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To examine optically excited bound states, excitons and trions, in monolayer MoS2, MoSe2, and WSe2, we have
formulated and applied a generalized time-dependent density-matrix functional theory approach. Three different
types of exchange-correlation (XC) kernels were used and their validity was evaluated through comparison with
available experimental data. For excitons, we find that the local kernels, from the local density approximation
and its gradient-corrected form, lead to much smaller binding energy than that extracted from experimental data,
while those based on long-range (LR) interactions fare much better. The same is the case for the trion binding
energy once screening effects are taken into account. Our results suggest that for both excitons and trions, the LR
form of the XC kernel is necessary to describe bound states. These results confirm information from experimental
data on single-layer dichalcogenides that their exciton and trion binding energies are of the order of hundreds
(excitons) and tens (trions) of milli-electron volts, a result that may suggest technological application of these
materials at room temperature. The proposed methodology can be straightforwardly extended to bound states
with a larger number of electrons and holes than considered here.
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I. INTRODUCTION

The study of physical properties of monolayer MoS2 is a
topic of intense research these days, given the multitude of
its interesting properties uncovered both experimentally and
theoretically [1–16]. These efforts are part of the exploration
of new types of two-dimensional (2D) materials, which
potentially extend the fascinating properties of graphene.
Although discovered rather recently [1], this transition-metal
chalcogenide system has already recommended itself as a very
promising candidate for new nanotechnological applications.
In particular, contrary to the case in the bulk, monolayer MoS2

is a direct band gap semiconductor (with an optical gap of
1.8 eV at the K points in the Brillouin zone) with a very
high quantum efficiency for luminescence [1,2]. The system
also demonstrates high electron mobility, room-temperature
current on/off ratio, and ultralow standby power dissipation,
with potential to be used in field-effect transistors [3]. It
was shown that one can achieve complete dynamic (longer
than 1 ns) valley polarization in monolayer MoS2 by optical
pumping with a circularly polarized light [4,5]. Control of
the polarization in two direct band gap energy valleys (at
K and K ′ points) could be exploited for applications in
valley-based electronic and optoelectronic devices. It is thus
not surprising that the optical properties of the system are
of special interest and that there is a need for accurate and
robust theoretical understanding of excitonic and higher order
excited bound states. Experimental data suggest that excitonic
effects in the system are large (binding energy �0.2–1 eV)
[1,2,6,13]. Recently, another exciting property of the MoS2

monolayer was discovered, namely trion bound state with
binding energy approximately 18 meV [7,9]. The magnitude
of these binding energies suggests both excitonic and trionic
effects may have applications at room temperatures. While
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theoretical studies of excitons in monolayer MoS2 have already
been the subject of several studies [e.g., Refs. [8,9,12,14–16],
in which the phenomenological Wannier equation and the GW-
Bethe-Salpeter equation (GW-BSE) were used], those of trions
are still very few. Using a trial wave function, Berkelbach et al.
[12] were able to obtain the binding energies for both these
quasiparticles, in reasonable agreement with experimental data
(though �30% overestimated for trions). It would be difficult,
however, to extend their approach to the examination of ex-
citation dynamics. Instead, time-dependent density functional
theory (TDDFT) would be a better candidate (see below).

In general, an accurate description of bound states and their
dynamics in semiconductors is rather messy. Excitons and
trions are among the most important of these bound states.
Formally, an exciton is defined as a coupled electron-hole pair,
while a trion is a bound state of an exciton and an electron, so
the trion can be regarded as a charged exciton (Fig. 1). While in
bulk systems, the trion binding energy is typically negligible
compared to that of the exciton; in constrained geometries
this energy may be pronounced, leading to novel effects. The
most important example is that of quantum wells, in which
trion excitations affect the optical [10,11], transport [17], and
diffusion properties of the system [18].

Since the standard time-dependent Hartree-Fock approx-
imation leads to strongly overbound excitonic states, efforts
have turned to the development of more subtle many-body
methods, such as those based on the GW-BSE approach,
which take into account screening and other many-particle
effects correctly [19]. Unfortunately, such methodology be-
comes computationally very demanding for the calculation of
multiple bound states (trions, biexcitons, etc.) and for strongly
nonequilibrium processes (for example, ultrafast response of
a system), as they require Green’s functions with many time
arguments. From this point of view, TDDFT [20] provides an
alternative. Being a theory of one function, a space- and time-
dependent electron charge density, it allows one to get an accu-
rate numerical solution of the system response, provided that
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FIG. 1. (Color online) Schematic representation of the quasipar-
ticles, exciton (left) and trion (right), in the two-band model. In the
trion case, it is assumed that the exciton (electron-hole pair with
energies near the band edges, i.e., with zero total momentum) is
coupled to another electron at the Fermi level, the case considered in
the paper.

the exchange-correlation (XC) potential describing excitonic
interactions is available [21]. Some progress in incorporating
such effects into TDDFT has already been made; for example,
the application of a many-body Green’s function [19,22,23]
and the exact-exchange approximation [24,25]. However,
despite good agreement with experiments, these refinements
in TDDFT lead to computational complexities that are almost
as demanding as the many-body formalisms. Recently, we
have proposed a technically simpler and physically trans-
parent TDDFT approach to study excitonic and biexcitonic
effects [26–28]. The approach is based on the density-matrix
representation of the electron wave function, and the ensuing
generalized TDDFT Bloch equations allow one to calculate
excitonic and biexcitonic binding energies using reasonable
computational resources. In particular, the exciton equation
can be regarded as the TDDFT version of the many-body
exciton Wannier equation. We have demonstrated [27,28] that
one can obtain rather good agreement with experimental data
by choosing the proper XC kernel; for example, contact or
long-range (LR) phenomenological kernels.

In this work, we generalize the density-matrix, TDDFT
approach to trions and show that the formalism gives rather
good agreement with experimental values for the excitonic
and trion binding energies for monolayer MoS2, as well as
for two other members of the monolayer transition-metal
dichalcogenide family, MoSe2 and WSe2, using the same XC
potentials.

II. TDDFT FOR TRIONS

To derive the TDDFT equation for trion binding energy,
which we define as the energy necessary to decouple one
electron from the coupled electron-hole pair (exciton), we
begin with a summary of the density-matrix TDDFT approach
for the exciton and biexciton bound states (more details can be
found in Refs. [26–28]).

(a) Excitons. In the case of excitons, one can proceed from
the Kohn-Sham equation

i
∂�v

k (r,t)
∂t

= H (r,t)�v
k (r,t), (1)

where k is the wave vector and v is the valence-band index,
and the system Hamiltonian

H (r,t) = − ∇2

2m
+ VH [n] (r,t) + VXC [n] (r,t) + erE(t)

(2)

includes the kinetic (first), Hartree (second), and XC (third)
potential terms, as well as the external homogeneous electric
field (the last term). Equation (1) is solved self-consistently
with the equation for the electron density, with band index l:

n(r,t) =
∑

l,|k|<kF

∣∣�l
k(r,t)

∣∣2
. (3)

To solve Eqs. (1) and (2), it is convenient to use the density-
matrix formalism [26], in which the wave function is expanded
in terms of the basis (e.g., Bloch) static wave functions ψl

k(r):

�v
k (r,t) =

∑
l

cvl
k (t)ψl

k(r). (4)

The time-dependent coefficients cvl
k (t) completely describe

the system dynamics. Below, we drop index v for the sake of
simplicity since we will consider the case of one valence band.
These coefficients can be found from the following equation:

i
∂cm

k

∂t
=

∑
l

Hml
kkcl

k, (5)

where

Hlm
kq (t) =

∫
ψk

l∗(r)H [n](r,t)ψm
q (r)d r. (6)

However, to study the system response, it is more conve-
nient to consider the bilinear combination of c coefficients, the
density matrix:

ρlm
kq (t) = cl

k(t)cq
m∗(t). (7)

Its diagonal elements describe the level occupancies,
while the nondiagonal elements describe electron transitions,
including excitonic effects. The matrix elements satisfy the
Liouville equation

i
∂ρlm

kq (t)

∂t
= [H (t),ρ(t)]lmkq . (8)

In the case of two (valence v and conduction c) bands, one
can derive the exciton TDDFT equation for the nondiagonal
element ρcv

kq(t) by using Eqs. (2), (3), (7) and (8). Expansion
of the charge density fluctuations in Eq. (8) in terms of the
density matrix elements (Eq. (6)) [by using Eq. (3)] leads to
the TDDFT Wannier equation [27]:[(

εc
k+q − εv

k

)
δkk′ + Fcvvc

kkk′k′
]
ρcv

n,k′+αq(ω) = En,q,ρ
cv
n,k+αq, (9)

where q is the exciton momentum, α is the reduced hole mass,
and n is the bound state number. The effective electron-hole
interaction is described by the last matrix elements defined as

Fabcd
kqk′q ′(ω) =

∫
d r1d r2ψ

a∗
k (r1) ψb

q (r1) fXC(r1,r2,ω)ψc∗
k′

× (r2) ψd
q ′ (r2) . (10)
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With q = 0, one can obtain the excitonic binding energies
from Eq. (9).

(b) Biexcitons. Similarly, one can consider the two-electron
TDDFT problem in order to derive the equation for biexcitonic
states [28]. In TDDFT language, this is a problem of two
excited electrons in the field of two holes. The corresponding
equation is

i
∂�vv

k1 k2
(r1,r2,t)

∂t
=

[
H (r1,t) + H (r2,t) + 1

|r1 − r2|
]

×�vv
k1 k2

(r1,r2,t) , (11)

where the single-electron Hamiltonian is defined in Eq. (2),
while the last term in brackets on the right-hand side describes
electron-electron repulsion. The two-particle wave function
can be expanded in terms of two single-electron functions:

�vv
k1 k2

(r1,r2,t) =
∑
l,m

Blm
k1 k2

(t) ψl
k1

(r1) ψm
k2

(r2) , (12)

where the two-electron matrix elements satisfy

i
∂Bcd

k1 k2

∂t
=

∑
a, p

[
Hca

k1 pBad
pk2

+ Hda
k2 pBca

k1 p

]

+
∑

a,b, p1, p2

wcdab
k1 k2 p1 p2

Bab
p1 p2

, (13)

with Hca
kp defined in Eq. (7) and

wcdab
k1 k2 p1 p2

= 1

εee

∫
d r1d r2ψ

c∗
k1

(r1) ψd∗
k2

(r2)
1

|r1 − r2|
×ψa

p1
(r1) ψb

p2
(r2) (14)

is the matrix element that corresponds to electron-electron
repulsion (εee is an effective electron-electron screening
parameter). Similar to the excitonic case, in order to get
biexciton eigenenergies one can consider a linearized form of
the corresponding Eq. (13). Indeed, if the lowest eigenenergy
of this equation is smaller than the sum of two exciton energies
obtained from Eq. (9), this means that two excitons form a
bound state.

(c) Trions. In a similar way, one can study the case of a
trion—two excited electrons described by the field Bab

k1 k2
(t) in

the presence of hole cc∗
q (t). The corresponding matrix element

tabc
k1 k2q(t) = Bab

k1 k2
(t)cc∗

q (t) (15)

defines the time-dependence of the three-particle wave func-
tion:

�v
k1 k2q(r1,r2,r3,t) =

∑
l,m

tlmn
k1 k2q (t) ψl

k1
(r1) ψm

k2
(r2) ψn∗

q (r3)

(16)
(the trion excitation corresponds to the upper index lmn = ccv).
Using Eqs. (5) and (13), one can obtain the following equation
for the three-particle density matrix:

i
∂tabc

k1 k2q

∂t
=

∑
f, p

[
Haf

k1 ptf bc

pk2q + Hbf

k2 ptaf c

k1 pq − Hf c
pq tabf

k1 k2 p

]

+
∑

f,m, p1, p2

wabf m

k1 k2 p1 p2
tf mc

p1 p2q, (17)

where the H - and w-matrix elements are defined in Eqs. (6)
and (14), correspondingly. Linearization of this equation gives
the equation for the trion eigenenergies:

i
∂tccvk1 k2q

∂t
= (

εc
k1

+ εc
k2

− εv
q

)
tccvk1 k2q +

∑
p1, p2

[
Fcvvc

k1qp2 p1
tccvp1 k2 p2

+ Fcvvc
k2qp2 p1

tccvk1 p1 p2
+ wcccc

k1 k2 p1 p2
tccvp1 p2q

]
, (18)

where εc
k and εv

k are the free-electron and free-hole spectra,
and F and w potentials describe the TDDFT electron-hole and
electron-electron scattering (in particular, the first two F terms,
respectively, describe the scattering of the first electron with
momentum k1 on the hole with momentum q, and similarly
the second F term describes the scattering of the first and
second electron with momenta k1 and k2 on the hole with
momentum q).

Equations (9), (10), (14), and (18) suggest a way of
generalizing the corresponding eigenenergy equations for
excitations with a larger number of bound electrons and holes
than the trion. One would apply a many-particle Schrödinger
equation, such as Eq. (18), in which electrons and holes
attract each other with the potentials, or rather scattering
matrix elements F [Eq. (10)], while the electron-electron and
hole-hole repulsion potentials are defined by matrix elements
w, as in Eq. (14). Thus, each pair of electrons interact through
the TDDFT scattering potential:

wcccc
kq;k′q ′ = 1

εee

∫
d r1d r2ψ

c∗
k (r1) ψc∗

q (r2)
1

|r1 − r2|
×ψc

k′ (r1) ψc
q ′ (r2) , (19)

which describes the scattering of two electrons with momenta
k, q to the states with momenta k′ and q ′. Similarly, one can
describe the corresponding hole-hole scattering by changing
all band indices from “c” to “v” in the last equation. The
electron-hole attraction is described by the scattering potential

Fcvvc
kq;k′q ′ =

∫
d r1d r2ψ

c∗
k (r1) ψv

q (r2) fXC(r1,r2)ψc
k′ (r1)

×ψv∗
q ′ (r2) , (20)

which similarly describes the scattering of the electron-hole
pair from the state with momenta k and q to the state with
momenta k′ and q ′. For example, in the case of biexciton
(two electrons with momenta k1 and k2 and two holes with
momenta q1 and q2), the corresponding equation for the “wave
function” Bccvv

k1 k2q1q2
has the following form:

i
∂Bccvv

k1 k2q1q2

∂t
=

(
εc

k1
+ εc

k2
− εv

q1
− εv

q2

)
Bccvv

k1 k2q1q2

+
∑
k,q

[
Fcvvc

k1q1qkBccvv
kk2qq2

+ Fcvvc
k1q1qkBccvv

kk2q1q

+ Fcvvc
k2q1qkBccvv

k1 kqq2
+ Fcvvc

k2q2qkBccvv
k1 kq1q

]

+
∑
p1, p2

[
wcccc

k1 k2 p1 p2
Bccvv

p1 p2q1q2

+ wvvvv
q1q2 p1 p2

Bccvv
k1 k2 p1 p2

]
. (21)
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This equation has to be compared with the standard
Schrödinger equation for two electrons and two holes:

i
∂�k1 k2q1q2

∂t
=

(
εc

k1
+ εc

k2
− εv

q1
− εv

q2

)
�k1 k2q1q2

−
∑

k

1

k2

[
�kk2−kq2

+ �kk2q1−k

+�k1 k−kq2
+ �k1 kq1−k

]

+
∑
p1, p2

1

k2

[
�k−kq1q2

+ �k1 k2 k−k
]
. (22)

While the solution of this equation might not be less
complicated than the solution of the corresponding many-body
equation, the main advantage of the TDDFT approach is
the inclusion of many-body effects through the two-particle
attraction defined, in principle, by an exact XC kernel. This
property is especially important in the strongly nonequilibrium
regime with multiple excitations, in which nonlinear effects
must be taken into account.

III. EXCITONS AND TRIONS IN MONOLAYER MoS2,
MoSe2, AND WSe2

A. The method

To calculate exciton and trion binding energies, we generate
the Kohn-Sham eigenfunctions and eigenenergies using the
DFT code Quantum-ESPRESSO [29] and employ the Binding
Energies of Excitons (BEE) code developed in our group
to obtain the necessary parameters and to solve the exciton
and trion eigenenergy equations, (9) and (18). At the DFT
stage, XC effects are included by applying the local density
approximation (LDA) in the Perdew and Zunger parameter-
ization [30]. In these calculations, we used norm conserving
pseudopotentials [31] and a cutoff energy of 60 Ry and a 15
× 15 × 1 k-point grid to represent the reciprocal space [32].
To model single layers of transition-metal dichalcogenides,
as shown in Fig. 2, we used a supercell with (1 × 1)
periodicity and �15 Å of vacuum between periodic images.
The calculated lattice parameter a is 3.167, 3.289, and 3.244Å
for monolayers of MoS2, MoSe2, and WSe2, respectively.
In the non-self-consistent calculations of the relaxed single-
layer structures, we used 48 × 48 × 1 k-point grid (217
independent k-points in the first Brillouin zone). The results
of the band structure calculations for MoS2 are presented
in Fig. 3.

FIG. 2. (Color online) Structure of monolayer transition-metal
dichalcogenides MX2 (M = Mo, W; X = S, Se).
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FIG. 3. Band structure of monolayer MoS2 calculated with LDA.

Despite the standard underestimation of the band gap by
LDA, our results (1.82, 1.59, and 1.72 eV for MoS2, MoSe2,
and WSe2, respectively) are in reasonable agreement with
experimental estimations of the optical band gap [1,33]. While
this agreement between the LDA and experimental results
might be regarded as fortuitous, more accurate approaches
that take into account screening effects, such as the Heyd-
Scuseria-Ernzerhof (HSE) hybrid functional calculations, pro-
vide results that indeed agree rather well with experimental
data (HSE gives the direct gap �2.2 eV [34] for MoS2). On
the other hand, the absolute value of the gap is not critical
for purposes here since the binding energy is calculated with
respect to the conduction band edge.

To calculate the exciton and trion binding energies, we solve
Eqs. (9) and (18) using the following eight kernels (details of
which can be found in Ref. [21] and references therein):

(1) Three local kernels: the first consisting of phenomeno-
logical contact interaction f local

XC (r,r ′) = −4πAδ(r − r ′),
where A is a parameter describing the strength of the TDDFT
local electron-hole attraction, and the other two are based
on LDA, with exchange (X) only and with both exchange
and correlation (XC). These kernels allow us to examine
how correlation, as incorporated in LDA, affects binding
energies. Note that the contact kernel with A = 1 is the 2D
LDA(X) kernel (even though MoS2 is not exactly a 2D system,
application of this kernel to it may help provide insights into
how spatial constrains affect bound state energies).

(2) Three gradient-corrected kernels: one kernel with
gradient-expansion approximation (GEA) and two with gen-
eralized gradient approximation (GGA; Perdew-Wang [35,36]
and Perdew-Burke-Ernzerhof [PBE; [37]]). These kernels take
into account the effects of possible strong spatial variation of
the electronic charge; hence, the spatial dependence of the
local electron-hole interaction, which may be rather important
in the monolayer systems with a spatially constrained charge.

(3) Two LR kernels: phenomenological fXC(r,r′) =
− 1

ε
1

|r−r′| , where ε is an effective screening of the electron-
hole attraction, and the Slater kernel (optimized effec-
tive potential [OEP] case [38]) with physically cor-
rect electron-hole interaction, which includes a Coulomb
singularity.
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TABLE I. Exciton binding energy (in meV) for monolayer MoS2

calculated with the contact kernel for different values of coupling
parameter A.

A 1 0.5 0.395 0.238 0.213 0.1 Exp.
EX 3863 1494 1000 300 200 1 220–420

B. Excitons

There is no total agreement on the values of the exciton
binding energies in monolayer MoS2, MoSe2, and WSe2

in the community. Thus, while the combined DFT-based
phenomenological modeling approach [12] and GW-BSE
[9,14–16] calculations predict extremely large binding en-
ergies for the excitons in MoS2 (0.54 eV and 0.5–1.03
eV, correspondingly), experimental scanning tunneling mi-
croscopy/spectroscopy (STM/S) and photoluminescence (PL)
analysis [13] suggest that the corresponding energy is approxi-
mately 0.22 eV (or 0.42 eV when some additional assumptions
on the interpretation of the experimental data are taken into
account). Similarly, in the MoSe2 case, computational analysis
[9,12] shows some difference between the calculated exciton
energies and the ones obtained within the STM/STS+PL
spectroscopy studies [39] (0.47 eV and 0.91 eV vs 0.55 eV).
Berkelbach et al. [12] and Ramasubramaniam [9] also per-
formed calculations of the exciton energy for WSe2 to obtain
exciton binding energy of 0.45 eV and 0.9 eV, respectively,
which again overestimate the spectroscopically measured
value of 0.37 eV [40]. The results for the binding energy of
excitons for the systems of interest, calculated with the above
kernels, are presented in Tables I–III and Figs. 4 and 5. In the
case of MoS2, we find that the contact kernel can reproduce
experimentally estimated energy 0.3 eV [13] at A = 0.238.
We also find that the exciton binding energy is very sensitive
to the value of A (Table I and Fig. 4). To test the ability of the
contact kernel to describe excitons in other transition-metal
dichalcogenides, we extended our calculations to single-layer
MoSe2 and WSe2. As shown in Fig. 4, the values of A for the
three different dichalcogenides are very similar (�0.2–0.4).
Taking into account the oversimplification in the contact
approximation, this result is quite remarkable.

On one hand, LDA with either X or XC gives very small
binding energies (�1–10 meV, Table II). Comparing this result
to that obtained for the contact kernel, and taking into account
the fact that A is of order 1 (2D LDA), one can suggest that
indeed the spatial constraint in one direction may be important
for excitons in these system. On the other hand, a very small
decrease of the LDA binding energy with inclusion of the
correlations suggests that they are not very important in these
materials (though the situation may change dramatically when

TABLE III. Exciton binding energy for MoS2 (in meV) for the
LR kernel and different values of ε.

ε 0.449 0.752 0.844 1 2.8 4.2 3.3 Exp.
EX 1000.00 300 200 90.54 0.62 0.39 0.51 220–420 [13]

one dopes the system with transition-metal atoms). We also
found that charge-gradient correction does not improve the
situation significantly. The GEA and PW91 binding energies
are even lower than LDA ones. Though PBE gives much larger
energies than LDA, it is still much lower than the experimental
values. It is also worthwhile to note that the LDA and GGA
exciton energies for MoSe2 are an order of magnitude larger
than that for other two materials, which display very similar
values. The d states of the Se atoms with more localized charge
densities may be playing a role here.

The results for the exciton binding energy change dramat-
ically when one takes into account the Coulomb nature of
the interaction (a kernel with 1

q2 singularity [see, e.g., Refs.
[24]–[26]]). While the unscreened (ε = 1) phenomenologi-
cal LR kernel gives underestimated values of the binding
energy (Table III, Fig. 5), the Slater kernel results are in
reasonable agreement with the experiment [13,39,40] and
other calculations [9,12,14–16] (Table II). In the LR case,
the results are very sensitive to the value of the screening
parameter ε, and one can obtain the experimental energy by
lowering the screening parameter by �20% to the vacuum
(unscreened) value. Interestingly, similar to the local case, the
value of the fitting (screening) parameter has the same order
of magnitude in all three cases (Fig. 5). On the other hand,
it seems problematic to get accurate experimental binding
energy if one uses experimentally motivated values of the
screening parameter. In particular, in the case of MoS2,
the parallel and perpendicular components of the dielectric
constant are ε‖ = 2.8 and ε⊥ = 4.2 [8], and their average
is ε̄ =

√
(2ε2

‖ + ε2
⊥)/3 ≈ 3.3, which corresponds also to the

dielectric constant of bulk MoS2 [41]. EX is extremely
sensitive to the value of screening at 0.5 < ε < 3–4 (Table III,
Fig. 5). It suggests that this potential will result in an accurate
description of exciton effects when used as a part of a hybrid
potential, for example with one of GGAs.

It must be emphasized that in our calculations we do not
include spin-orbital band splitting whose inclusion would have
resulted in two exciton peaks (the band splitting is much
smaller than the exciton and trion excitation energies). The
inclusion of spin-orbit effects is, however, straightforward.
Namely, in this case one needs to consider two split valence
bands, which will transform the exciton and trion Eqs. (9)

TABLE II. Exciton binding energy (in meV) calculated with seven remaining kernels for the three materials. In the case of LDA, both X
and XC results are presented, while in the GEA, PW91, and PBE cases, only the X result is shown. For LR, we use the screening parameter
ε = 1.

LDA (X) LDA (XC) GEA PW91 PBE LR Slater Exp.

MoS2 2.05 2.00 0.87 1.96 10.46 90.54 1093 220–420 [13]
MoSe2 14.81 14.45 1.21 12.58 39.34 187 1183 550 [39]
WSe2 1.20 1.19 0.53 1.63 2.25 9.81 734 370 [40]
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FIG. 4. Exciton binding energy (in meV) calculated with the con-
tact kernel for different values of coupling parameter A for monolayer
MoS2, MoSe2, and WSe2. The dashed lines mark the experimental
values for Ex (see Refs. [13,39,40]) and the corresponding As.

and (18) into 2 × 2 matrix equations (in the band indices).
The band splitting will lead to two exciton peaks separated by
approximately the band-splitting energy.

C. Trions

Equation (18) for the trion energy is rather complicated to be
solved exactly; therefore, we use an approximation similar to
that used in the many-body approach. Namely, it is convenient
to reduce the problem to that of an electron with momentum
k1 in the presence of an exciton comprised of the remaining
electron and hole (momenta k2 and q). In this case, using Eq.
(9) for the exciton function, one can transform Eq. (18) to

i
∂tccvk1 k2q

∂t
=

(
εc

k1
+ EXk2,q

)
tccvk1 k2q

+
∑
p1, p2

[
Fcvvc

k1qp2 p1
tccvp1 k2 p2

+ wcccc
k1 k2 p1 p2

tccvp1 p2q

]
. (23)
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FIG. 5. Exciton binding energy (in meV) for the LR kernel and
different values of ε for the three materials. The corresponding
experimental values [Refs. [13,39,40]] are marked by dashed lines.

Next, we assume that the excitonic electron and hole
momenta are fixed, k2 = q, i.e., we consider the exciton with
fixed center-of-mass. The trion equation now reduces to

i
∂tccvk1qq

∂t
=

(
εc

k1
+ EXq,q

)
tccvk1qq

+
∑
p1, p2

[
Fcvvc

k1qqp1
tccvp1qq + wcccc

k1qp1q tccvp1qq

]
= 0, (24)

which is equivalent to the following eigenenergy equation:
(
εc

k + EXq,q − ω
)
δkp + Fcvvc

kqqp + wcccc
kqpq = 0. (25)

We assume that the exciton is created in one of two
equivalent K-points, which correspond to the direct band gap
transition, and put q equal to the K-point momentum. While it
is easy to generalize the solution to arbitrary exciton momenta,
the trion energy obtained with this approximation is sufficient
to estimate the energy scale of the trionic effects in the system,
including the position of the trion peak in the optical absorption
spectrum.

Before presenting our results for the trion binding energy,
we summarize the experimental data known to us for the
three systems. Absorption and PL (MoS2) [7], differential
reflectance and PL (MoSe2) [42], and PL (WSe2) [43] mea-
surements give �18 meV (MoS2) and �30 meV (MoSe2 and
WSe2) as the trion binding energies. The results of the solution
of Eq. (25) using the contact kernel with A = 0.238 (the case of
characteristic exciton energy 0.3 eV) at different values of the
electron-electron screening for MoS2 are summarized in Fig. 6.
Clearly, the results are very sensitive to the value of ε, though
one can successfully reproduce the experimental result 18 meV
[7] at a reasonable value ε ∼ 11. We did not find a finite
binding energy when using the LDA, GEA, and GGA kernels,
a naturally expected result because of the extremely low
excitonic energies obtained from these kernels (see Table II,
in which all the results for the local kernels are summarized).
The results in Tables I and II suggest that while the TDDFT
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100
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E T
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)

 εee

FIG. 6. The trion binding energy (in meV) obtained with the
contact kernel (with A corresponding to exciton energy of 300, 550,
and 370 meV for MoS2, MoSe2, and WSe2, respectively) at different
values of the electron-electron screening parameter εee. Again, the
corresponding experimental values are marked by dashed lines.
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FIG. 7. The trion binding energy (in meV) obtained with the
Slater kernel and different values of the electron-electron screening
parameter for the three materials. The dashed lines correspond to
experimental values [12].

exciton energies can be obtained by assuming even a local
electron-hole attraction, to get a bound state of an electron and
an exciton, one needs to take into account the LR character of
the interaction (LR interaction also reproduces correct exciton
energies). Indeed, the electron-exciton interaction is more of
“a dipole” type, contrary to the Coulomb interaction of the
electron and hole. As for excitons, the fact that the contact
kernel (2D LDA) results in a finite trion binding energy,
contrary to that for the bulk with LDA, suggests that the
spatial constraint (charge nonhomogeneity) of the system is
important in this case too. We find very similar results for
the trion energy for the other two single-layer dichalcogenides
by using the local attraction and screened Coulomb repulsion
(Fig. 6). In particular, the value of the screening parameter
necessary to reproduce correct trion energy has the same order
of magnitude for all three materials.

In the case of LR kernels, we find that the trion energy
is sensitive to the value of the electron-electron screening. In
particular, for MoS2 one can easily reproduce the experimental
binding energy with the Slater kernel at fair value ε ∼ 2.7.
Similar results were found for the other two materials, with
the close values for the fitting screening parameter (Fig. 7).

IV. CONCLUSIONS

In this paper, we have formulated a density-matrix TDDFT
approach to examine the energies of trions in bulk systems,
as well as in nanomaterials. This approach is physically
transparent, with the interparticle interaction defined by the
TDDFT XC kernel. Similar to the formalism for excitons, this
methodology has several advantages over standard many-body
approaches: simplicity and accurate accounting of many-body
correlation (especially screening) effects.

We applied the approach to study exciton and trion binding
energies in monolayer MoS2, MoSe2, and WSe2. There are
experimental indications that the corresponding binding ener-
gies in these materials are rather large (�0.2–0.5 eV [13,39,40]
and 0.02–0.03 eV [7,42,43]), which makes it possible to use
the exciton and trion effects at room temperatures. We show a
theoretical confirmation of these high binding energies when
we employ a LR Slater XC kernel, which takes into account
correctly the nature of the electron-hole interaction. We find
some phenomenological kernels (one LR and one contact) with
physically reasonable values of parameters to also provide
reasonable binding energies. On the other hand, we find that
for both excitons and trions, one cannot obtain finite (non-
negligible) values with standard LDA and GGA kernels as a
result of the missing LR nature of the electron-hole interaction.
The reasonable agreement with experimental values for three
different monolayer transition-metal dichalcogenides suggests
the universality of the proposed potentials.

The formalism described above can be used to study binding
energies and ultrafast processes that involve excitonic, trionic,
and biexcitonic effects. The scheme proposed in the paper can
be easily generalized to bound states with larger number of
quasiparticles.
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