classes, we compare our transport results in the next section
with those of a chiral d-wave superconductor, which belongs
to class C [26]. The transition between trivial and nontrivial
topological phases is controlled by the amplitudes �s and
�p. We show in Fig. 1(b) a sketch of Eq. (4) in the complex
plane. We illustrate both the trivial (�s > �p) and nontrivial
(�s < �p) cases, and the quantum critical point (�s = �p).

B. Quasi-1D limit

In the following, we consider the quasi-1D limit where
transport takes place in the x direction and the transverse
component of the wave vector ky is conserved. To take into
account the change of sign of the triplet state with the wave
vector, for a fixed ky , we restrict k to kx � 0 and, thus,
αk = (αkx,ky) = (±kx,ky). Assuming that the band energy
ε(k) is the same for left and right movers, the change of sign in
the triplet component is accounted for by the transformation
θ → π − θ . We thus define θ+ = θ for right movers and
θ− = π − θ for left movers (see details in Fig. 1). Since the
pairing matrix is antidiagonal in spin space, we can decouple
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(a)

(b)

FIG. 1. (Color online) (a) Sketch of the NS junction, including
the axis selection, with the reflection and transmission processes
for an incoming spin up electron from the normal metal (N ). The
processes a, b, c, and d denote, respectively, the Andreev reflected
hole, the normal reflected electron, the electronlike quasiparticle
transmitted into the superconductor (S), and the transmitted holelike
quasiparticle. The solid (dashed) arrows represent the velocities of
the electrons (holes). A polar plot of the pair potential, with the
angle measured with respect to the kx direction, is shown for the
electron- and holelike excitations of processes c and d . The solid
red lines denote an arbitrary situation with �s �= �p , while the blue
dashed lines correspond to the quantum critical point with �s = �p .
(b) Sketch of the pair potential in the complex plane featuring
examples for the three interesting regimes �s > �p , �s = �p , and
�s < �p .

the two independent spin channels of the Hamiltonian of
Eq. (1) and treat them separately. For each case, we write
the 2 × 2 BdG equations(

ε(αk) − μ sσ�σ (θα)eiφ

sσ�∗
σ (θα)e−iφ μ − ε(−αk)

)(
uσ (θα)
vσ (θα)

)
= E

(
uσ (θα)
vσ (θα)

)
,

(6)

where E � 0 is the excitation energy, α = ± for right
and left movers, respectively, σ = 1,2 labels the different
spin channels, and sσ = (−1)σ−1. To simplify the following
analysis of the pairing potential, we have explicitly written the
dependence on the phase factor φ.

The energy spectrum of Eq. (6) is the same as the one
given in Eq. (3), but now the change in sign is determined
by α. The pairing potentials for each spin channel, given in
Eq. (4) are intimately related to both spin and direction of
motion, since d(k) is an odd function of the wave vector. For
example, a right mover with spin up (down) “feels” a pair-
ing potential �1(θ+) = �s + �peiχθ [−�2(θ+) = −(�s −
�peiχθ )]; therefore, if it is reflected without spin change
it “feels” a potential �1(θ−) = �s − �pe−iχθ [−�2(θ−) =

−(�s + �pe−iχθ )]. As a result, the gap amplitude |�1,2(θ )|2
can be different depending on the direction of motion, as it
is shown in the plots of Fig. 1(a). This asymmetry reaches a
maximum when �s = �p cos θ , where the gap amplitude can
even be zero [blue dashed lines in Fig. 1(a)].

The solutions of Eq. (6) can be described in terms of the
amplitudes

uσ (θα) = 1√
2

(
1 +

√
E2 − |�σ (θα)|2

E

)1/2

, (7a)

vσ (θα) = 1√
2

(
1 −

√
E2 − |�σ (θα)|2

E

)1/2

. (7b)

C. Experimental realization

For a superconductor to be described by our model, it must
fulfill two conditions: (1) there must be some degree of mixing
between the spin-singlet and the spin-triplet components of
the pair potential and (2) the orientation of the d vector of
the spin-triplet component must point perpendicular to the
direction of transport.

Systems where the pair potential is a mixture of singlet
and triplet spin states include NCS and the surface states
of TI. To validate the second condition, the direction of the
inversion-symmetry breaking spin-orbit coupling term must
lie in a particular axis of the crystal lattice. Transport signatures
like NS conductance and Josephson current, studied in the next
sections, must be measured in the plane orthogonal to that axis.
In Fig. 1(a) we show a sketch of a conductance measurement
with this axis selection.

For some NCS, the symmetry of the crystal is such that the
inversion-symmetry breaking spin orbit lies in a well-defined
crystal axis. In order to apply our model, we must set our
coordinate system so that this crystal axis lies in the z direction
and, therefore, it is parallel to the junction interface. Then, a
tunneling spectroscopy measurement, like the one depicted
in Fig. 1(a), is enough to fulfill condition (2). However,
the predicted spin-triplet component of the pair potential in
three-dimensional TI-superconductor hybrid structures [27]
adopts a Rashba-type symmetry [i.e., d(k) ∝ kx x̂ + ky ŷ]. The
most common triplet state in NCS is also of Rashba type.
The differences between this spin-triplet state and our choice
for a chiral triplet state can only be detected by means of
angle-resolved spectroscopy [28] or by tuning the direction of
the ferromagnetic moment in a ferromagnet-superconductor
junction [29]. Consequently, although our choice for the
spin-triplet component of the pair potential is not the most
common one, our model captures the essential physics of
these junctions and, at the same time, is simple enough to
make analytical predictions.

Another candidate for a system that fulfills both conditions
is the eutectic phase of Sr2RuO4-Ru. Sr2RuO4 is widely
believed to be a chiral spin-triplet superconductor, with the
angular momentum of the triplet state aligned with the c axis
of the crystal [30,31], while Ru is a conventional s-wave
superconductor. In Sr2RuO4-Ru, islands of Ru are formed
inside Sr2RuO4. The increased critical temperature for the
Sr2RuO4-Ru eutectic system is assumed to come from the
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interplay between the p-wave order parameter of Sr2RuO4

and the s wave one of Ru [31,32].

III. NORMAL METAL–SUPERCONDUCTOR JUNCTION

We now apply these results to the conductance of a
normal-superconductor junction. Following the formalism
introduced by Blonder et al. [33], we study a one-dimensional
metal-insulator-superconductor system. The solution of this
1D model can be extended to higher dimensions provided that
there is translational invariance in the directions perpendicular
to the electron motion. We assume that the x axis lies in
this direction and that the interface is at x = 0. We model
the scattering at the interface using a δ-function potential
V0(x) = (�2kF /m)Zδ(x) with kF the Fermi wave vector, m

the electron mass, and Z the dimensionless barrier strength.
The normal state metal with �̂ = 0 occupies the x < 0 region.
The pair potential of the superconductor on x > 0 is the
mixture of singlet and chiral triplet spin states introduced
in Eq. (2). When we expand below this formalism to higher
dimensions, θ represents the angle of incidence. The different
chiralities are connected via a change of sign in θ , so we omit
the label χ in this section.

We consider electronic excitations near the Fermi surface
with electron dispersion relation ε(k) = (�2/2m)k2

x + V0(x).
Under the Andreev approximation, which amounts to neglect-
ing terms of order �0/μ, there is no wave vector mismatch
between the normal and the superconducting regions, i.e.,
k ≡ k

e,h
N = k

e,h
S = kF , with kF the Fermi wave vector.

The scattering processes resulting from an electron incident
on the interface from the normal state region are (a) an
Andreev reflected hole, (b) a normal reflected electron, (c) an
electronlike quasiparticle transmitted to the superconductor,
and (d) a holelike transmitted quasiparticle.

These processes are sketched in Fig. 1(a). The reflection
amplitudes are obtained solving Eq. (6) with the boundary
conditions

�N = �S, ∂x�
S − ∂x�

N = kZ�N (0), (8)

with �N and �S the wave function at the normal and
superconducting sides of the interface. Namely,

�N
σ (x) = eikx

[(
1
0

)
+ aσ (E)

(
0
1

)]
+ bσ (E)e−ikx

(
1
0

)
,

(9a)

�S
σ (x) = cσ (E)eikx

(
uσ (θ+)

η∗
σ (θ+)vσ (θ+)

)

+ dσ (E)e−ikx

(
ησ (θ−)vσ (θ−)

uσ (θ−)

)
, (9b)

where ησ (θα) = sσ�σ (θα)/|�σ (θα)|. Using that �1,2(θ−) =
�∗

2,1(θ ), the resulting reflection amplitudes are

aσ=1,2(E,θ ) = 4η∗
1,2(θ )v1,2(θ )u2,1(θ )

4u1(θ )u2(θ ) + Z2tσ (E,θ )
, (10a)

bσ (E,θ ) = −Z(Z + 2i)tσ (E,θ )

4u1(θ )u2(θ ) + Z2tσ (E,θ )
, (10b)

tσ (E,θ ) = u1(θ )u2(θ ) − η∗
1(θ )η∗

2(θ )v1(θ )v2(θ ). (10c)

On the basis of Eq. (7), one immediately obtains that t1(E,θ ) =
t2(E,θ ) and, consequently, b1(E,θ ) = b2(E,θ ). This relation
does not hold for the Andreev reflection amplitude. However,
for |E| � |�2(θ )|, one finds that |a1(E,θ )|2 = |a2(E,θ )|2.

Following Refs. [20] and [21], for E < �0 and Z �= 0,
one obtains perfect Andreev reflection [|a(E)|2 = 1] provided
that tσ (E,θ ) = 0. For large Z, this condition is equivalent
to the formation of a bound state at the surface of a semi-
infinite superconductor. Any real solution of this equation is
associated with the formation of a subgap resonance at the
interface [21,28]. This resonance condition can be compactly
written as

�∗
1(θ )

�2(θ )
= E + i

√
|�1(θ )|2 − E2

E − i
√

|�2(θ )|2 − E2
. (11)

When the triplet component is stronger than the singlet one
(�p cos θ > �s), this equation has a real solution of the
form E0 = �p sin θ . Since t1(E,θ ) = t2(E,θ ), the resonance
condition is the same for both spin channels. Therefore, for
θ �= 0 the reflection amplitudes become asymmetric with
respect to the energy, revealing the chiral behavior of the
pairing potential [28].

At zero temperature, the single-mode conductance of the
system can be obtained by the superposition of the contribution
from each spin channel

GNS(E,θ ) = e2

h

∑
σ

(1 + |aσ (E,θ )|2 − |bσ (E,θ )|2). (12)

When the barrier at the interface does not mix different
modes, this result can easily be generalized to higher dimen-
sions. Assuming that the momentum component parallel to the
interface is conserved, all wave vectors for a given mode lie in
the same plane. Under the Andreev approximation, the angle of
incidence of incoming quasiparticles from the normal region is
the same as the transmitted excitations into the superconductor
(see Fig. 1). On the other hand, the orientation of the triplet
component of the pairing potential is defined relative to the
NS interface. Therefore, the angle θ can be associated with
the angle of incidence if both are measured with respect to
the kx direction, i.e., eiθ = (kx + iky)/kF . Consequently, the
contribution from multiple modes is given by the angle average
of the single-mode conductance as [28,33]

G̃NS(E) =
∫ π/2

−π/2
P (θ )GNS(E,θ ) cos θ dθ. (13)

P (θ ) is the experiment-dependent probability distribution; in
what follows, we assume P (θ ) = 1. The conductance, in the
subsequent discussion of the results, is normalized by the
normal state conductance G0 = (2e2/h)D(θ ), with D(θ ) =
4 cos2 θ/(Z2 + 4 cos2 θ ) the normal state transmission for a
single mode in the quasi-1D limit.

As we show now, the effect of the two gaps in the energy
spectrum and the formation of subgap resonances can be nicely
seen in the conductance. We first consider the single-mode
case with θ = 0. The energy spectrum of Eq. (3) then reduces
to E1,2 =

√
E2 − �2

1,2 = √
E2 − (�s ± �p)2. In Fig. 2(a),

we plot the conductance normalized to the normal state
conductance G0, calculated with Z = 2. We consider three
situations depending on the relative values of �s and �p.
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(a)

(b)

FIG. 2. (Color online) (a) Normalized single-mode conductance
for the cases �p = 1 − �s = 0.75 (red solid line), �p = 1 − �s =
0.25 (blue dashed line), and �p = �s = 0.5 (black dashed-dot line).
Z = 2 and θ = 0 for the left panel; Z = 4 and θ = π/4 for the right
one. (b) Angle-averaged conductance for a junction with Z = 4. Left
panel corresponds to the case where the pairing potential mixes singlet
and triplet states; the amplitudes �s and �p are the same as in (a).
For the right panel, the pairing potential is a chiral d wave with �2 =
1 − �1 = 0.75 (red solid line), �2 = 1 − �1 = 0.25 (blue dashed
line), and �1 = �2 = 0.5 (black dashed-dot solid line).

For �s > �p (blue dashed line) the conductance is strongly
suppressed for E < �2, similar to the case of a junction with a
conventional s-wave superconductor. The case with �s < �p

(red solid line), however, presents a zero-bias conductance
peak as it is expected for an unconventional superconducting
junction [20,21,34]. The appearance of this peak is associated
with the formation of a subgap resonance at E = 0 and the
width of the resonance decreases as Z−2. In the range �2 <

E < �1, Andreev reflection is strongly suppressed for the
excitations with energy dispersion E2. Incident quasiparticles
in this energy branch are no longer affected by the pairing
potential and cannot be Andreev reflected. The incoming
quasiparticles with E1 are still affected by the pairing potential
and can be Andreev reflected; therefore, the conductance
slowly increases. For E > �1 the conductance reduces to the
normal state conductance G0. Finally, in the case where �s =
�p, one of the energy branches is no longer affected by the
pairing potential. For this gapless channel, a(E) = 0 and the
transmission becomes D = 1 − |b(E)|2 = 4/(Z2 + 4), which
provides a constant contribution to the conductance as in
the normal state. For the other channel, both Andreev and
normal reflections are constant for |E| � |�1|. The resulting
conductance for both spin channels is plotted as the black
dashed-dot line in the left panel of Fig. 2(a).

When the phase factor θ of the triplet state is finite,
the reflection amplitudes for each spin channel become
asymmetric with respect to the energy. We show in the right
panel of Fig. 2(a) the single-mode conductance for Z = 4
and θ = π/4 with the same color scheme as before. The red
solid line for �s < �p clearly shows a subgap resonance at

E = �p/
√

2. By decreasing the difference between �s and
�p, the resonance smoothly merges with the continuum at
E � |�2(θ )|. The asymmetry with the energy is maintained
in the regime �s > �p even though there are no subgap
resonances.

In the left panel of Fig. 2(b), we show the angle averaged
conductance for a junction with Z = 4. The transition from a
gapped conductance profile for �s > �p (blue dashed line)
into a zero-bias conductance peak for �s < �p (red solid
line) is still reproduced. The situation with �s = �p (black
dashed-dot line) develops an interesting subgap structure
where there are no resonances but which is not fully gapped.
This corresponds to the quantum critical point where the
bulk gap is closed, but the condition for the formation of
subgap resonances is not yet fulfilled. For comparison, we have
included in the left panel of Fig. 2(b) the conductance of a junc-
tion with a chiral d-wave superconductor, which belongs to
symmetry class C. The pairing potential for this case adopts the
form [26] �d+id ′ (θ±) = �1 cos(2θ±) + i�2 sin(2θ±), which
presents a chiral structure similar to the mixing potential
that we are using. A transition from a gapped profile into
a conductance peak can also be reproduced by changing the
amplitudes �1 and �2 [right panel of Fig. 2(b)]. It is interesting
to note that when �1 = �2, the resulting conductance is
almost flat. This is in contrast to the �s = �p case, which
features a V-shaped zero-energy dip [black dot-dashed lines
in Fig. 2(b)].

IV. JOSEPHSON JUNCTION

We now consider a junction between two superconductors.
As it was the case for the NS junction, the junction barrier is
located at x = 0 with one of the superconductors (L) located in
the region x < 0 and the other (R) at x > 0. The pair potential
at each superconductor is a combination of singlet and triplet
states, as in Eq. (2), and we can thus treat each spin channel
separately. The pairing potential in Eq. (6) then adopts the
form

�1,2(x,θα) =
{(

�L
s ± �L

peiχLθα
)
eiφL, x < 0,(

�R
s ± �R

peiχRθα
)
eiφR , x > 0.

(14)

The electrical current flowing through the junction depends
on the phase difference between the two superconductors
φ = φR − φL. It also depends on the relative chirality of
the superconductors: we can have junctions with parallel
chirality (χLχR = 1) and junctions with opposite chirality
(χLχR = −1). To distinguish each case it is enough to
assume χL = 1 and χR = χ = ±. According to Eq. (4), a
change of chirality is equivalent to a change in the sign of
θ ; therefore, we define θ̃+ = χθ and θ̃− = π − χθ for the
superconductor R.

A. Contributions to the Josephson current

At each superconductor we have two effective gaps
|�L,R

1,2 (θ )|, with |�L,R
1 (θ )| � |�L,R

2 (θ )|. For simplicity, we
consider symmetric junctions where the amplitude of the
pairing potential is the same on both sides of the junction:
�L

s = �R
s ≡ �s � 0 and �L

p = �R
p ≡ �p � 0. We can thus
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define three energy regimes: (1) |E| � |�2(θ )|, (2) |�2(θ )| <

|E| � |�1(θ )|, and (3) |E| > |�1(θ )|.
Accordingly, the total Josephson current can be divided

into three contributions: I (φ) = I1(φ) + I2(φ) + I3(φ). The
Josephson currents I1(φ) and I3(φ) correspond to the contri-
butions from discrete Andreev levels within the gap and excited
states from the continuum, respectively. The continuum
contribution I3(φ) is negligible for the short ballistic junction
considered here [35]. The current carried by each Andreev
state is (e/h)∂Eσ,n(φ)/∂φ, where Eσ,n(φ) is the corresponding
energy level [35–38]. Therefore, we have

I1(φ) = e

h

∑
σ,n

∫ π/2

−π/2

∂Eσ,n(φ,θ )

∂φ
f (Eσ,n)dθ cos θ, (15)

where σ =↑↓ , ↓↑ labels the spin channel, n is the energy
level, and f (Eσ,n) = [1 + exp(Eσ,n/kBT )]−1 is the equilib-
rium Fermi occupation factor, with kB the Boltzmann constant
and T the temperature.

However, in the regime where |�2(θ )| < |E| � |�1(θ )|,
the excitations at the interface between superconductors are
either Andreev reflected or transmitted into the superconductor
depending on their spin and direction of motion. We show in
Appendix A that the contribution to the current in this energy
range is zero for transparent junctions, i.e., when Z = 0. That
is not the case for junctions with arbitrary barrier strength
Z. For these junctions, this contribution must be taken into
account when computing the Josephson current. A similar
separation of contributions to the Josephson current is reached
in an asymmetric junction where the pair potential is different
in each superconductor [39].

B. Andreev bound states

The wave function for each superconductor is a superposi-
tion of the solutions of the BdG equations given in Eq. (7),

�L
σ (x) = C+

L

(
ηL

σ (θ+)vL
σ (θ+)

uL
σ (θ+)

)
e

�L
σ (θ+)x
�vF eikx

+ C−
L

(
uL

σ (θ−)

ηL∗
σ (θ−)vL

σ (θ−)

)
e

�L
σ (θ−)x
�vF e−ikx, (16a)

�R
σ (x) = C+

R

(
uR

σ (θ+)eiφ

ηR∗
σ (θ̃+)vR

σ (θ+)

)
e
− �R

σ (θ+)x
�vF eikx

+ C−
R

(
ηR

σ (θ̃−)vR
σ (θ−)eiφ

uR
σ (θ−)

)
e
− �R

σ (θ−)x
�vF e−ikx, (16b)

where �L,R
σ (θα) =

√
|�L,R

σ (θα)|2 − E2. Substituting the wave
functions in the boundary conditions of Eq. (8) we obtain a
system of linear homogeneous equations for the coefficients
C±

L,R . This system has a nontrivial solution if the determinant
of the associated matrix is zero.

For symmetric junctions with χ = +1, this condition is
reduced to

Re{�1�2} = A− + D[Re{�1�2}
− A+ cos φ + sσB− sin φ], (17)

where we have omitted the dependence on θ for simplicity and
we defined

A± = E2 ± �1(E,θ )�2(E,θ ),

B± = E[�1(E,θ ) ± �2(E,θ )].

On the other hand, for χ = −1, we find

|�1�2|2 − Re{�1�2}A− − Im{�1�2}B+
= D(|�1�2|2 − Re{�1�

∗
2}[A+ cos φ − sσB− sin φ]

+ Im{�1�
∗
2}[B− cos φ + sσA+ sin φ]). (18)

The solutions Eσ of Eq. (17) and Eq. (18) form the ABS of
the junction for each spin projection. For the junction with
�p = 0 and �s finite, these solutions are the well known
ABS for a one-dimensional Josephson junction between s-
wave superconductors [22]

E±
σ (φ) = ±�s

√
1 − D sin2 (φ/2), (19)

which are spin and angle independent. For a transparent
junction (D = 1) the equation for the bound states re-
duces to E±

σ (φ) = ±�p| cos (φ/2)|. The positive and negative
branches touch at E = 0 but do not change sign; the energy
levels are thus 2π periodic.

On the other hand, if �s = 0 with a finite �p and θ = 0
the bound states are

E±
σ (φ) = ±�p

√
D cos (φ/2). (20)

The same expression is found for the ABS formed at a
px-px junction [22] or at the 45◦/45◦ junction between two
d-wave superconductors [40]. Independent of the transmission
of the junction the energy levels change sign at φ = 2nπ , with
n = 0, ±1, . . . , and are 4π periodic. Moreover, for �s = 0,
�p �= 0, and arbitrary θ , the roots of Eq. (18) and Eq. (17)
reproduce the analytical expressions for the ABS of a junction
between chiral p-wave superconductors [Eqs. (47) and (48),
respectively, in Ref. [22]]. Finally, for D = 0, the roots for both
chiralities are given by E± = ±�p sin θ , which represent the
chiral Andreev surface states at each superconductor.

For symmetric transparent (D = 1) junctions with χ = +1,
the solutions of Eq. (17) adopt the form

E±
1,2(φ,θ ) = ±|�1,2(θ )| cos(φ/2). (21)

For this special case, the ABS are always zero at φ = π . When
the spin states mix, the ABS become different [i.e., E1(θ,φ) �=
E2(θ,φ)], with the splitting controlled by the mixing and the
angle of incidence.

For the case with χ = −1, the solutions of Eq. (18) when
D = 1 read

E±
1,2(φ,θ )

= �2
s sin φ + �2

p sin(φ ∓ 2θ ) ± 2�s�p sin(φ ∓ θ )

2
∣∣�s sin φ

2 ± �p sin
(

φ

2 ∓ θ
)∣∣ .

(22)

For θ = 0 the ABS reduce to the simple form of Eq. (21). For
a finite angle, however, the periodicity of the ABS E±

1 and E±
2

is shifted differently. Additionally, as in the previous case, the
amplitude of the ABS is also changed by the mixing of spin
states.
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(a) (b)

(c) (d)

FIG. 3. (Color online) ABS for symmetric junctions as a function
of φ for several values of the angle θ . We show E+

1 (θ,φ) and E−
2 (θ,φ)

for χ = +1 and �s = 1 − �p = 0.55 (a), χ = +1 and �s = 0.45
(b), χ = −1 and �s = 0.55 (c), and χ = −1 and �s = 0.45 (d). For
all plots we set Z = 1.

For finite barrier strength (D �= 1), the solutions of Eq. (17)
and Eq. (18) are obtained numerically. We show in Fig. 3
the ABS E+

1 (θ,φ) and E−
2 (θ,φ) as a function of the phase

difference φ for several values of the angle of incidence θ .
We normalize the ABS to the value of the bulk gap |�2(θ )|.
When we introduce a finite mixing of spin states, controlled
by the amplitude �s = 1 − �p, the ABS immediately become
different independent of the rest of the parameters. For
θ = 0 (red solid lines), the ABS fulfill E+

1 (0,φ) = E−
2 (0,−φ).

Compared with the transparent case, the ABS develop a
gap when �s > �p, but remain gapless for �s < �p. For
junctions with χ = +1, the gapless mode disappears when
θ �= 0 [see Fig. 3(b)]. Additionally, for these junctions the
ABS are asymmetric with respect to θ and fulfill E+

1 (θ,φ) =
E−

2 (−θ,−φ). Interestingly, the spectrum of junctions with
χ = −1 remains gapless for a wide range of the angle θ due to
the chiral dispersion of the spin-triplet component. The number
of surface states in isolated chiral superconductors is given by
the Chern number [2,41]. For the chiral triplet cases studied
here this number can be nL,R = ±1, depending on the chirality
of the superconductor. At the interface between two chiral
superconductors, the number of bound states is determined by
|nL − nR|. For χ = +1, we have |nL − nR| = 0 and the only
zero-energy solutions are restricted to the values θ = 0 and
φ = π . On the other hand, for χ = −1 we find |nL − nR| = 2.
Consequently, we find zero-energy solutions for a wider range
of θ .

The form of the ABS strongly depend on the mixing of
spin states and on the chirality of the junction. We show in
Fig. 4(a) a sketch of the formation of ABS at junctions with
parallel (left panel) or opposite chirality (right). The mixing of
spin states controls the value of the bulk gap, given by |�2(θ )|,
distinguishing the topologically different regions with �s >

�p and �s < �p. The bulk gap closes at the quantum critical
point �s = �p. We show in Fig. 4(b) the ABS as a function of

(a)

(b)

FIG. 4. (Color online) (a) Sketch of the formation of a bound
state at junctions with the same (left) and opposite (right) chiralities.
(b) ABS E±

1,2(θ,φ) compared to the bulk gap |�2(θ )| as a function
of the angle of incidence θ . Following the sketch from (a), ABS for
junction with χ = +1 (χ = −1) are shown in red (blue) lines. From
left to right we show the trivial case with �s = 0.55, the quantum
critical point �s = 0.5, and the nontrivial case with �s = 0.45. The
top panels correspond to φ = π and the bottom to φ = 2π/3. For all
cases Z = 1.

θ for different values of the phase difference φ. We normalize
the ABS to �0 ≡

√
�2

s + �2
p�(T = 0), where �(T = 0)

provides the right units. The particular choice of �(T = 0) is
irrelevant; throughout the paper we use a value comparable
to that of s-wave superconductors at zero temperature. In
the topologically trivial case with �s > �p, junctions with
different chiralities display a different dispersion of the ABS,
but they never present zero-energy modes. For a fixed value
of φ, the ABS are symmetric with respect to θ for χ = +1
and antisymmetric when χ = −1. For �s = �p, the bulk
gap closes at θ = 0. In this case, junctions with χ = −1
feature zero-energy modes for θ �= 0, where the bulk gap
is open. Finally, for the topologically nontrivial case with
�s < �p, there is always a zero-energy mode at θ = 0 and
φ = π , independent of the chirality. This gapless dispersion
disappears for φ �= π when χ = +1. However, junctions
between superconductors with opposite chirality have at least
two zero-energy solutions that become degenerate at φ = π .

C. Josephson current

The ABS come in pairs E±
1,2(φ,θ ) for each spin channel.

Inserting these solutions into Eq. (15) we obtain

I1(φ) = e

2h

∫ π/2

−π/2
dθ cos θ

[
∂φE1(φ,θ ) tanh

(
E1(φ,θ )

2kBT

)

+ ∂φE2(φ,θ ) tanh

(
E2(φ,θ )

2kBT

)]
, (23)

where both spin channels have been taken into account. In
Fig. 5(a) and Fig. 5(b) we show the total current for transparent
junctions (Z = 0). For these junctions, the only contribution
to the Josephson current comes from the ABS as Eq. (23)
(see Appendix A). Following the analysis of the ABS, the
current is very different for junctions with parallel or opposite
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(a) (b)

(c) (d)

FIG. 5. (Color online) Josephson current through symmetric
junctions for �s = 1 − �p = 0.75 (red solid lines), �s = 0.5 (blue
dashed lines), and �s = 0.25 (black dot-dashed lines). For χ = +1,
we show the current for junctions with χ = +1 (a) and χ = −1 (b).
For Z = 4, the same cases in (c) and (d), respectively. For all cases,
T/Tc = 0.001.

chirality. Transparent junctions with χ = +1 do not show
different behavior in the regimes �s ≶ �p. In Fig. 5(a) we
show that the case with �s = 1 − �p = 0.75 is the same
as that of �s = 0.25 (red solid and black dot-dashed lines,
respectively). Both currents are given by the ABS in Eq. (21),
where the mixing only affects the amplitude of the ABS.
Therefore, the amplitude of the current reaches a minimum
for �s = �p (blue dashed line). When the current is given by
the ABS of Eq. (21), the profile is highly nonsinusoidal at low
temperatures. The situation is very different when χ = −1,
where the ABS are given by Eq. (22). When we consider
a small spin-triplet component in an otherwise spin-singlet
dominant junction, the current is immediately affected [red
solid line of Fig. 5(b)]. The profile is still strongly nonsinu-
soidal, but smoothly turns more harmonic as the spin-triplet
component becomes dominant. It is interesting to note that,
even though the ABS in Eqs. (21) and (22) are 4π periodic, the
dc current calculated in the thermodynamic equilibrium is 2π

periodic. Within the thermodynamic equilibrium assumption,
the occupation numbers of the subgap states remain fixed at
a temperature T . As a consequence, the Josephson current
depends on the temperature as shown in Eq. (23) and the
factors tanh[Ei/(2kBT )] directly affect the periodicity of the
current, reducing it from 4π to 2π .

For junctions with arbitrary barrier strength Z, the con-
tribution to the total current from the intermediate region
I2(φ) becomes, in general, nonzero. The contribution from the
continuum I3(φ), however, is zero for short ballistic junctions.
The Josephson current is thus given by I (φ) = I1(φ) + I2(φ),
including both spin channels. To compute the current, we use
a general expression based on quasiclassical Green functions
[42–44] (see details in Appendix B). In Fig. 5(c) and Fig. 5(d)
we repeat the previous cases for Z = 4. In the presence of
a barrier, the current profile becomes more harmonic due to
the contribution from the intermediate region. Additionally,

(a) (b)

(c) (d)

FIG. 6. (Color online) Maximum Josephson current Ic(φ) as a
function of the temperature for different barrier strengths: Z = 0
(a), Z = 1 (b), and Z = 10 (c) and (d). For (a) and (b), the junction
chirality is χ = +1 unless otherwise specified. In all cases the mixing
between spin singlet and spin triplet is controlled by �s = 1 − �p .
Temperature is normalized to the critical temperature of s-wave
superconductors Tc = 8.8 K.

the chiral behavior of the spin-triplet component of the pair
potential becomes more important when �s < �p. As a result,
the amplitude of the current is greatly increased in this regime,
for both chiralities [black dot-dashed lines in Fig. 5(c) and
Fig. 5(d)]. Junctions with χ = +1 feature the highest increase
in the amplitude and almost harmonic profile. Junctions with
χ = −1, however, display a nonsinusoidal behavior in the
�s < �p regime.

To study the effect of temperature on the Josephson current,
we assume that the pair potentials �1,2(T ) have the standard
BCS dependence. For simplicity, we only consider symmetric
junctions. We show in Fig. 6 the dependence of the critical
Josephson current Ic(φ) on the temperature for junctions with
different barrier strengths. Transparent junctions between s-
wave superconductors are equivalent to those between p-wave
superconductors, when the angular momentum of the Cooper
pairs align [22,45]. In this case, the effect of the mixing is
to reduce the amplitude until a minimum is reached for �s =
�p = 0.5 [see Fig. 6(a)]. For the opposite chirality, a minimum
is reached for �s = 0 and the effect of the spin mixing is to
smoothly reduce the critical current from �s = 1.

In Fig. 6(b) we analyze junctions with a finite barrier
(Z = 1). The effect of the barrier is to saturate the critical
current to a fixed value at low temperatures. The saturation
point depends on the barrier strength, the mixing of spin
states, and the relative chirality of the junction. Junctions with
opposite chirality (χ = −1) display a behavior similar to the
perfectly transparent case, with a smooth transition between
a maximum critical current for �s = 1 and a minimum at
�s = 0. For χ = +1, the minimum critical current is still
found for �s = 0.5. However, for Z �= 0, the critical current
is enhanced in the spin-triplet dominant range �s < �p,
compared to the s-wave behavior of �s = 1. The current
amplitude is maximum for �s = 0.
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This tendency is greatly enhanced for tunnel junctions. In
Fig. 6(c) and Fig. 6(d) we go into this limit setting Z = 10. We
show the temperature dependence for junctions with χ = +1
in Fig. 6(c) and with χ = −1 in Fig. 6(d). For junctions with
χ = +1, the amplitude of the Josephson current is enhanced
by the mixture of spin states. The critical current becomes
much larger than that of s-wave superconductors the moment
the spin-triplet component becomes dominant (�p > �s).
This enhancement of the critical current is found for a wide
range of temperatures below the critical temperature Tc. A
similar behavior is found at low temperatures for junctions
with χ = −1. In this case, however, the amplitude of the
Josephson current is reduced with respect to that of s-wave
superconductors when the temperature is comparable to Tc. At
low temperatures, the impact of the mixing of spin states is
also different from that of χ = +1 junctions. Namely, when a
small spin-triplet component is added to both superconductors
such that their chiralities are antiparallel, the critical current is
immediately reduced. Ic reaches a minimum when �s = �p,
i.e., when the amplitude of both spin states is the same. In
the regime �s < �p, the critical current is greatly enhanced.
The current amplitude for χ = +1 is always bigger than
the χ = −1 case, independent of the mixture of spin states.
Following the study of Ref. [45] for pure p-wave junctions
(�s = 0), this is a direct consequence of the zero-energy
states formed at the junction. For χ = +1, these states are
formed from constructive interference of quasiparticles from
both superconductors [see Fig. 4(a)]. On the other hand,
quasiparticles interfere destructively when χ = −1.

V. CONCLUSIONS

We have analyzed transport signatures of NS and Josephson
junctions where the superconducting pairing potential shows
a mixture of singlet and chiral triplet spin states. For the
spin-triplet part, we have studied an out-of-plane polarization
where the pairing only affects the ↑↓ and ↓↑ spin channels.
In this situation, the BdG equations are decoupled for these
channels. For both spin channels, excitations are affected by
one of two effective gaps |�1,2(θ )| = |�s ± �peiθ | depending
on their direction of motion. Additionally, the bulk gap of
the superconductor is given by the smallest of these gaps,
|�2(θ )| = |�s − �peiθ |, and can be zero when �s = �p. As a
consequence, two topologically different regions are defined: a
trivial region with �s > �p and a nontrivial one for �s < �p.
Transport properties depend on which topological region the
pair potential is in. For the trivial case with �s > �p, the NS
conductance features a gap, while a zero-bias peak appears
when �s < �p. In the latter case, the pair potential becomes
complex and allows one to form subgap resonances that
contribute to the zero-bias peak. The double gap structure
resulting from the mixing of spin states can be detected in NS
spectroscopy measurements.

The formation of ABS at short ballistic SNS junctions is
also affected by mixing of spin states: in the topologically
nontrivial regime with �s < �p the ABS develop zero-energy
states. The relative chirality of the superconductors at each
side of the junction also plays an important role. For junctions
where the angular momentum of the Cooper pairs align in
parallel (i.e., χ = +1), the inclusion of mixing of spin states

increases the amplitude of the critical current for any value of
the mixing. When they align in opposite directions (χ = −1),
the critical current is only increased in the regime �s < �p.
The zero-energy modes are also affected by the chirality of
the junction. For χ = +1, the zero-energy ABS only appear
at φ = π for any incidence angle θ if Z = 0 or for θ = 0
when Z �= 0. When χ = −1, the zero-energy ABS appear for
a wide range of angles of incidence, independent of the barrier
strength Z.

An out-of-plane polarization for the Cooper pairs is the
only possible triplet state that decouples the BdG equations
into two independent spin channels while still considering a
mixed singlet-triplet pairing term. This restriction has allowed
us to make analytical predictions and to better understand the
underlying physics. In the future, we would like to analyze the
robustness of our results under the choice of more realistic and
complicated mixed pairing terms.
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APPENDIX A: JOSEPHSON CURRENT FROM
SCATTERING THEORY

In this Appendix, we calculate the Josephson current using
the electrical current density, following Refs. [33,38,46] (see
also Ref. [39] for an asymmetric junction). We demonstrate
that the contribution to the total Josephson current for |E| >

|�2(θ )| is zero in a short ballistic junction with Z = 0
(perfect transparency). The Josephson current also vanishes
for junctions with arbitrary barrier strength Z in the continuum
region with |E| > |�1(θ )|. For each spin channel separately,
however, the current may be finite in both the intermediate and
the continuum energy regions.

The Josephson junction is modeled as in the main text with
�σ,L

s,p = �σ,R
s,p (symmetric junction). We consider four scatter-

ing processes: (1) an electronlike excitation incoming from the
left superconductor, (2) a holelike excitation incoming from
the left superconductor, and (3) and (4) the same processes
with incidence from the right superconductor.

In the first situation, the wave function from the left
superconductor includes the incident electronlike excitation
from spin channel σ = 1,2 and the Andreev reflected one,

�L
σ (x) =

(
uσ (θ+)eiφ

η∗
σ (θ+)vσ (θ+)

)
eikxe

− �σ (θ+)x
�vF

+ a(1)
σ

(
ησ (θ+)vσ (θ+)

uσ (θ+)

)
eikxe

�σ (θ+)x
�vF .
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The transmitted excitation in the right superconductor is

�R
σ = c(1)

σ

(
uσ (θ+)eiφ

η∗
σ̃ (θ+)vσ (θ+)

)
eikxe

− �σ (θ+)x
�vF .

As in the main text, we are using the Andreev approximation
so the wave vector k is the same for both electrons and
holes. The wave functions for the remaining processes are
analogously obtained from the solutions of the BdG equations
given in Eq. (16). Enforcing continuity of the wave functions
at x = 0 for each case, we obtain

c(1)
σ = e−iφc(4)

σ = u2
σ (θ ) − v2

σ (θ )

eiφu2
σ (θ ) − v2

σ (θ )
,

c(3)
σ = eiφc(2)

σ = u2
σ̄ (θ ) − v2

σ̄ (θ )

e−iφu2
σ̄ (θ ) − v2

σ̄ (θ )
,

with σ̄ = 1,2 �= σ . Therefore, for the perfectly transparent
case we have |c(1)

σ |2 = |c(4)
σ |2 = |c(2)

σ̄ |2 = |c(3)
σ̄ |2.

We can now define the electrical current transmission
amplitude for an electronlike excitation incident from the left
superconductor with |E| > |�2| as

T eσ
L→R = 1

2 [(|uσ (θ )|2 + |vσ (θ )|2)f (E) − |vσ (θ )|2]|c(1)
σ |2,

with f (E) = [1 + exp(E/kBT )]−1 the Fermi occupation fac-
tor, T the absolute temperature, and kB the Boltzmann
constant. For the rest of the processes, we find

T hσ
L→R = 1

2 [(|uσ̄ (θ )|2 + |vσ̄ (θ )|2)f (E) − |uσ̄ (θ )|2]
∣∣c(1)

σ̄

∣∣2
,

T eσ
R→L = 1

2 [(|uσ̄ (θ )|2 + |vσ̄ (θ )|2)f (E) − |vσ̄ (θ )|2]
∣∣c(1)

σ̄

∣∣2
,

T hσ
R→L = 1

2 [(|uσ (θ )|2 + |vσ (θ )|2)f (E) − |uσ (θ )|2]
∣∣c(1)

σ

∣∣2
.

The electrical current operator associated to process (1)
is defined as J (1)

σ = (e�/m)k(1)
σ T eσ

L→R , with k(1)
σ = +k under

Andreev approximation. Analogously, we find k(4)
σ = +k and

k(2)
σ = k(3)

σ = −k. Finally, the electrical current per unit energy
carried by electron- and holelike quasiparticles is given by

I e,h
σ (φ) = e

2h

∫ ∞

|�2(θ)|

[
ρL

σ (E,θ )T (e,h)σ
L→R (E,φ)

− ρR
σ (E,θ )T (e,h)σ

R→L (E,φ)
]
dE,

with

ρL,R
σ (E,θ ) = lim

η→0
Im

{
E + iη√∣∣�L,R

σ (θ )
∣∣2 − (E + iη)2

}

the normalized density of states in the superconductor.
For each spin channel, we define the total electrical

current per unit energy as Iσ (φ) = [I e
σ (φ) + Ih

σ (φ)]/2. For
perfect transparent junctions, we find that Iσ (φ) = −Iσ̄ (−φ).
As a consequence, the contribution to the total Josephson
current for |E| > |�2(θ )| vanishes, although the current from

each spin channel can be finite. This result is also valid at
arbitrary junction transparency for the regime |E| > |�1(θ )|
(continuum). For a perfectly transparent junction, therefore,
the Josephson current is given only by the contribution from
the Andreev bound states. For junctions with Z �= 0, we must
also include the contribution from the intermediate region. On
the other hand, for each spin channel the current must include
the terms from the three energy regions.

APPENDIX B: JOSEPHSON CURRENT FROM
QUASICLASSICAL GREEN FUNCTIONS

In this Appendix we provide the main details to adapt the
formula for the dc Josephson current derived in Refs. [42–44]
to the present work. For a junction between superconductors
with mixed singlet and triplet spin states as described in the
main text, a compact expression for the Josephson current can
be taken from Ref. [43] as

RNI (φ) = πR̄NkBT

e

{ ∑
ωn

∫ π/2

−π/2
F̄ (θ,iωn,φ) cos θ dθ

}
,

(B1)

with

R̄N =
(∫ π/2

−π/2
σN cos θ dθ

)−1

and

σN = 4 cos2 θ

4 cos2 θ + Z2
.

The integrand is given by

F̄ (θ,E,φ) =
2∑

j=1

(−1)j−1

∣∣�L
j (θ )

∣∣
�L

j (θ )

× {
a

(j )
↑↓(θ,E,φ) − a

(j )
↑↓(θ,E,−φ)

}
. (B2)

The Andreev reflection amplitudes a(1,2)
σ (θ,E,φ) are obtained

after substituting the wave functions from Eq. (16) into the
boundary conditions of Eq. (8). In Eq. (B2), we have used that
a

(1,2)
↓↑ (φ) = a

(2,1)
↑↓ (−φ). In Eq. (B1), we apply the analytical

continuation E → iωn, where ωn = πkBT (2n + 1) denotes
the Matsubara frequency. Subsequently, we write �

L,R
1,2 (θ ) =

sgn(ωn)
√

|�L,R
1,2 (θ )|2 + w2

n. Finally, for the pairing potentials,
we use

�L
1,2(θ ) = (

�L
s ± �L

pe±iθ
)
�L(T ),

�R
1,2(θ ) = (

�R
s ± �R

pe±iχθ
)
�R(T ),

where �L,R(T ) = �0 tanh(1.74
√

T/Tc − 1), with Tc the crit-
ical temperature, follows approximately the BCS temperature
dependence.
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