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Electron states in a double quantum dot with broken axial symmetry
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We study theoretically the electron states in a system of two vertically stacked quantum dots. We investigate
the influence of the geometrical symmetry breaking (caused by the displacement as well as the ellipticity of the
dots) on the electron states. Our modeling is based on the eight-band k · p method. We study the coupling of
the s state from one dot with the p and d states from the other induced by the absence of axial symmetry. Our
findings indicate that this coupling can produce a strong energy splitting at resonance (on the order of several
meV) in the case of closely spaced quantum dots. Furthermore, we show that in the presence of a piezoelectric
field, the direction of the displacement plays an important role in the character of the coupling.
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I. INTRODUCTION

Systems composed of vertically stacked self-assembled
double quantum dots (DQDs) show many interesting prop-
erties, qualitatively different from what might be observed
in single-QD samples [1]. Their rich spectrum of excitonic
states includes spatially direct and indirect excitons [2], that
is, electron-hole configurations with the two particles in the
same or in different QDs, respectively. A common way
of investigating the DQD structures is to place them in a
photodiode structure, which allows one not only to measure
the system absorption via the induced photocurrent, but also to
apply an axial electric field [3–5], which results in an intricate
pattern of resonances between these two classes of states as a
function of the field [3,5–8]. Apart from the external field, the
nature of the carrier states and the emission spectrum of a DQD
are strongly affected by band mixing [9–11] and spin-orbit
coupling [8].

These unique properties of pairs of coupled QDs, combined
with their relatively simple manufacturing as a result of their
spontaneous formation in a Stransky-Krastanov process, have
motivated many theoretical and laboratory-scale experimental
proposals for their practical applications. Entanglement be-
tween the carriers in DQDs appears naturally [12] and can be
optically created using robust optical control schemes [13].
Early proposals for qubit encoding in DQDs [14] have been
extended to experimentally demonstrated conditional control
[4] as well as decoherence protected qubits and implementa-
tions of quantum algorithms [15]. Collective emission from
such structures [16] has interesting angular characteristics that
allow them to be used as quantum nano-antennas [17]. Raman
couplings between singlet and triplet states in DQDs result in
optical gain and can be exploited to build a single emitter laser
[18].

Due to their rich structure of optical transitions, DQD
structures are favorable for spin control and readout [19],
hence potential applications of DQD systems are sought
also in the direction of spintronics and spin-based quantum
computation. DQDs have been proposed to be used for
spin-based quantum bits [20,21]. Spin entanglement in these
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structures can be created optically [22]. Singlet-triplet qubits
have been implemented on two-electron configurations in such
systems [23]. Single spin preparation is possible in DQDs by
fast dissociation of optically created excitons [24].

Because in stacked DQD systems the dots are placed
rather close to each other, their properties are significantly
affected by tunnel coupling [2,12,25–31] or by exchange
coupling [23]. In both cases, precise knowledge of the
electronic wave functions, including the effects of system
morphology, the role of symmetry, and the possible impact
of band mixing and spin-orbit couplings, is essential for
correct modeling of the system properties and the function-
ality of possible nanodevices. While controlled charging of
nanostructures with single-electron precision is experimen-
tally achievable [32], single-electron states in DQDs are not
commonly addressed in optical experiments. However, tunnel
resonances between direct and indirect exciton states [5]
essentially reveal single-particle properties of the tunneling
particle, with the other carrier playing the role of a passive
spectator (apart from shifting the energies due to Coulomb
interactions).

Carrier spectra of quantum dots have been widely described
in the literature using the k · p model [26,27,33–36] as
well as tight-binding and pseudopotential methods [6,37–43].
However, DQDs composed of lens-shaped QDs are often
modeled assuming the axial symmetry of the system. In that
approximation, the axial projection of the envelope angular
momentum is conserved and there is no coupling between
states with different angular momenta. On the other hand, from
an experimental point of view, samples usually do not have
axial symmetry [44]. Dots from different layers can be shifted
with respect to each other and can be elliptical. Furthermore,
axial symmetry can be broken due to composition fluctuations
inside the dots. This opens the possibility of an additional
coupling, which would be prohibited in an ideal (symmetric)
case. Indeed, some experiments exhibit features, which suggest
such a behavior [5]. In Ref. [8], the symmetry breaking in a
DQD excitonic system was studied. However, those calcula-
tions were performed in the effective-mass approximation, and
the deviations from axial symmetry (due to a displacement and
ellipticity) have only been introduced by a small perturbative
parameter. In Ref. [45], the symmetry-breaking effects on the
hole anticrossing in a DQD were analyzed. Those calculations
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were based on a four-band k · p model including strain and
a piezoelectric field. Moreover, in Ref. [46], (110)-tilted
quantum dot stacks are under consideration.

In this work, we study systematically the influence of the
geometrical axial symmetry breaking of arbitrary magnitude
on the electron states in the structure composed of two
vertically stacked QDs formed in the Stransky–Krastanov self-
assembly process. We consider In0.8Ga0.2As dots embedded
in a GaAs matrix. We calculate the strain distribution in
the system using the continuous elasticity approach [47].
The piezoelectric field is included up to second order in the
strain tensor [38,48], which leads to a dependence of the
predicted spectral features on the direction of the system
deformation with respect to the crystallographic axes. We
find the electron states within the eight-band k · p model.
We show that axial symmetry breaking in a DQD structure
leads to a qualitative reconstruction of the energy spectrum, in
particular in the vicinity of level crossings. This effect turns
out to depend crucially on the system geometry with respect
to the crystallographic axes.

The paper is organized as follows. In Sec. II, we define
the model. In Sec. III, we discuss the results of the obtained
electron states. Finally, concluding remarks and a discussion
are contained in Sec. IV.

II. MODEL

The system under consideration contains two vertically
stacked In0.8Ga0.2As QDs, where we assume homogeneous
alloying. Both dots are placed on wetting layers (with an
assumed width of 0.6 nm). Because of a lattice mismatch
between InAs and GaAs, strain appears in the system. To
find the strain distribution, we performed a minimization of
the elastic energy of the system [47] using the continuous
elasticity approach. As a result, we obtained the displacement
field and the strain tensor ε.

Due to a nonzero shear strain in the system, a piezoelectric
(PZ) field appears and affects the carrier states [38]. To
calculate the potential generated by the piezoelectricity (VPZ),
we calculated the polarization of the system up to second order
in the strain tensor. A detailed description of the piezoelectric
field calculation is given in Appendix A.

The local band structure is derived from the eight-
band k · p Hamiltonian with the strain-induced terms. Be-
cause of its numerical advantages [49], we use the LS
basis {|S↑〉,|X↑〉,|Y↑〉,|Z↑〉,|S↓〉,|X↓〉,|Y↓〉,|Z↓〉}, where
S,X,Y,Z denote electron orbitals and ↑ and ↓ represent spin
projection. In the matrix representation, the Hamiltonian takes
the form [50,51]

H =
(

H (k) �

−�∗ H (k)

)
,

where

� = �

3

⎛
⎜⎝

0 0 0 0
0 0 0 1
0 0 0 −i

0 −1 i 0

⎞
⎟⎠

and H (k) = H1 + H2. Here

H1 =

⎛
⎜⎜⎝

Es iP kx iP ky iP kz

−iP kx Ex N ′kxky − i �
3 N ′kxkz

−iP ky N ′kxky + i �
3 Ey N ′kykz

−iP kz N ′kxkz N ′kykz Ez

⎞
⎟⎟⎠

and

H2 =

⎛
⎜⎝

0 −iP εxj kj −iP εyj kj −iP εzj kj

iP εxj kj 0 nεxy nεxz

iP εyj kj nεxy 0 nεyz

iP εzj kj nεxz nεyz 0

⎞
⎟⎠ .

The diagonal part of H1 contains

Es = A′(k2
x + k2

y + k2
z

) + Ec + ac(εxx + εyy + εzz),

Ex = L′k2
x + M ′(k2

y + k2
z

) + E′
v + lεxx + m(εyy + εzz),

Ey = L′k2
y + M ′(k2

x + k2
z

) + E′
v + lεyy + m(εxx + εzz),

Ez = L′k2
z + M ′(k2

x + k2
y

) + E′
v + lεzz + m(εyy + εxx),

with

Ec = Ev + Eg + VPZ + eεz,

E′
v = Ev − �/3 + VPZ + eεz,

A′ = �
2

2m0

(
1

m∗
e

− Ep(Eg + 2�/3)

Eg(Eg + �)

)
,

Ep = 2m0P
2

�2
,

L′ = P 2

Eg

− �
2

2m0
(γ1 + 4γ2),

M ′ = − �
2

2m0
(γ1 − 2γ2),

N ′ = P 2

Eg

− 3�
2

m0
γ3,

where kj = −i∂/∂xj , Ev denotes the unstrained average
valence-band edge, � is the spin-orbit split-off element, Eg is
the energy gap, P is a parameter proportional to the interband
momentum matrix element, m0 is the free electron mass, m∗

e

is the electron effective mass in a bulk material, ε denotes the
axial electric field, and γi are Luttinger parameters. In H2, the
Einstein summation convention is being used. The influence
of the strain field on the carrier states has been accounted for
using l = 2bv + av, m = av − bv, n = √

3dv, where ac,av,bv

are the conduction- and valence-band deformation potentials,
and dv is the shear strain deformation potential. We perform
Burt-Foreman ordering [52,53], which for the upper triangular
matrix is N ′kikj → kiN+kj + kjN−ki and for the lower one
N ′kikj → kjN+ki + kiN−kj , where N− = M ′ − �

2/2m0 and
N+ = N ′ − N−. To avoid spurious solutions, we use the
reduced value of Ep [51]. The wave functions were calculated
within the envelope function approximation (EFA) [54].

Spin-orbit coupling (the Dresselhaus term) in the conduc-
tion band is neglected. The values of the material parameters
are given in Table I. The resulting eigenproblem is solved using
the Jacobi-Davidson method. All details of the calculations
have been described in Appendix B. Finally, the in-plane
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TABLE I. Material parameters used in the calculations [33,55].

GaAs InAs Interpolation of InxGa1−xAs

Ev0 0.0 eV 0.173 eV 0.173x + 0.058x(1 − x)
Eg 1.518 eV 0.413 eV 0.413x + 1.518(1 − x) − 0.477x(1 − x)
Ep 21.0 eV 18.0 eV 18.0x + 21.0(1 − x) + 1.48x(1 − x)
m∗

e 0.065 0.022 0.022x + 0.065(1 − x) − 0.0091x(1 − x)
� 0.34 eV 0.38 eV 0.38x + 0.34(1 − x) − 0.15x(1 − x)
ac −7.17 eV −5.08 eV −5.08x − 7.17(1 − x) − 2.61x(1 − x)
av 1.16 eV 1.0 eV linear
bv −1.824 eV −1.8 eV linear
dv −5.062 eV −3.6 eV linear
γ1 19.7 7.1 linear
γ2 8.4 2.02 linear
γ3 9.3 2.91 linear
e14 0.230 C/m2 0.115 C/m2 linear
B114 −0.439 C/m2 −0.531 C/m2 linear
B124 −3.765 C/m2 −4.076 C/m2 linear
B156 −0.492 C/m2 −0.120 C/m2 linear

probability density of the ith state is calculated according to

ρi(x,y) =
8∑

m=1

∫ ∞

−∞
ψ∗

i,m(x,y,z)ψi,m(x,y,z)dz,

where ψi,m(x,y,z) is the mth component (subband) of the ith
eigenfunction.

III. RESULTS

In this section, we discuss the results of our calculations
performed for a single QD as well as for a DQD.

A. Single QDs

First, in order to provide a clear interpretation of the results
for a DQD, to be presented below, we calculated the electron
states in a single QD. Each column of Fig. 1 presents the in-
plane probability density of the six lowest electron states (e1–
e6). We consider four cases: a circular (i.e., axially symmetric)
lens-shaped QD with and without the PZ field, as well as an
elliptical QD with and without the PZ field. The first column
corresponds to the ideal case (circular lens-shaped QD without
the PZ field). At this point, our results reflect the well-known
properties of a single QD [33,38]. The ground state (e1) has
an s-type symmetry. Since the system has axial symmetry, the
projection of the envelope angular momentum M is a good
quantum number, and the ground state corresponds to n = 0
and M = 0, where n denotes the excitation of the radial part
of the wave function. The next two states (e2,e3) show p-type
symmetry (that is, n = 0 and M = −1,1). Subsequently, e4,
e5, and e6 exhibit d character. The states e4 and e5 correspond
to the degenerate states with n = 0 and M = −2,2. Due to
numerical reasons (the discretization on a rectangular grid),
the degeneracy is slightly lifted and two linear combinations
of these states appear that are rotated with respect to each other
by 45◦. In the case of e6, we have clearly n = 1 with M = 0.

In the presence of the piezoelectric field (second column
of Fig. 1), the character of the states is different. Due to the
piezoelectric field, the symmetry of the system is lowered from

C∞ to C2v [38]. In that case, M is no longer a good quantum
number. The contribution from the second-order term of the
piezoelectric field has an opposite sign to the first-order term
and is important [38,48]. However, in the case of an alloy, the
second-order contribution is lowered due to its dependence
on the hydrostatic strain, which vanishes with increasing Ga
admixture [6]. Now, the direction along the lower values of
the PZ field is favored. The p states are clearly combined into
orbitals p1 ∼ sin (ϕ − π/4) and p2 ∼ cos (ϕ − π/4), which
have mutually perpendicular orientation. Furthermore, the
character of the d states is significantly changed. The e4 and e6
states couple and change their symmetry. The e5 state, which
is compatible with the symmetry of the PZ field, remains
uncoupled. In the third and fourth columns of Fig. 1, the
results for an elliptical QD (with the major to minor axis
ratio of 1.1) elongated in the (110) direction are shown. In
that case, even without a PZ field, the axial symmetry is
broken and the states that are elongated in the direction of
the major axis are lowered in energy compared to the states
elongated in the direction of the minor axis. In the case of an
ellipticity ratio of 1.1, and adding the PZ field, the orientation
of the p states (as in the case of the circular QD with the PZ
field) is restored. Furthermore, for the d states, the PZ field
essentially compensates the elliptical anisotropy such that the
spatial profiles of the circular QD without the PZ field are
recovered.

To check the importance of the valence-band to conduction-
band coupling in the k · p Hamiltonian, we compared our
results with those obtained from a single-band effective-mass
calculation based on the Löwdin elimination method [56]. The
difference between the relative shell energy levels in both cases
is up to 31%.

B. Double QDs

Next, let us consider a DQD system with a geometrical axial
symmetry. A schematic diagram that illustrates the energy
structure in a DQD (where the dots have different sizes) is
shown in Fig. 2. The electronic structure can be tuned by
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FIG. 1. (Color online) The in-plane probability density of the six
lowest electron states. The first column corresponds to a circular
lens-shaped QD in an ideal case (without a PZ field). The second one
shows the same QD but in the presence of the PZ field. The third
column presents the results for an elliptical QD without a PZ field.
The last column contains results for an elliptical QD with the PZ field.

FIG. 2. (Color online) Schematic electron energy structure in the
investigated DQD without (a) and with different values of an electric
field (b)–(d) indicating resonances between energy levels in the two
dots.

FIG. 3. (Color online) (a) Lowest electron energy branches as a
function of the electric field without a PZ field. (b) The same as (a)
but with the piezoelectric field included. (c) Enlarged region of (a)
with s-d resonances (indicated by the blue rectangle). (d) Enlarged
region of (b) with s-d resonances.

applying an axial electric field that modifies the slopes of the
band edges. From the experimental point of view, in a DQD
system, the upper dot is often bigger than the lower one [57].
Furthermore, in order to have s-p and s-d resonances at a
reasonable value of the electric field, we assumed r1 = 9 nm,
h1 = 3.3 nm and r2 = 12.6 nm, h2 = 5.4 nm, where r1,h1 and
r2,h2 are the base radius and height of the lower and the upper
dot, respectively [29].

The electron energy levels for a fixed distance D = 10.2 nm
between the dots (counted from the base of the lower dot to the
base of the upper one) are shown in Figs. 3(a) and 3(b). The dots
are placed along the same z (001) axis, and the energy branches
are shown as a function of the axial electric field. Figure 3(a)
presents the results without the piezoelectric field. At ε =
67.1 kV/cm, the electron s states in both dots have similar
energy [as shown in Fig. 2(b)]. Because the symmetry of these
states allows them to couple, the energies show an anticrossing.
At ε = 26 kV/cm, s and p states become degenerate [as shown
in Fig. 2(c)]. In this case, the p states are degenerate and there
is no coupling between them and the s-type state from the
second dot. As a consequence, there is a crossing between the
energy branches.

The energy branches in the presence of the piezoelectric
field are shown in Fig. 3(b). Because of the symmetry reduction
due to the piezoelectric field, the electron states of type p

and d are no longer degenerate. The splitting due to the PZ
field is larger in the case of p states than d states, which is
consistent with Ref. [6]. However, in contrast to Ref. [6], we
do not observe mixing between s and p states due to the PZ
field. Moreover, due to the influence of strain and the related
piezoelectric field from the lower dot, the lowest state in the
upper one is shifted up by about 1.5 meV. Figures 3(c) and 3(d)
present an enlarged part (marked by the blue box) of Figs. 3(a)
and 3(b), respectively. Figure 3(c) shows that in the absence
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FIG. 4. (Color online) Energy branches of s and p states (a)
without piezoelectric field for a shift of xs = 1.8 nm, (b) with included
piezoelectric field and a shift of xs = 1.8 nm, (c) with included
piezoelectric field and xs = ys = 1.8 nm, and (d) with included
piezoelectric field and xs = 1.8 nm, ys = −1.8 nm.

of a piezoelectric field, the s and the two lowest d states are
decoupled and the only anticrossing in this region appears
between the s state and the d state with M = 0 (e6 in Fig. 1).
The small splitting visible between the two lowest d states is
a numerical artifact caused by the discretization. The situation
changes when the piezoelectric field is included. Then, the
localization of one of the uncoupled d states (e4 in Fig. 1) is
partially moved to the middle of the QD. As a consequence,
the symmetry changes and a coupling appear. However, the
character of the second state (e5 in Fig. 1) is unchanged, thus
the second crossing still remains unsplitted.

To study the symmetry-breaking effects in a DQD, we
displaced the lower dot in the plane perpendicular to the z

axis and we investigated the s-p coupling. As a result of
QD size asymmetry and an appropriately chosen magnitude
of the electric field, both p states are localized in the upper
dot and the s state is localized in the lower one. Figure 4(a)
presents the energy branches for the interesting electric field
range where the lower dot is shifted in the (100) direction
by xs = 1.8 nm (that is, 10% of the diameter of the lower
dot) and the piezoelectric field is not taken into account. The
lowest p state tends to be oriented along the direction of the
displacement, and the second one is perpendicular to it. As a
result of the symmetry, the s state is coupled to the first p state
and uncoupled to the second one. The situation is different
if the PZ field is included since this field forces alignment
with respect to the (110) direction and this effect is much
stronger than that resulting from the displacement [Fig. 4(b)].
Therefore, the p states in the upper dot are oriented along the
(110) and (11̄0) directions, respectively. As a consequence,
both the resonances between the s and both p states are opened
and show a similar splitting in both cases. However, if the
QDs are displaced in the (110) direction, then even in the
presence of the PZ field, only one coupling is nonzero. As can
be seen in Figs. 4(c) and 4(d), a shift by xs = ys = 1.8 nm and

FIG. 5. (Color online) (a) The values of the energy splitting at the
resonances between the s and lower p state (red circles) and higher
p state (blue boxes) for D = 10.2 nm as a function of the value of
the relative displacement of the lower dot rs. (b) The values of the
energy splitting at the resonances between the s state and lower p

state for xs = ys = 1.8 nm, i.e., rs = 14% as a function of D. The red
points represents the simulation results and the blue dashed line is an
exponential fitting.

xs = 1.8 nm, ys = −1.8 nm opens only the first or the second
s-p resonance, respectively.

We investigated the dependence of the s-p coupling (as
reflected by the width of the resonant splitting) on the value of
the shift in the (110) direction. Figure 5(a) shows the values
of both resonant s-p splittings as a function of the relative
displacement rs = √

x2
s + y2

s /2r1 in the presence of the PZ
field. In the case of a DQD with geometrical axial symmetry
(rs = 0), the order of the p states in the higher dot is opposite
to the single QD case (e2,e3 in Fig. 1). It is caused by the
influence of the PZ field from the lower dot [6]. On the other
hand, the influence of the PZ field from the upper dot on the s

state in the lower one plays a minor role. For a small shift in
the (110) direction, the lower p state is coupled and the second
one remains decoupled. However, for shifts larger than about
25%, the ordering of the p states is reversed and the situation
from a single QD is restored. In that case, the lower p state
is uncoupled and the higher one is coupled. The dependence
of the splitting on the value of the shift is determined by two
processes: on the one hand, increasing the displacement (in
some range) enhances the s-p coupling, but on the other hand,
the overlap between the wave functions decreases with the
shift. As a result, the splitting has a maximum at a relative
displacement near 40% of the lower dot size.

We investigated also the dependence of the s-p splitting
on the distance D between the dots. Figure 5(b) presents
this splitting in the case of the constant shift value xs =
ys = 1.8 nm as a function of the distance D. As we can
see, the dependence is nearly exponential. The splitting width
(�E) is very well fitted by the formula ln(�E/E0) = −κD,
with parameters κ = 0.678 nm−1 and E0 = 0.472 eV (for the
displacement xs = ys = 1.8 nm). The s-p splitting calculated
in the eight-band k · p model is in good agreement with that
obtained from the single-band approach (the value from the
single-band model is about 5% lower).

We also investigated the influence of symmetry breaking
on the s-d coupling. As presented in Fig. 3(d), the coupling
between the s and the two d states can appear even if the
geometrical symmetry is conserved and is a consequence of
the PZ field. Here, we investigate the effects of symmetry
breaking in two cases: the shift along the (100) direction and
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FIG. 6. (Color online) (a) Energy branches as a function of the
electric field in the region of the s-d resonances at xs = 1.8 nm with
ys = 0. (b) Energy branches as a function of electric field in the region
of the s-d resonances in the case of elliptical dots.

the situation where both dots are elliptical. In the case of the
shift [Fig. 6(a)] by xs = 1.8 nm with ys = 0, a mixing between
the s state and the second d state becomes possible. However,
this coupling is weak and only a small splitting in the resonance
appears (of the order of 66 μeV). Also for the first and third
d state, the effect is relatively small and we obtain splitting
values comparable to those resulting only from the PZ field.
The reason is that a shift in the (100) direction conserves the
mirror symmetry in the (010) direction, which is also important
from the point of view of coupling.

In the next step, we consider both dots to have an elliptical
shape with the major to minor axis ratio of 1.1 where the
elongation is in the (110) direction. Due to symmetry reasons,
ellipticity does not lead to s-p mixing. Although this mixing
appears if the higher-order SO coupling is included, its value
is small (about 100 μeV at D = 10 nm) [8]. The results for
elliptical dots in the region of the s-d resonances are shown in
Fig. 6(b). From a qualitative point of view, an elongation in the
(110) direction does not change the situation from Fig. 3(d),
that is, s is coupled only to the first and third d state. However,
this leads in particular to a reduction of the width of the
resonance between the s and the lowest d state.

IV. CONCLUSIONS

In summary, we have studied the effects of coupling
between the electron states from different subshells (s,p,d)
localized in different dots in a DQD structure, taking into
account the orientation of the system geometry with respect to
the crystallographic axes. We have shown that breaking of the
geometrical axial symmetry by a relative off-axial shift of the
dots can lead to strong s-p mixing. We have found out that in
the presence of the piezoelectric field, the direction of the shift
plays an important role in the electronic structure. We have
also shown that s-p resonances are much more sensitive to the
geometrical symmetry breaking than s-d resonances. We have
studied the influence of dot ellipticity on the s-d resonances,
and we have shown that those effects give only a quantitative
correction to the effect resulting from the piezoelectric field.
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APPENDIX A: PIEZOELECTRIC FIELD

To calculate the potential generated by the piezoelectricity,
we found the polarization P = P1 + P2 up to second order in
the strain tensor. In the case of zinc-blende structure growth in
the (001) direction, it takes the form [48,58,59]

P1 = e14

⎛
⎝εyz

εxz

εxy

⎞
⎠,

P2 = 2B114

⎛
⎝εxxεyz

εyyεxz

εzzεxy

⎞
⎠ + 2B124

⎛
⎝(εyy + εzz)εyz

(εxx + εzz)εxz

(εxx + εyy)εxy

⎞
⎠

+ 4B156

⎛
⎝εxzεxy

εyzεxy

εyzεxz

⎞
⎠,

where e14 and B114,B124,B156 are linear and quadratic po-
larization parameters, respectively. Then, the piezoelectricity-
induced charge is calculated from ρpiezo = −∇ · P . Finally,
the piezoelectric potential Vp is found from the solution of the
Poisson-like equation,

ρpiezo = ε0∇[εS(r)∇Vp],

where εS(r) is the position-dependent static dielectric constant.

APPENDIX B: CALCULATION DETAILS

We have performed the calculation of the strain tensor as
well as the electron states. We have used a nonuniform grid
(160 × 160 × 160) with mesh size nearly half of the InAs
lattice constant (0.3 nm) inside the QDs and with size linearly
increasing outside the QDs. To calculate the displacement
field and the piezoelectric field, we have solved numerically
a linear set of equations using the GMRES method combined
with the ILU preconditioner with the LIS library [60]. The
electron states are found using the Jacobi-Davison method
(which allows us to obtain the eigenvalues from the middle
of the energy spectrum due to the spectral transformation) in
the SLEPC library [61] combined with the PETSC library
[62]. The wave functions were calculated within the EFA
approximation on a grid. Second-order derivatives have been
discretized according to the finite-difference scheme [63],

∂

∂xk

(
A

∂

∂xk

B

)
= Bi+1 − Bi

hi(hi + hi−1)
(Ai+1 + Ai)

+ Bi−1 − Bi

hi(hi + hi−1)
(Ai−1 + Ai),

where hi is a position-dependent mesh size. Such discretization
leads to an asymmetric matrix in the eigenvalue problem. To
restore symmetrization, we applied an appropriate transforma-
tion as described in Ref. [63].
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