
PHYSICAL REVIEW B 90, 085412 (2014)

Nonlinear electric transport in graphene with magnetic disorder
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The influence of magnetic impurities on the transport properties of graphene is investigated in the regime
of strong applied electric fields. As a result of electron-hole pair creation, the response becomes nonlinear
and dependent on the magnetic polarization. In the paramagnetic phase, time reversal symmetry is statistically
preserved, and transport properties are similar to the clean case. At variance, in the antiferromagnetic phase, the
system undergoes a transition between a superdiffusive to a subdiffusive spreading of a wave packet, signaling
the development of localized states. This critical regime is characterized by the appearance of electronic states
with a multifractal geometry near the gap. The local density of states concentrates in large patches having a
definite charge-spin correlation. In this state, the conductivity tends to half the minimum conductivity of clean
graphene.
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I. INTRODUCTION

Electronic transport in graphene exhibits unique properties
that stem from the nature of its quasiparticles, two-dimensional
Dirac fermions [1–4]. Under the action of a weak static electric
field, the linear response theory predicts a minimal conduc-
tivity, characteristic of the linear dispersion near the Dirac
point [5]. This conductivity is insensitive to weak disorder,
as a consequence of the absence of Anderson localization
when intervalley scattering can be neglected [6,7]. Increasing
the disorder paradoxically facilitates the conduction through
the Klein tunneling mechanism [8]. Short-range disorder that
allows intervalley transitions [9], spin-dependent scattering
triggered, for instance, by magnetic impurities [10,11], and
electric potential differences as in n-p junctions that introduce
nonlinear corrections to the conductivity [12], can qualitatively
change the transport properties of pristine graphene. In partic-
ular, under a strong electric field a new phenomenon arises, the
Schwinger electron-hole pair production [13,14]. It has been
demonstrated experimentally that pair creation modifies the
current-voltage characteristics [15]. A power law was found
with a mobility-dependent exponent taking values between the
linear response and the pair-production-dominated response
(exponent 3/2).

Transport properties are related to the electronic band
structure of graphene, which can be modified by various
mechanisms including the scattering-off impurities or vacan-
cies [16], and by perturbations originating from random edge
configurations [17,18]. These processes change the energy
bands by populating the levels in the neighborhood of the
Dirac point, and by changing their localization properties. In
particular, doping graphene with magnetic impurities breaks
the sublattice symmetry and opens a gap [19–21].

In this paper we investigate the effect on the electronic
transport of magnetic disorder in the strong electric field
regime. We are interested in the dependency of the pair
production rate and electric current on the intensity of the
applied electric field. It is expected that under paramagnetic
disorder the general picture of nonlinear transport is preserved
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[22,23], but that under magnetic order, this picture would
change essentially as a consequence of localization [24]. In
addition to the appearance of localized states, the opening of
a gap induced by magnetically polarized impurities (magnetic
state with spatial disorder), should significantly fade away the
pair production, and consequently change the current-voltage
characteristic.

We consider a tight-binding model where the coupling with
randomly distributed magnetic moments is ensured by a simple
exchange term [25,26]. The external electric field is derived
from a vector potential. This allows us to minimize finite-size
effects by using periodic boundary conditions, and integrating
the time-dependent Schrödinger equation in momentum space.
The transport properties are studied by direct computation of
the mean current and pair creation rate from the evolution
of the wave function. We finally discuss the localization of
electronic states using the local density of states as order
parameter [27,28]. The numerical calculation of the density
of states is performed using Chebyshev polynomials [29].

II. MODEL OF GRAPHENE IN A
STRONG ELECTRIC FIELD

We describe electrons in graphene subject to an external
electric field, by a two-dimensional tight-binding model with
first-neighbor interactions and randomly distributed classical
magnetic impurities. We consider a hexagonal lattice with
N sites, area L2, and constant a, with two atoms A,B per
cell. The primitive vectors are [2],

a1 = a(1,0), (1)

a2 = a(−1/2,
√

3/2), (2)

and the reciprocal vectors,

b1 = (2π/a)(1,1/
√

3), (3)

b2 = (2π/a)(0,2/
√

3), (4)

as can be seen in Fig. 1. Let i be a lattice point of coordinates
xi = (xi,yi) (i = 1, . . . ,N); the neighbors xj of xi are
given by the three vectors xj = xi + dij , where dij = da ,
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FIG. 1. (Color online) Contours of the energy εk and Brillouin
zone (BZ) for pristine graphene (red hexagon); b1 and b2 are the
primitive vectors of the reciprocal lattice. The Dirac cones are located
at K and K′. The light gray rectangular box defines the integration
domain used in the numerical computations, it covers two cells.

(a = 1,2,3):

d1 = a(0,1/
√

3), (5)

d2 = −a(1/2,1/2
√

3), (6)

d3 = a(1/2,−1/2
√

3). (7)

The tight-binding Hamiltonian consists in two terms, the
hopping term with hopping energy ν, and the impurity term that
couples electrons and holes with (classical) magnetic moments
through an exchange constant JI [26],

H (t) = −ν
∑
〈i,j〉

(e−iφij (t)c
†
j σ0ci + eiφij (t)c

†
i σ0cj )

+ JI

∑
i∈I

ni · (c†i σci), (8)

where ci = (ci↑ ci↓)T is the column annihilation operator of
a particle of spin up (↑) or down (↓) at site i. In order
to preserve the translational symmetry, the external electric
field E, is introduced through a time-t-dependent vector
potential, A = t E = (0,−tEy), giving the phase factor with
φij (t) = −et E · dij , where e is the elementary charge, in the
hopping term. In the impurity term, σ = (σx,σy,σz) stands for
the Pauli matrices, and σ0 for the identity matrix; the sum
spans over the set I of NI randomly distributed sites, and
ni is a normal vector pointing in the direction of the impurity
magnetic moment. The number of impurities per site is denoted
nI = NIa

2/L2.
The effective Hamiltonian of Eq. (8) is a crude approx-

imation of the free carriers—magnetic moments coupling
in real graphene. As demonstrated by ab initio calculations
[30–32], the embedding transition metals, or the chemical
functionalization of graphene, strongly affects its electronic
structure. In particular, the interaction of two adatoms, and
of adatoms and itinerant electron [33], is modified by the
presence of multiple orbitals. However, model (8) is relevant
when the exchange interaction with impurities is the dominant
interaction, and the magnetic order is imposed. At variance to

the Ruderman-Kittel-Kasuya-Yosida (RKKY) approach that
eliminates the conduction degrees of freedom to obtain the
effective interaction between magnetic moments, here we fix
the magnetic ordering (which we take as a parameter). In
such a case, taking into account a simple on-site exchange
interaction between a jumping fermion and a classical fixed
magnetic moment, is sufficient to investigate the influence of
the magnetic order on the transport properties.

The Hamiltonian is suitably written in momentum space,
such that the time-dependent term is diagonal:

H (t) =
∑
k∈BZ

ψ
†
kHk(t)ψk +

∑
k,q∈BZ

ψ†
qVq,kψk, (9)

where k is a wave number in the Brillouin zone (BZ) and

ψk = (ψk,A,↑ ψk,B,↑ ψk,A,↓ ψk,B,↓)T

is the annihilation operator of a particle having wave number
k, belonging to the sublattice (A,B), and of spin σ = ↑,↓.
In momentum space, the hopping term of the Hamiltonian
becomes,

Hk(t) = σ0 ⊗
(

0 hk(t)

h∗
k(t) 0

)
, (10)

where

hk(t) = −ν

3∑
a=1

e−i(�k+et E)·da , hk(0) = hk (11)

and the itinerant-fixed spin coupling term is given by the
convolution

Vq,k = JI

∑
i∈I

e−iq·xi ni · σ ⊗ χie
ik·xi , (12)

where χi = diag(1,0) if i ∈ A and χi = diag(0,1) if i ∈ B.
It is convenient to use ν = 3 eV and a = 0.25 nm as the

units of energy and length respectively; the unit of time
is t0 = �/ν ≈ 0.3 fs, and the unit of electric field E0 =
ν/ea ≈ 1010 V m−1. The Fermi velocity is of the order vF ∼
νa/� ≈ 106 ms−1. In the following we use the system of
units where ν = a = � = e = 1. Typical values of the model
nondimensional parameters are taken as: JI = 0.1, . . . ,1.5,
nI = 0.4 [24], and Ey = 10−3, . . . ,10−2.

The energy spectrum of the isolated clean system is given
by the eigenvalues of Hk(0) [22],

E = ±εk, εk = |hk| , (13)

(contours of εk are represented in Fig. 1). The corresponding
eigenvectors are,

|k,+,↑〉 = 1√
2

⎛
⎜⎜⎜⎝

eiφk/2

e−iφk/2

0

0

⎞
⎟⎟⎟⎠, |k,−,↑〉 = 1√

2

⎛
⎜⎜⎜⎝

−eiφk/2

e−iφk/2

0

0

⎞
⎟⎟⎟⎠,

|k,+,↓〉 = 1√
2

⎛
⎜⎜⎜⎝

0

0

eiφk/2

e−iφk/2

⎞
⎟⎟⎟⎠, |k,−,↓〉 = 1√

2

⎛
⎜⎜⎜⎝

0

0

−eiφk/2

e−iφk/2

⎞
⎟⎟⎟⎠,
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FIG. 2. (Color online) Temporal evolution of the hole (left) and electron (right) densities. Times t = 4,16,60 t0, electric field Ey = 0.01 E0,
lattice 2 × (256 a)2 sites. The color map (from blue to red) is in a logarithmic scale to enhance the small values of the wave function. The y axis
gives the length scale in units of the lattice constant.

where tan φk = Im hk/Re hk, and the signs ± correspond to
positive (electrons) or negative (holes) energy states.

The time evolution of the system is computed using a
splitting method in momentum space:

	k(t + 
t) = Uk
(

1
2
t

)
Tk(t + 
t)Uk

(
1
2
t

)
	k(t), (14)

accurate to second order in the time step 
t , where

Tk(t + 
t) = exp
{− i

2
t[Hk(t + 
t) + Hk(t)]
}
,

and

Uk
(

1
2
t

) = F−1
k,i ◦ exp

[− i
2
tVi

] ◦ Fi,k,

with Fi,k denoting the Fourier transform, and Vi = Jsni · σ ⊗
χi the impurity potential energy; the wave function is obtained
from 	(xi ,t) = Fi,k ◦ 	k(t). The mesh of vectors k is defined
in the rectangle of Fig. 1, having twice the area of the first
Brillouin zone.

To illustrate the behavior of the system in the simplest case,
we show in Fig. 2 snapshots of the hole and electron probability
densities |	(xi ,t)|2 for the clean system at different times. A
logarithm scale is used to enhance the small values of the wave
function. Initially a hole is put at the center of the lattice, in a
state with wave function 	(x0,0) = 〈x0,0|k,−,↑〉. The initial
electron wave function is zero, but as shown in the left panel of
Fig. 2, it increases with time. The maximum of the probability
density tends to drift in the direction of Ey for the holes,
and in the opposite direction for the electrons. While the
electron density increases in the positive y direction, the hole
density develops simultaneously an asymmetry, with a larger
concentration in the −y direction. The growth of the electron
density is related to the creation of electron-holes pairs. Indeed,
under the effect of the strong electric field, electron-hole pairs
are produced through the Schwinger mechanism [13,22,34],
leading to a nonlinear response regime. Note that at times
t ≈ 60 t0 the wave function reaches the borders of the system,
given an order of magnitude for the threshold of finite-size
effects (which depend on the strength of the electric field); in
the following we show the evolution of the physical quantities
up to times t = 100 t0.

In order to characterize the transport in this regime or in the
presence of impurities, we monitor the pair creation rate [23],

N (t) =
∑
k∈BZ

〈|〈−|ψ†
k(t) ψk|+〉|2〉, (15)

where |+〉 = |k,+,↑〉, and |−〉 = |k,−,↑〉, as well as the mean
current density (averaged over the area L2),

j (t) = 〈jy〉(t) = − 1

L2

∑
k∈BZ

〈
〈0|ψ†

k(t)
∂Hk

∂Ay

ψk(t)|0〉
〉
, (16)

where the external brackets 〈· · · 〉 are for the disorder av-
eraging, and |0〉 is the initial state, usually taken to be
|0〉 = |k,−,↑〉 (a spin-up hole centered at the origin). The
current density and the corresponding pair creation rate, in the
clean case, are represented in Fig. 3 for different values of
the electric field. After an initial transient in which the current
oscillates around a constant and whose duration is shorter with
increasing fields, the current grows almost linearly in time. The
constant characterizing the initial regime j (t)/E, corresponds
to the conductivity,

σ0 = 4

π

e2

h
= 2

π2
, (17)

obtained from the linear response theory for static fields [16].
A straightforward calculation, using, for instance, the analogy
of the low-energy Dirac system with the Hamiltonian of the
Landau-Zener tunneling [35], leads to the scaling t → √

Et

and j → E(
√

Et); the pair creation rate behaves similarly.
Explicitly one obtains [22]

j (t)/E = 2evF N (t)/E = σ0

√
vF Et, (18)

where, in our units, the Fermi velocity near the Dirac point
is vF = √

3/2. These scalings are confirmed numerically, as
shown in the plots of Fig. 3 (right column); in particular,
the slope predicted by Eq. (18), 0.189 is only slightly larger
than the numerical result, about 0.16. The difference may be
attributed to a renormalization of the continuous, low-energy
formula (18), due to the lattice and its intrinsic length scale a

and finite energy band width. In addition, the corresponding
slope of the pair creation rate, found to be about 0.1, is
in perfect agreement with the relation j (t)/N(t) = 2evF =√

3 ≈ 1.6. Therefore, the linear and nonlinear regimes are both
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(a)

(b)

FIG. 3. (Color online) Current (a) and pair creation rate (b), for
a clean graphene sheet. When the data is scaled with appropriated
powers of the electric field, it collapses to a single curve (as shown
on the right). Electric field E = 0.002,0.004, . . . ,0.02 E0 (ten values
in steps of 0.002 E0, from black to red).

characterized by the same prefactor, the static conductivity
σ0. In addition, as we demonstrate in the following section,
the behavior observed in the clean limit extends smoothly to
the (parametric) disorder regime, as predicted by the linear
response theory: the static conductivity is insensitive to weak
disorder.

It is worth mentioning that the clean static regime is singular
within the framework of the linear response approximation, in
the sense that the value of the conductivity depends on the
specific way the zero frequency ω and the disorder strength
limits are taken (as already noted in the seminal paper of
Ref. [5]). Indeed, in the low-frequency limit instead of the
static value (17), one obtains

σ̄ = lim
ω→0

σ (ω) = (π/2)(e2/h) = 1/4 �= σ0.

This value of the conductivity was found elsewhere for
the initial linear regime, using an approximation valid for
finite momentum p � eEt [36], or more generally, for the
whole linear and nonlinear regimes, using a truncated series
representation of the solution of the Dirac equation, computed

(a)

(b)

FIG. 4. (Color online) Effect of disorder on the density of
states. (a) paramagnetic case; (b) magnetic case. Disorder JI =
0.1,0.5,1.0,1.5 ν.

using small and large momentum cutoffs (see Ref. [23]).1 In
the present model we use a spectral integration method that
allows us to exactly compute the differential operators on the
lattice. The full account of the lattice effects regularize the
dynamics, leading naturally to the conductivity σ0, in a strictly
constant electric field, ω = 0.

III. CURRENT AND PAIR CREATION
IN THE DISORDERED SYSTEM

In the following we consider two types of magnetic
disorder, one with the orientation of the magnetic moments ni ,
uniformly distributed on the sphere, and the other with ni =
(0,0 ± 1) for sites in the two sublattices A and B, respectively.
The effect of impurities on the electronic bands will depend on

1Note however, that the nonlinear evolution found in Ref. [23] is
identical to the one shown in Fig. 3. In fact, the fitting formula (18)
is rigorously equivalent to Eq. (72) of the referred paper [where the
authors denote σ2λ = σ0

√
vF = (2/π 2)(

√
3/2)1/2 with σ2 = σ̄ ].

085412-4



NONLINEAR ELECTRIC TRANSPORT IN GRAPHENE WITH . . . PHYSICAL REVIEW B 90, 085412 (2014)

FIG. 5. (Color online) Electron density as a function of time for different disorder strengths (top JI = 0.1 ν, bottom JI = 1.0 ν) and
configurations (left paramagnetic, right magnetic). Electric field E = 0.02 E0, times t = 4,16,60 t0, lattice size 2 × (256 a)2.

these two types of magnetic order: randomly oriented moments
(paramagnetic case) will contribute to populate the energy
levels around the Fermi energy; magnetic moments following
an antiferromagnetic order with different spin orientation on
the two sublattices (magnetic case) will break the time reversal
symmetry and open a gap. A quantitative measure of these
effects can be obtained from the density of states,

ρ(ε) =
∑

n

〈δ(ε − εn)〉 , (19)

where εn are the eigenstates of the disordered Hamiltonian. We
compute the density of states Eq. (19), using the Chebychev
method [29]. In Fig. 4 we show the density of states for
increasing disorder strength (given by the values of the
exchange constant), in both paramagnetic and magnetic cases.
For increasing paramagnetic disorder, the energy band width
extends and a finite density of states near ε = 0 develops.
For increasing magnetic disorder, the behavior near ε = 0
change drastically: a gap whose width is proportional to the
disorder strength is created [24,37]. One may anticipate that
the type of disorder will influence the transport properties
differently, according to the modification they may induce on
the system symmetries; in particular, the magnetic order can
change qualitatively the response of the system to the applied
electric field, because of the breaking of the underlying time
reversal symmetry.

Figure 5 presents the time evolution of the electron density
for the paramagnetic case (left) and magnetic case (right), for
two values of the disorder strength, weak (top) and strong
(bottom). They can be compared with the clean case of
Fig. 2 (left). At weak disorder, the electron spreads, as in

the clean case, almost ballistically (top panels). Increasing
the disorder strength results in a change of regime, towards
a diffusive transport regime (bottom panels). It is also worth
noting that in the initial stage of the system evolution the
electron density rapidly increases, as compared with the clean
case, suggesting an enhanced rate of pair production in the
presence of impurities. The main effect of disorder is in
the rapid and reinforced spreading of the probability density,
due to the scattering-off impurities. As a result the current
must decrease, as part of the electron density drags behind
the drifting maximum. The comparison of the two kinds of
disorder reveals that in the ferromagnetic case the asymmetry
of the distribution is smaller than in the paramagnetic case, and
that for strong disorder it tends to become almost isotropic,
signaling a possible effect of localization.

The change between the ballistic and diffusive regimes is
also supported by the measure of the wave function width w(t),

w(t)2 =
∫

L2
dx |x|2|	(x,t)|2 (20)

represented in Fig. 6. The wave packet evolves following a
power law w(t) ∼ tβ , with characteristic exponent β. The
exponent, which in the clean case has the ballistic value β = 1,
tends in the paramagnetic case to its diffusion value β = 0.5;
for strong disorder, in the magnetic case, it shows a transition
from superdiffusive to subdiffusive behavior. The transition
between these two regimes coincides with the crossing of the
curves in Fig. 6(b), at about JI ≈ 1 ν.

These qualitative changes in the electronic structure and
in the phenomenology of the system’s evolution translate into
a series of changes in the transport properties that become
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(a)

(b)

FIG. 6. (Color online) Width of a wave packet, propagating in
a disordered environment (zero electric field). (a) Example of w(t)
in the magnetic case (the width is measured in units of the lattice
constant a). The red line in (a) is the power-law fit with a subdiffusive
exponent β = 0.42, for JI = 1.45 ν. (b) Power-law exponent as a
function of the disorder strength, for paramagnetic (blue circles) and
antiferromagnetic (red squares) states.

particularly important in the magnetic case. We show in
Fig. 7 the time evolution of the current density and the pair
production rate, in the paramagnetic [Figs. 7(a) and 7(b)] and
magnetic [Figs. 7(c) and 7(d)] cases, for various values of
the electric field [Figs. 7(a)–7(d)], or of the disorder intensity
in the magnetic state [Figs. 7(e)–7(f)]. To compare with the
clean system of Fig. 3, we also plot the scaled data [right
panels in Figs. 7(a)–7(d)]. It is worth noting that the initial
evolution is strongly sensitive to the disorder configuration.
We recall that the initial state is a hole located at the origin,
and polarized with a spin up. Depending on the neighborhood,
if it contains an impurity or not, or if the origin is occupied
by an impurity, the individual evolution of the wave packet is
different; this is reflected by the existence of large statistical
current fluctuations and in the pair production. This kind
of dependency on the initial condition was already noted in
the problem of two-dimensional quantum percolation [38].
Therefore, the data corresponding to the weaker electric
fields, E = 2,4,6 × 10−3, did not completely converged after

averaging over 213 configurations (black, green, and blue lines
in Fig. 7).

The nonlinear scaling behavior of the current j (t) ∼ E3/2t ,
although preserved in the paramagnetic case (within the
statistical errors), completely disappears in the magnetic case.
Even in the paramagnetic case and for weak disorder there
are differences with respect to the clean case: first, the initial
pair creation rate jumps to a finite value, which in the range
of electric fields used in the computations, appears to be
independent of the electric field; second, in spite of the
superposition of the scaled curves [right panels of Fig. 7(b)],
the characteristic straight line behavior as a function of time is
much shorter than in the clean case.

In comparison with the paramagnetic case, we note that the
current traversing a magnetically polarized medium is reduced
by a factor of about 2, for a given electric field [Fig. 7(c)].
Simultaneously and at first sight paradoxically, the number of
pairs, and therefore the number of carriers, rapidly increases
during an initial transient. Concomitantly, the spreading of the
wave function is almost ballistic, in this weak to intermediate
disorder strength regime (cf. Fig. 6, for JI < 0.5). These
observations show that we are in the presence of a regime
characterized by an initial rapid spreading of the density
probability, to which the pair creation rate is proportional,
in conjunction with a slow displacement of its mean value,
which determines the current. In addition, the absence of a
definite power law in the current-electric field characteristics,
in particular for the weaker electric fields E � 0.01 E0 (cyan
line), can be related to the behavior of the number of pairs that
tends to saturate. Therefore, in the magnetic case, the current
driven by polarization dominates over the pair production
term, erasing the power-law dependency on the electric
field.

To study the influence of the magnetic disorder on the
current and pair production, we fixed the electric field at
E = 0.02 E0, and varied JI between the clean value JI = 0 to
a moderated disorder strength JI = 1.0 ν, limit of the ballistic
regime [Figs. 7(e) and 7(f)]. We note that for a disorder strength
of about JI ≈ 0.25 (line 5), the current and pair production
rate tend to saturate to a constant value (independent of time),
after an initial transient regime. Increasing the disorder, the
current does not vanish, but appears to converge (within the
large fluctuation errors) to a constant independent of JI . It is
important to recall that the initial state is always at zero energy,
that is in the energy gap open by the magnetic impurities (cf.
Fig. 4). This asymptotic value depends on the electric field.

The pair production rate appears to be less influenced
by stochastic fluctuations. This is justified by the fact that
the pair production is computed in the comoving frame
(the one in which ky − Et is constant), and then it is not
sensitive to the phase of the wave function at variance with
the current. Afterward, an initial transient N (t) saturates to a
value proportional to the disorder amplitude. This is in sharp
contrast with the Schwinger mechanism that would give a rate
exponentially small in the energy gap; for strong magnetic
disorder the production of electron states from the initial
hole state is arguably due to scattering-off impurities and not
directly related to the electric field intensity [as can be observed
in Fig. 7(d), where the initial approximated discontinuity in
N (t) at t = 0+ do not depend on E].
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(a) (c) (e)

(f)(d)(b)

FIG. 7. (Color online) Dependence of the current (a), (c), (e) and pair creation rate (b), (d), (f) on the electric field and disorder.
(a), (b) Paramagnetic case, and (c), (d) magnetic case for different values of the electric field (E = 0.002 E0, black, to 0.02 E0, red, as
in Fig. 2), and JI = 0.2 ν. Effect of the disorder for fixed electric field E = 0.02 E0, in the magnetic case: current (e), and pair creation rate (f);
the lines correspond to 21 values JI = 0, . . . ,1.0 ν (from black to red, in steps of 0.05 ν, and numbered from 0 to 20). The dashed line in (e)
shows that the current is above one half of the minimum conductivity σ0/2 for JI � 1.0 ν. The bottom panels in (e) and (f), show J and N as
a function of the disorder at a fixed time, t = 100 t0. Averages are made over 8192 configurations of the impurities distribution.

Therefore, for increasing magnetic disorder in the ballistic
or superdiffussive regime (JI < 1), the current decreases at
long times, but remains above a minimum value, half of
the minimum conductivity of clean graphene, σ0/2. Simul-
taneously the number of pairs increases proportionally to the
disorder strength.

IV. LOCAL DENSITY OF STATES AND LOCALIZATION

The observed complex behavior of the wave packet and the
peculiar properties of the current in the presence of polarized
magnetic impurities cannot be simply explained by the
mechanisms of ballistic transport and electron-hole production
in a strong electric field, suitable for the paramagnetic case.
The fact that a gap is open and that a current weakly dependent
on the exchange constant for strong enough disorder persists at
long times, are indicative of interesting localization properties
and highly inhomogeneous electronic states. More specifically,
the current tends to a constant corresponding to half the
clean minimum conductance, that can be a consequence of
a spin-dependent scattering and selective localization: one of
the spin species eventually ceases to contribute to the charge
transport.

This behavior, resulting from the interaction of the itinerant
spins and the magnetic moments of the impurities, can be
investigated using the local density of states,

ρ(i,ε) =
∑

n

〈n|c†i ci |n〉δ(ε − εn), (21)

where εn is one eigenvalue of the Hamiltonian (8) corre-
sponding to the eigenvector |n〉. In addition, the statistical

properties of ρ(i,ε) can be related to the localization and
critical properties of the electronic states, and thus used to
characterize the metal-insulator transition [27,39]. The exis-
tence of localized or critical extended states is related to strong
spatial fluctuations of ρ(i,ε). The probability distribution of the
local density of states change from normal to log-normal, and
thus its mean value 〈ρi〉, which coincides with the density
of states, differs from its typical, geometric mean value
exp〈log ρi〉 [28].

We show in Fig. 8 the histogram fε[R] of the logarithm
of the local density of states R = R(i,ε) = ln[ρ(i,ε)/ρ(ε)], at
fixed energy ε, together with the spatial distribution of states
resolved in energy ρ±(i,ε), and spin ρ↑↓(i,ε). The variable R is
zero when the local and global densities of states are identical.
In this variable, the characteristic log-normal distribution
of the local density of states should appear as an inverted
parabola, whose shift and deformation measure the spatial
intermittent distribution of states at a given energy. In Fig. 8(a),
we note that with increasing disorder strength the histogram
fε[R] increasingly differs from a symmetric parabola. For
weak disorder it is centered at the Fermi energy ε = 0; for
JI = 1.0, near the transition between the superdiffusive to
the subdiffusive regime, the peak of the distribution is in
the low-density side, showing a tendency to localization;
for stronger disorder the states near the gap are localized
(JI = 1.5).

The most striking fact appears in the spatial distribution
of the electronic states shown in Figs. 8(b) and 8(c). The
peculiar conductivity properties of graphene near the Dirac
point measured in experiments [1] were successfully related
to the existence of large-scale charge inhomogeneities [40].
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(a) (b) (c)

FIG. 8. (Color online) Probability and spatial distributions of the local density of states ρ(i,ε), in the magnetic case, showing a multifractal
structure that extends with increasing disorder strength, together with a strong spatial charge-spin correlation. (a) Histogram fε(R) of the
logarithm of the normalized local density of states ln[ρ(i,ε)/ρ(ε)], for the energy ε = 0.2 ν near the gap edge, and for different values of JI ;
(b) electron ρ+(i,ε), hole ρ−(i,ε) distribution, and (c) spin-up ρ↑(i,ε), spin-down ρ↓(i,ε) distribution of states ε = 0.1, for JI = 1.0 ν. The
hole patches are predominantly spin down, and electrons spin up for the given disorder configuration. The circles locate the random impurities
(spin up, blue; spin down, red). The histogram is averaged over 2048 sites times 128 disorder configurations. In (b)–(c), we show a region of
2 × 322 sites.

Electron-hole puddles were theoretically shown to arise in
dirty graphene due to Coulomb (long-range) impurities [41],
but can also form in the presence of short-range impurities,
as in hydrogenated graphene [42], or for other types of
hybridization [43]. The randomly distributed antiferromag-
netic impurities break the translation invariance and sublattice
symmetry (opening a gap), but preserving the electron-hole
and spin symmetries. However, in the critical state (JI ≈ 1),
we observe that large patches of separated electrons and holes
are formed [Fig. 8(b)], which are strongly correlated with a
definite value of the carrier’s spin [Fig. 8(c)]. Remarkably,
the charged puddles are in fact spin polarized as in magnetic
polarons [24,44,45]. In this state, when an electric field is
applied, we find that the conductivity is approximately σ0/2
[Fig. 7(e)], a result compatible with the charge-spin selective
scattering, which eliminates two of the four possible base
states.

V. CONCLUSION

We investigated the charge transport in graphene for
two distinct cases of disorder. According to the magnetic
polarization of impurities we distinguished the paramagnetic
and the antiferromagnetic cases. The paramagnetic impurities
create energy states around the Dirac point. Antiferromagnetic
order of randomly distributed impurities generates a gap
proportional to the exchange coupling. A strong electric field,
through the Schwinger mechanism, drives the production of
electron-holes pairs and favors, in a disordered medium, an
inhomogeneous charge polarization.

The spreading of a wave packet follows a well defined
power law in time, whose exponent depends on the disorder
strength and type. In the paramagnetic case, increasing the
disorder results in a smooth transition towards a diffusive

regime. In the weak disorder range, the paramagnetic case is
qualitatively similar to the clean case: the current depends non-
linearly on the electric field, with the characteristic exponent
of the pair creation rate. At variance, in the antiferromagnetic
case, a transition towards a subdiffusive regime occurs. We
observed that even for relatively weak disorder, the pair
creation is largely suppressed. The Schwinger mechanism,
dominant in the paramagnetic case, is overwhelmed by charge
polarization, and as a result, the linear response to the electric
field is restored. However, while in the limit of weak disorder
we measured a conductivity in agreement with the linear
response of a clean system, for antiferromagnetic order, we
found that it tends to half the clean value.

The superdiffusive to subdiffusive transition with increas-
ing disorder, which takes place at a value where the hopping
energy is of the same order as the exchange energy, is sugges-
tive of localization effects. We considered this possibility by
studying the local density of states. In the transition region,
the distribution probability of the local density of states is
log-normal, with a maximum shifted towards the low-density
region, implying the localization of the near gap states. These
multifractal states are related to electron-rich and hole-rich
patches, which in addition are spin polarized. The transport
properties of the magnetic polaron state is characterized by
a conductivity, which is half the one of clean graphene; this
is a consequence of the scattering on impurities that selects
states with definite charge-spin correlation: electrons (positive
energy) and holes (negative energy) patches acquire opposite
spins and form a highly inhomogeneous texture.
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