
PHYSICAL REVIEW B 90, 085425 (2014)

Adatoms and Anderson localization in graphene
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We address the nature of the disordered state that results from the adsorption of adatoms in graphene. For
adatoms that sit at the center of the honeycomb plaquette, as in the case of most transition metals, we show that
the ones that form a zero-energy resonant state lead to Anderson localization in the vicinity of the Dirac point.
Among those, we show that there is a symmetry class of adatoms where Anderson localization is suppressed,
leading to an exotic metallic state with large and rare charge droplets, that localizes only at the Dirac point. We
identify the experimental conditions for the observation of the Anderson transition for adatoms in graphene.
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I. INTRODUCTION

The diffusive motion of electrons in metals can be strongly
affected by disorder. For instance, disorder can localize
electrons and produce an insulating state, a phenomenon
known as Anderson localization (AL) [1]. For noninteracting
electrons, the one parameter scaling theory predicts that
electrons must localize for any arbitrary strength of short-range
disorder in two spatial dimensions [2]. Graphene [3], as other
known low-dimensional systems [4], has an unconventional
localization phenomenology. At weak coupling, depending on
the type of disorder, preserved symmetries such as chirality
and the absence of backscattering between valleys can prevent
localization and lead the system to a quantum critical metal-
insulator transition [5,6]. In experiment, the evidence of AL
in graphene remains elusive [7]. Predictions based on lattice
models indicate that AL is possible in the presence of vacancies
[8] and strong scalar disorder [8,9]. Top carbon site resonant
scatterers, which preserve chirality [10], and weak Coulomb
impurities do not lead to localization [10–12].

In this paper, we describe the problem of localization for a
disordered distribution of adatoms sitting at the center of the
honeycomb hexagons (H site), as in the case of most transition
metals [13]. In this configuration, the adatoms mediate hopping
processes between distant carbon sites in the plaquette of the
impurity [14,15] and explicitly break the chiral symmetry
of the Hamiltonian at the lattice scale. We propose an
effective graphene-only Hamiltonian for disordered graphene
and conduct a scaling analysis of the local density of states
(LDOS) for large system sizes. We show that the formation of
zero-energy resonant states in the plaquette of the impurity
leads to AL in the vicinity of the Dirac point and to a
metal-insulator transition at a well defined energy, which
defines the mobility edge. We find that AL appears in two
distinct classes, depending on the symmetry of the resonant
orbitals. In particular, when each of the orbitals that form the
resonant state preserves the sublattice point group symmetry
of graphene, destructive interference between the different
hybridization paths in the plaquette of the adatom leads to
a different anomalous class of localization. In this class, the
system shows an exotic nonhomogeneous metallic state with
large and rare charge droplets, that localizes only at the Dirac
point. We propose that the Anderson transition can be observed

and characterized with scanning tunneling spectroscopy (STS)
probes [16]. We indicate the most promising adatoms that can
produce AL in graphene.

In Sec. II we consider the effective graphene-only Hamil-
tonian, which we derive in the Appendixes. In Sec. III we
establish the conditions for the appearance of zero-energy
resonant states in graphene with adatoms sitting at H sites.
In Sec. IV, we present a numerical method to characterize
electronic localization and analyze the problem of AL for
a disordered distribution of adatoms with different possible
orbital symmetries.

II. EFFECTIVE HAMILTONIAN

To capture the physics of localization, we start from the
electronic Hamiltonian of graphene in the presence of a
single adatom, which can be described by the noninteracting
Anderson Hamiltonian, H = Hg + Hf + HV , where

Hg = −t
∑

〈i,j〉,σ
c†σ (Ri)cσ (Rj ) (1)

is the graphene Hamiltonian. t ≈ 2.8 eV is the hopping energy
between nearest-neighbor (NN) sites in a honeycomb lattice,
and cσ (Ri) is the annihilation operator of electrons with spin
σ = ↑,↓ on site Ri . The second term in H represents the
Hamiltonian of the localized electrons at the impurity site,
Hf = ε0

∑
m,σ f

†
mσfmσ , where ε0 is the energy of the localized

state and fmσ is the annihilation operator for the localized
electrons with spin σ in a given irreducible representation
with angular momentum l and angular momentum projection
m � l. The sum over m is carried over all degenerate orbitals.
The third term describes the hybridization term [14,17]

HV =
∑
σ,m

∑
i∈I

V
(m)
i c†σ (Ri)fm,σ (RI ) + H.c., (2)

where Vi are the hybridization amplitudes of the adatom with
each of the NN carbon atoms in the honeycomb plaquette I ,
centered at the coordinate RI , as shown in Fig. 1(a). Almost all
heavy atoms are likely to hybridize at the H site, and most of
them hybridize with graphene via s, d, and f orbitals [13]. For
m = 0 states, such as s and dz2 orbitals, the adatom hybridizes
equally with all the six neighboring carbon atoms, V

(0)
i∈I = V .
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FIG. 1. (Color online) (a) Impurity plaquette for an adatom
(center) sitting at an H site, with six carbon atoms: white circles
(sublattice A); black circles (sublattice B). Hopping processes
mediated by the adatom: solid lines (NN hopping), dashed (NNN
hopping), and dotted-dashed (NNNN hopping) (see text). (b) DOS
at the Dirac point vs effective hopping parameter τ = −V 2/ε0 for
different orbital symmetries at p = 0.05 adatoms per carbon and
D = 2 × 1200 × 1200 sites.

For in-plane f -wave orbitals, such as fx(x2−3y2) (|m| = 3),
there is a π phase difference in the hybridization of the adatom
with the two different sublattices, V1,3,5 = −V2,4,6 = V (see
Fig. 1). For a dxy orbital (m = 2), V1,4 = 0 and V2,5 = −V3,6 =√

3V/2, while for a dx2−y2 orbital (m = −2), V1,4 = V and
Vi = −V/2, for i 	= 1,4. The hybridization amplitudes are
dictated by symmetry only [14].

Integrating out the localized fermions, the effective Hamil-
tonian of graphene in the presence of a random distribution of
N adatoms is given by

Heff = Hg +
N∑

I=1

HI , (3)

where the second term describes the effective plaquete poten-
tial of the impurities,

HI =
∑

(i,j )∈I,σ

τij c†σ (Ri)cσ (Rj ) + δμ
∑
i∈I

n̂(Ri), (4)

as shown in the Appendix B. The bracket (i,j ) ∈ I in the first
term indicates that the sum has to be performed over the six
carbon atoms surrounding a given H -site impurity. In leading
order in the hybridization, the hopping processes mediated by
the impurity have the effective amplitude

τij = −(1/ε0)
∑
m

V
(m)
i V ∗

j
(m)

, (5)

including diagonal processes where the electron hops into
the impurity and then back to the same site (i = j ). δμ

accounts for a local charge transfer between the adatom
and the six carbon atoms in the plaquette of the impurity,
with n̂ a density operator. The effective Hamiltonian hence
describes graphene in the presence of a special kind of random
scalar potential, combined with hopping processes mediated
by the impurity that connect all six vertices of the honeycomb
plaquette around the impurity to each other, as shown in
Fig. 1(a). This “plaquette disorder” potential allows for equally
probable hopping between NN, next-nearest-neighbor (NNN),
and next-next-nearest-neighbor (NNNN) sites, depending on
the symmetry of the localized orbital. NNN hopping terms

explicitly break the chiral symmetry of the Hamiltonian,
permitting the emergence of AL at the Dirac point.

Because hybridization is mediated by hopping into a virtual
site of the lattice (H site), the electrons acquire a phase as
they hop in and out of the impurity. In C3v invariant orbitals,
those phases destructively interfere [14] and the impurity
tends to decouple from the bath, making zero-energy resonant
levels (midgap states) in that class ineffective as a source
of AL for states away from the Dirac point. This class of
resonant orbitals, described by m = 0 (s, dz2 , etc) and in-plane
f -wave orbitals, corresponds to a plaquette where all hopping
processes have the same amplitude, up to a sign (symmetric
plaquette). The asymmetric class (plaquette) is described by
|m| = 1,2 d-wave and f -wave orbitals, and the corresponding
degenerate doublet states.

III. RESONANT CONDITION

In order to calculate the electronic properties of the
Hamiltonian of Eq. (3), we use the kernel polynomial method
[18]. In this method we rescale the Hamiltonian to H̃ so
that Ẽk ∈ (−1,1) is the rescaled energy for all k labeling
a state of the Hamiltonian. We then represent the required
spectral function as a finite series of Chebyshev polynomials
Tm(Ẽ) ≡ cos[m arccos(Ẽ)], where its expansion coefficients
are calculated with sparse matrix vector multiplications.

By using the definition of the LDOS,

ρi = 1

π

∑
k

|〈k| i〉|2 , (6)

we may expand it as follows:

ρi = 1√
1 − Ẽ2

[μ0g0 + 2
∞∑

m=1

μmgmTm(Ẽ)δ(E − Ẽk)], (7)

where μm = 〈i|Tm(H̃ )|i〉 and gm is the Jackson kernel, which
acts as a regularization factor that accounts for the Gibbs
oscillations [19].

For the numerical calculations, we used video cards using
CUDA-CUSP libraries with double precision. Our systems have
up to D = 2.4 × 106 sites and the polynomial expansion
uses up to M = 3000 moments, scanning 500 sites in 250
realizations of disorder, in a total of 105 sites for the statistics.

In Fig. 1(b), we plot the density of states (DOS) at the
Dirac point ρ(E = 0) as a function of the effective hopping
τ ≡ −V 2/ε0 for different orbital symmetries. In all cases,
the behavior of ρ(0) with τ is nonmonotonic and shows a
peak at |τ | ∼ 0.5t , which describes the condition for resonant
scattering at the Dirac point.

This condition can be derived through the single impurity
Anderson problem, as shown in Appendix A, and corresponds
to the pole of the Green’s function of the localized electrons
at zero energy, G−1

f (0) = −ε0 − �f (0) = 0, where �f (E) ∝
V 2 is the self-energy due to the conduction electrons. The
resonance condition is given by

τ0 = V 2/Re �f (0), (8)

with τ0 = ±0.425t for s-wave and in-plane f -wave orbitals,
respectively, and τ0 = −0.56t for dxy and dx2−y2 orbitals,
degenerate or not. For top carbon adatoms, Re �f (0) = 0 at
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the Dirac point, and hence the resonant condition is ε0 = 0, as
in the case of vacancies.

The width of the peaks in Fig. 1(b) is set by the level
broadening 	(0) = Im �f (0), which is finite in the asymmet-
ric class, because of the enhanced DOS at the Dirac point
due to the disorder, and is exactly zero for symmetric orbitals,
due to destructive interference among hybridization paths in
the impurity plaquette. Near the Dirac point, the width of the
resonance for a single impurity scales with energy as 	(E) ∝
πV 2Eηρ(E), with η = 0 in the asymmetric plaquette class and
η = 2 in the symmetric one [14]. Although symmetric adatoms
hybridize more weakly with the electronic bath at finite energy
due to interference effects, their scattering resonance, on the
contrary, becomes singularly strong at zero energy. In this
symmetry class, the Anderson transition—addressed in the
next section—is quantum critical as a function of energy at the
Dirac point.

IV. LOCALIZATION

In this section, we first present in detail a method to
determinate the localization properties of an electronic system
though local quantities, such as the LDOS. We then apply
this method to analyze the electronic properties of graphene
decorated with a random distribution of adatoms sitting at H

sites.

A. Numerical analysis

We analyze the probability distribution function of the local
density of states f [ρi(E)], for a fixed energy to address the
problem of the Anderson transition [20–22]. This function
contains information about the probability to obtain a LDOS
in a range (ρi,ρi + dρi) and can be captured within a histogram
of LDOS for a fixed energy on a random sample of sites of the
lattice. When most of the states are extended, they are spread
on the whole lattice and ρi is almost constant for all sites
with a small variation due to disorder. As a result, the local
distribution function f (ρi) is size independent, self-averaging,
and Gaussian-like. In this case, the mean or average density of
states for a system of D atoms [which coincides with density
of states ρ(E)],

ρ(E) = 1

D

D∑
n=1

ρi(E), (9)

is the same as the geometric or typical density of states ρtyp,
defined as

ρtyp(E) = exp

[
1

D

D∑
n=1

ln ρi(E)

]
. (10)

Hence, for extended states, ρtyp(E) ≈ ρ(E) and any of them
is a good indicator of the global behavior of the system
[20,23]. When most states are localized, the density of states
is highly concentrated in a few lattice sites. In this case, the
local density of states ρi is a strongly fluctuating quantity and
its distribution is size dependent and non-self-averaging. Rare
events, characterized by large localization peaks, dominate ρ

and consequently shift its value in relation to ρtyp.
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FIG. 2. (Color online) (a) DOS in the asymmetric plaquette case,
for d-wave resonant orbitals. (b) R(E) for different system sizes. AL
states are indicated in the gray region. (c) Log of distribution function
of normalized LDOS for E = 0.1t . (d) Finite size scaling of the tail
of the distribution functions. The sizes in (b)–(d) are D = 2 × L × L

with L = 300 (blue), 600 (red), and 1200 (black).

The ratio R(E) between the typical and mean density of
states,

R(E) = ρtyp(E)

ρ(E)
∈ [0,1], (11)

is intrinsically related to f [ρi(E)] and has a very character-
istic behavior whether the states are localized or extended.
R(E) ∼ 1 for metallic states while R(E) < 1 for localized
ones. Furthermore, in the latter, R(E) → 0 in the thermody-
namic limit, for increasing system sizes, whereas for metallic
states, R(E) is size independent. In the case of AL, it is
known from nonlinear sigma models that f (ρ) matches a
log-normal distribution [20,24]. In two dimensions, the tail
of the distribution scales with the system size according to
f [ρi(E)] ∝ exp(ln2 ρ/ ln L) [24].

B. Plaquette impurity potential

In the following, we analyze the plaquette impurity po-
tential (4), keeping the impurity concentration fixed at p =
0.05 impurities per site. For moderate disorder, δμ � t at
p = 0.05 adatoms per carbon, δμ renormalizes the energy
of the localized state ε0 [25], and can be absorbed into the
definition of the first term in the plaquette potential (4) with
renormalized hopping amplitudes τij . In this regime, δμ is an
irrelevant operator in the renormalization group sense and can
be set to zero.

To analyze the asymmetric case, we consider a distribution
of adatoms with nondegenerate and randomly oriented d-wave
orbitals (|m| = 2). In Fig. 2(a), we plot the density of states as
a function of energy near the resonant condition τ ∼ −0.56t ,
and a clear peak appears at the Dirac point. To identify the
nature of the peak, we calculated R(E) for three different sys-
tem sizes [see Fig. 2(b)]. R(E) < 1 on the whole energy range
and its minimum is a plateau that coincides with the energy
range where the peak in the density of states emerges (orange
arrow). The width of the peak is ∼2v/�, where v ∼ 6 eV Å
is the Fermi velocity and � ∝ 1/

√
p is the average dis-

tance among the impurities, which scales with the impurity
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FIG. 3. (Color online) (a) DOS for resonant s-wave orbitals.
(b) R(E) for different system sizes (p = 0.05). (c) Normalized LDOS
distribution function at the Dirac point (E = 0) and (d) away from
it (E = 0.1t). The system sizes in (b)–(d) are D = 2 × L × L with
L = 300 (blue triangles), 600 (red squares), and 1200 (black dots).

concentration p [8]. In the energy range of the plateau,
indicated in the gray region in Fig. 2(b), R(E) is strongly
reduced and scales with the system size, as expected for
strongly localized states. Unlike the typical case of Anderson
disorder [26], R(E) → 1 close to the van Hove singularity,
indicating that localization is restricted to the vicinity of the
Dirac point.

This analysis is consistent with the distribution functions
of ln ρ̃i for E = 0.1t , shown in Fig. 2(c), which are described
by Gaussian distributions [20]. In log scale, the curves have
a parabolic shape, which is expected for AL. Moreover, these
curves also scale with the system size. In agreement with
the AL scenario, the peak of the log-normal curve is shifted
towards lower densities when the system size is increased,
indicating an insulating state in the thermodynamic limit
[20]. The finite size scaling analysis, depicted in Fig. 2(d),
shows that the tails of the three curves collapse into a single
universal curve. The same strong localization features were
observed for all energies in the range of the plateau in R(E)
[Fig. 2(b)]. This analysis remains valid for different values of
τ ∈ [−0.67t, − 0.4t], around the resonant condition. Both R

and the distribution function vary very little with p at the Dirac
point, even for concentrations as small as p = 0.001. The
localization nevertheless seems to disappear for states above
and below the Dirac point. The localization phenomenon is
robust not only as a function of the impurity concentration
but also in the presence of a random admixture of resonant
adatoms with different d-wave orbital symmetries.

The physics of AL changes dramatically for adatoms in the
symmetric class, where all hopping amplitudes in the plaquette
are the same, τij = ±τ . Figure 3(a) shows a resonance peak
in the DOS at the Dirac point for τ = 0.425t . This peak is
accompanied by two symmetric satellite peaks, indicated by
the arrows. In Fig. 3(b), R(E) has a pronounced minimum
at the Dirac point together with two additional minima at the
energies of the extra peaks in the DOS. In contrast with the
asymmetric case, R(E) shows a significant variation with the
system size only at the Dirac point and is size independent at
nearly all other energies. At the Dirac point, the distribution
functions shown in Fig. 3(c) clearly scale with the size of

the system. Although they are not parabolic, they resemble
the distribution functions of Fig. 2(c), and have substantially
more weight at sites with very low densities, indicating that the
system is strongly localized. Those AL features remain robust
for τ ∈ [0.39,0.46]t , in the vicinity of the resonant condition.

Away from the Dirac point, the system crosses over to
an exotic metallic state. The distribution functions shown
in Fig. 3(d) have a sharp lower bound at ln ρ̃i ∼ −2 (green
arrow), which does not scale with the system size, and hence
indicates metallic behavior in the thermodynamic limit. At the
same time, they show a power-law tail for large values of ρ̃i ,
which is characteristic of a strongly inhomogeneous system. In
Mott insulators, those features have been linked to a metallic
state that is a precursor to electronic Griffiths phases [27].
This exotic metallic state survives in the presence of scalar
plaquette disorder for |δμ| < δμc ∼ 1.4t . For |δμ| > δμc, a
typical Anderson transition driven by δμ appears in the vicinity
of the Dirac point. Although large, this critical scalar plaquette
potential is much smaller than the on-site potential required to
localize charge carriers in graphene, which is of the order of
15t [25].

In Fig. 4 we compare LDOS patterns in real space for
different kinds of plaquette disorder. Figure 4(a) displays
the LDOS for strong scalar disorder at E = 0, for δμ =
1.6t and τ = 0. The pattern is similar to the asymmetric
plaquette disordered case at δμ = 0 and τ = −0.56t , shown in
Fig. 4(b) for the case of d-wave orbitals. In the symmetric
case, at E = 0, δμ = 0, and τ = 0.425t , the LDOS has a very
different structure, and shows characteristic puddles with the
radius of ∼2.3a, with a the lattice parameter, around isolated
adatoms [see Fig. 4(c)]. Away for the Dirac point [Fig. 4(d)],
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FIG. 4. (Color online) Normalized LDOS at the Dirac point for
(a) scalar plaquette disorder and (b) asymmetric plaquette disorder
for d orbitals, and (c) symmetric plaquette disorder (s-wave orbital),
at the Dirac point and (d) away from it (E = 0.1t , see text).
(e) Autocorrelation functions for the LDOS of (b)–(d) vs distance
r in lattice parameters. Inset: Log scale. Blue triangles: s wave,
E = 0.1t ; red squares: s wave at E = 0; black dots: dxy at E = 0;
orange diamonds: dxy at E = 0.1t .
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isolated adatoms nearly decouple from the bath and large
puddles appear around rare clusters of adatoms, leading to
a metallic state.

In Fig. 4(e), we show the autocorrelation function

C(r,E) = 1/(2πD)
∑

i

δρ(Ri ,E)δρ(Ri + r,E) (12)

for Figs. 4(b)–4(d), where δρ(Ri) ≡ ρ(Ri) − ρ is the variation
of the LDOS away from the average [16]. The curves
corresponding to the asymmetric plaquette case (dxy) for
E = 0 and 0.1t decay exponentially, as indicated in the inset.
The two curves have the same correlation length ξ ∼ 2.6a,
and are indistinguishable (black dots and orange diamonds).
For the symmetric case, the metallic state (E = 0.1t) shows
a slower exponential decay (blue triangles) with ξ ∼ 5.5a,
crossing over to a localized state at E = 0 (red squares). The
autocorrelation function of the latter decays much faster than
in conventional AL, with rapid oscillations around δρ = 0,
suggesting a strongly localized state.

V. EXPERIMENTAL OBSERVATION AND CONCLUSIONS

In summary, we proposed aplaquette disorder potential
that describes the local hopping processes mediated by an
adatom that sits at the center of the honeycomb plaquette.
We showed that the problem of AL for resonant adatoms in
graphene can be separated into two symmetry classes based on
whether the resonant orbitals of the impurity break or preserve
the sublattice point group symmetry. While the first class of
localization (asymmetric) is more conventional, the second
one (symmetric class) is anomalous. In the latter, we show that
destructive interference effects among different hopping paths
in the plaquette of the adatom produce a singular localized
state at the Dirac point, and away from it, an exotic metallic
state with rare charge droplets that has the same signatures
that were previously identified in a precursor to an electronic
Griffiths phase.

The experimental characterization of AL can be done
through scanning tunneling spectroscopy (STS) probes [16],
which can scan the LDOS in the vicinity of the Dirac
point. Localization features can also be observed in transport
measurements through the scaling of the conductance with the
system size [2]. Recent ab initio calculations indicate that the
4s orbital of Cu adatoms forms a midgap state, while the 3d

orbitals of Co, Fe, and V adatoms may display resonances
near the Dirac point [28,29]. In addition, STS measurements
reported that Ni adatoms form a midgap state with s-wave
orbital symmetry [30,31]. Those results suggest that Ni and
Cu adatoms are good candidates for the observation of the
Anderson transition in the symmetric class, which leads to a
strongly localized state at the Dirac point only, while Co, Fe,
and V adatoms may lead to AL in the asymmetric class, where
localization is expected over a finite window of energy around
the Dirac point. In all cases, excluding Ni, the orbitals in the
resonant levels are spin polarized [28,29]. Above the Kondo
temperature, the exchange coupling between the itinerant and
local spins can further enhance AL effects.
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APPENDIX A: RESONANT CONDITION

In momentum space representation, the Hamiltonian of
graphene plus one single impurity can be written as

H =
(

Hg V

V† Hf

)
, (A1)

where Hg is a 2 × 2 matrix in the graphene sublattice basis,

 = (ψa,ψb). The second block matrix, Hf = ε0δm,m′ , is a
diagonal matrix in the fm basis of localized electrons.

V(m)
p =

(
V

(m)
a,p

V
(m)
b,p

)
(A2)

is the 2 × 1 hybridization matrix for a given orbital (indexed
by m), and matrix elements

V (m)
a,p =

∑
j∈IA

V
(m)
j e−ip·Rj , (A3)

V
(m)
b,p =

∑
j∈IB

V
(m)
j e−ip·Rj , (A4)

where p is the momentum, j ∈ IA describes the hybridization
amplitudes of the impurity with the three nearest carbon
atoms on sublattice A (Vj = V1,3,5), j ∈ IB the hybridization
amplitudes with the other three nearest carbon atoms in
sublattice B (Vj = V2,4,6), and Rj describes the position of
the six carbon atoms in the plaquette centered at the origin.

The exact Green’s function of graphene in the presence of
a single impurity is [17]

G
(
p,p′,ω

) = δp,p′G0(p) +
∑
m,m′

× [
G0(p) · V(m)

p · Gf,mm′ (ω) · V†(m′)
p′ · G0(p′)

]
,

(A5)

where the sum over m includes all degenerated orbitals with
energy ε0,

G0(p,ω) = [ω − Hg(p) + i0+]−1 (A6)

is the 2 × 2 matrix of the unperturbed Green’s function,
and Gf,mm′ (τ ) = −〈T [fm(τ )f †

m′(0)]〉 is the retarded Green’s
function of the localized electrons,

Gf,mm′ (ω) = [(ω − ε0)δm,m′ − �f,mm′ (ω) + i0+]−1, (A7)

with

�f,mm′ (ω) =
∑

p

V†(m)
p · G0(p,ω) · V(m′)

p (A8)

the corresponding self-energy, which is a matrix in the
degenerate space of the orbitals.
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From Eq. (A5), the resonance in the LDOS nearby the
impurity at the Dirac point,

ρ(0) = − 1

π
tr

∑
p,p′

Im[G(p,p′,0)], (A9)

follows from a pole in the denominator of Gf (0). In the
nondegenerate case, where the orbital indexes m,m′ can be
dropped, −ε0 − �f (0) + i0+ = 0.

The resonant condition for a single impurity corresponds to
the effective hopping parameter

τ0 = −V 2

ε0
= V 2[Re �f (0)]−1, (A10)

where the imaginary part of �f accounts for the level
broadening 	(0) = Im �f (0), which sets the width of the
resonance. In graphene,

Hg(p) = −
(

0 tφp

tφ∗
p 0

)
, (A11)

where φp = ∑
j∈IA

eip·Rj . From Eq. (A8), the self-energy for
a single nondegenerate orbital is

Re �
(m)
f (0) =

∑
p

V(m) · G0(p,0) · V(m). (A12)

For a symmetric orbital (s wave), where Vi∈I = V (m = 0),

Re �
(0)
f (0) ≈ 2.346 V 2/t, (A13)

or equivalently τ0 ≈ 0.42t . This value is very close to the
resonant hopping that produces a midgap state, τ0 = 0.425t ,
which was computed numerically in the main text from the
effective graphene-only Hamiltonian. For a nondegenerate
dxy-wave orbital, where V1,4 = 0 and V2,5 = −V3,6 = √

3V/2
(m = 2), or equivalently for a dx2−y2 orbital, where V1,4 = V

and V2,3,5,6 = −V/2 (m = −2),

Re �
(±2)
f (0) ≈ −1.782 V 2/t, (A14)

which gives τ0 ≈ −0.561t . Those results also agree with the
values extracted numerically from the effective graphene-only
Hamiltonian for dxy and dx2−y2 orbitals, τ = −0.56t .

In the degenerate case, the condition for a midgap state
is Det[−ε0 − �f (0) + i0+] = 0. For a superposition of two
degenerate d-wave orbitals (m = ±2), where �f is a 2 × 2
matrix, one recovers the nondegenerate d-wave result.

APPENDIX B: GRAPHENE-ONLY HAMILTONIAN

The exact Green’s function of graphene in the presence of
a single impurity can be written as

G = [iω − Heff]
−1 = [

G−1
0 − �

]−1
, (B1)

where � is the self-energy. Using the identity

1 + A = [1 − A · (1 + A)−1]−1,

one can extract the self-energy by combining Eqs. (A5) and
(B1),

�(p,p′,ω) =
∑

p′′
G−1

0 (p) · �p,p′′ (ω) · �p′,p′′ (ω) · G−1
0 (p′),

(B2)
where

�p,p′(ω) =
∑
m,m′

[
G0(p) · V(m)

p · Gf,mm′ (ω) · V†(m′)
p′ · G0(p′)

]
(B3)

and

�p′,p′′ (ω) = [
δp′′p′ + G−1

0 (p′′) · �p′′p′(ω)
]−1

. (B4)

At zero energy (ω = 0), where Im �(0) = 0, the effective
graphene-only Hamiltonian is

Heff(p,p′) = δp,p′H0(p) + �(p,p′,0).

In explicit form,

Heff(p,p′) = δp,p′H0(p) +
∑

p′′
H0(p) · �p,p′′

· [δp′′p′ + H0(p′′) · �p′′,p′]−1 · H0(p′). (B5)

In leading order in perturbation in the hybridization V ,

Heff(p,p′) = δp,p′H0(p) − 1

ε0

∑
m

V(m)
p · V†(m)

p′ + O(V 3).

(B6)

Equivalently, taking the Fourier transform to real space, the
effective graphene-only Hamiltonian is

Heff = H0 +
∑

(i,j )∈I

τi,j ψ†(Ri)ψ(Rj ), (B7)

where (i,j ) ∈ I indexes the six carbon atoms in the plaquette
around the impurity, and

τi,j = − 1

ε0

∑
m

V
(m)
i V

∗(m)
j (B8)

is the effective hopping mediated by the impurity.
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