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Density of states of interacting quantum wires with impurities: A Dyson equation approach
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We calculate the density of states for an interacting quantum wire in the presence of two impurities of arbitrary
potential strength. To perform this calculation, we describe the Coulomb interactions in the wire within the
Tomonaga-Luttinger liquid theory. After establishing and solving the Dyson equation for the fermionic retarded
Green’s functions, we study how the profile of the local density of states is affected by the interactions in the
entire range of impurity potentials. Same as in the noninteracting case, when increasing the impurity strength,
the central part of the wire becomes more and more disconnected from the semi-infinite leads, and discrete
localized states begin to form; the width and the periodicity of the corresponding peaks in the spectrum depends
on the interaction strength. As expected from the Luttinger liquid theory, impurities also induce a reduction of
the local density of states at small energies. Two other important aspects are highlighted: the appearance of an
extra modulation in the density of states at nonzero Fermi momentum when interactions are present, and the fact
that forward scattering must be taken into account in order to recover the Coulomb-blockade regime for strong
impurities.
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I. INTRODUCTION

The interplay between interactions and disorder is a
long-standing problem in condensed matter physics. In one-
dimensional systems, in which the interactions can be treated
exactly using the Luttinger liquid theory [1–3] and bosoniza-
tion [4,5], a lot of progress to understand the effects of
impurities has been made over the last 20 years. It was shown
that repulsive interactions such as the Coulomb interactions
renormalize the impurity strength, such that at low energy
even a weak impurity has a very strong effect and can cut the
wire into two pieces [6–10]. This translates into a reduction
of the local density of states (LDOS) at low energies, and the
LDOS decays to zero as a power law [11–15]. At high energies,
the effect of the impurity consists in a small power-law
correction of the unperturbed LDOS. The two power laws
are characterized by two different exponents which depend on
the interaction strength.

These two regimes have been described perturbatively in
the framework of the Luttinger liquid model by various tech-
niques, e.g., the renormalization group [16,17], the Keldysh
formalism [14,15], or the duality between the weak impurity
regime and the strong impurity regime [18]. These techniques
have as starting point either the infinite clean wire or a system
of two decoupled semi-infinite wires and, next, one considers
small impurity-induced perturbations around these points.
However, the transition between the two limits cannot be
captured by perturbative techniques. Then, special techniques
such as the Bethe ansatz [19], refermionization methods [7,20],
approaches based on resummation of terms in perturbation
theory [21–24], or nonperturbative-in-tunneling fixed-point
method [25] are necessary. It would be thus of great interest to
be able to capture this transition by more direct methods such
as the Dyson equation technique we propose here. This is our
first motivation to tackle this problem.

Our second motivation comes from a more applied per-
spective, and consists in providing a method to disentangle the

effects of the metallic contacts which are inevitably connected
to an interacting quantum wire (QW) in the measurement
process, allowing one to have access to the interacting
physics in the wire and eventually evaluate the strength of
the interactions therein. The first attempts to measure the
interaction parameters in a QW rely on the existence of
the impurity-induced power-law corrections in the LDOS
detectable in conductance measurements [10,26]. However,
this has turned out to be a very difficult task, due especially
to the incertitudes in fitting power-law dependencies over
small intervals of energies. Subsequently, other more direct
measurements such as the shot noise have been proposed
[27–31]. Unfortunately, it was shown that in such experiments,
the metallic contacts prevent one from having access to the
value of the interacting parameter [15,28,32–34].

The modelization of the metallic contacts provides us
with two challenges. The first consists in the introduction
of two impurities at the two junctions between the wire and
the contacts. In general, the impurity potentials induced by
these impurities are neither too small nor too large, and a
nonperturbative technique would be required to capture the
transition between small and large values of the impurity
potential. Second, the physics of the system is greatly affected
by the fact that the two semi-infinite metallic leads are
noninteracting, and thus a correct modelization of the system
needs to include the spatial inhomogeneity in the interaction
strength. As mentioned above, this inhomogeneity is what
blocks one from having access to the value of the interacting
parameter via shot noise experiments. These two aspects need
to be taken into account to correctly evaluate the effect of the
contacts.

The first issue, i.e., the transition between the small and
large impurities, is an interesting problem which is present
even in the absence of interactions. For a noninteracting system
it has been shown that a transition from a Fabry-Perot to a
Coulomb-blockade regime occurs when the impurity strength
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increases. Thus, for weak impurities, Fabry-Perot oscillations
arise in the dependence of the LDOS on energy [32,35–37].
For large values of the impurity potential, the system is cut
into a central quantum-dot-like region plus two semi-infinite
wires, and the energy spectrum of the central part consists
in discrete levels whose energy is proportional to its inverse
length [38–46]. The width of these states becomes smaller and
smaller when the central part is more and more disconnected
from the leads.

Understanding the effect of the interactions on the transition
between the Coulomb-blockade and the Fabry-Perot regime is
a long-standing mesoscopic physics problem. Various other
factors also come into place, such as lifting the degeneracy
between the energy levels when Coulomb interactions are
present. This is especially interesting in the spinful case: in
this situation, the periodicity of oscillations in the LDOS
is expected to change between the Coulomb-blockade and
the Fabry-Perot regimes; various works have been trying to
approach this problem using different methods [47,48].

In this work, we develop an approach that allows one to
study the interplay between impurities and interactions for
arbitrary size impurities. Our approach is based on writing
and solving the Dyson equations for a wire with one or two
impurities. In this paper, we consider an infinite homogeneous
interacting QW and the corresponding form for the fermionic
Green’s functions. This allows us to study the first aspect of
the problem raised by the presence of the contacts, i.e., the
presence of one or two impurities of arbitrary size.

We start with the study of an infinite homogeneous
interacting QW with a single impurity. We calculate the
form of the Friedel oscillations as well as the dependence
of the LDOS with energy. For weak impurities we retrieve
the expected Luttinger liquid power-law dependence of
the impurity with energy at both low and high energies. For
strong impurities at either high energies or large distances to
impurity, we recover a power-law dependence with the same
exponent (K + K−1 − 2)/2 as for the weak-impurity regime,
consistent with the Luttinger liquid predictions. However, at
low energy and small distance, our approach fails to recover
the transition to a different power-law exponent characteristic
to breaking the wire into two independence pieces, i.e., with
exponent (K−1 − 1). This comes from a drawback in the
approximation used in our approach, which consists to neglect
terms mixing impurity potentials and Coulomb interactions
in the Dyson equation. This nevertheless does not affect the
behavior at large distances/energies, and the validity of the
main results of this paper, i.e., the dependence of the LDOS
in a wire with two impurities and the transition from the
weak-impurity regime to the strong-impurity regime.

For a homogeneous interacting wire with two impurities,
we find that the main effect of interactions is to modify the
amplitude of the Fabry-Perot oscillations, as well as the height
and width of the Coulomb-blockade peaks. More precisely,
when interactions are taken into account, in the weak-impurity
limit, the oscillations are reduced, while in the strong-impurity
limit the peaks get wider and smaller. The interactions also
affect the periodicity of the oscillations and the distance
between the peaks. Moreover, same as for a single impurity,
power-law dependencies of the LDOS with energy arise, and
the LDOS is reduced to zero on the impurity sites.

FIG. 1. (Color online) One-dimensional wire with two impurities
located at positions x1,2 = ±L/2. The right (+) and left (−) chiralities
are denoted by right and left arrows.

Another confirmation of the validity of our approach at large
distance and high energy is the agreement between the form
that we obtain for the LDOS in a wire with two impurities, and
that obtained via a completely different technique by Anfuso
and Eggert in Ref. [49] for a Luttinger box. Same as Ref. [49],
we find that at nonzero Fermi momentum there is an extra
modulation in the space dependence of the LDOS which arises
solely in the presence of interactions.

The paper is organized as follows: We present the model
in Sec. II, and the general solution to the Dyson equations
for an arbitrary chiral wire with one or two impurities in
Sec. III. In Sec. IV, we study the simple situation of a wire
with a single impurity. In Sec. V, we discuss the results for an
infinite homogeneous wire with two impurities. We conclude
in Sec. VI.

II. MODEL

We consider a one-channel interacting QW with two
impurities at positions x1,2 = ±L/2 (see Fig. 1), where L is the
distance between the impurities. The impurities are described
by backward scattering potentials λB

1,2 and forward scattering
potentials λF

1,2. The Hamiltonian can be written as H =
H0 + Hint + Himp, where H0 describes the noninteracting QW
without impurities:

H0 = −i�vF

∑
r=±

r

∫ ∞

−∞
ψ†

r (x)∂xψr (x)dx, (1)

with vF the Fermi velocity, ψ
†
r and ψr are the creation

and annihilation fermionic operators associated to the right
movers (r = +) and left movers (r = −). The Hamiltonian
Hint describes the Coulomb interaction in the wire:

Hint = 1

2

∫ ∞

−∞

∫ ∞

−∞
ρ̂(x)V (x,x ′)ρ̂(x ′)dx dx ′, (2)

where ρ̂(x) = ∑
r,r ′ ψ

†
r (x)ψr ′ (x) is the density operator, and

V is the Coulomb potential which is assumed to be short range
due to screening effects by metallic gates or interwire coupling.
The impurity Hamiltonian contains two types of contribution
Himp = HB + HF , backward-scattering term

HB =
∑
r=±

∑
i=1,2

∫ ∞

−∞
λB

i (x)ψ†
r (x)ψ−r (x)dx, (3)

and forward-scattering term

HF =
∑
r=±

∑
i=1,2

∫ ∞

−∞
λF

i (x)ψ†
r (x)ψr (x)dx. (4)

In the following, we assume that the impurities are localized,
i.e., λ

F,B
i (x) = �

F,B
i δ(x − xi). Notice that in some works
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dealing with impurities in a Luttinger liquid, the forward-
scattering terms were not included with the justification that
such terms could be incorporated in the kinetic part [50–53].
This is correct in the weak-impurity limit but does not hold
in the strong-impurity limit. Indeed, the density of states is
strongly affected by the forward-scattering terms at strong
�

F,B
1,2 ; in particular, these terms need to be taken into account

explicitly in order to recover the Coulomb-blockade regime.

III. DENSITY OF STATES OF A WIRE WITH TWO
IMPURITIES: GENERAL FORM

The position-dependent density of states can be obtained
from the generalized retarded Green’s function as follows:

ρ(x,ω) = − 1

π

∑
r,r ′

Im{GR
r,r ′ (x,x; ω)}, (5)

where the retarded Green’s function GR
r,r ′ (x,x ′; ω) is defined

as the Fourier transform of

GR
r,r ′ (x,x ′; t,t ′) = −i
(t − t ′)〈{ψr (x,t); ψ†

r ′ (x ′,t ′)}〉, (6)

where 
 is the Heaviside function, and {a; b} refers to the
anticommutator.

In order to calculate the form of such Green’s functions in
the presence of impurities, we establish the Dyson equation
associated to the Hamiltonian H . The details of the calcula-
tion are presented in Appendix A. Assuming that Coulomb
interactions are strongly attenuated with distance and weak
in comparison to the energy and neglecting the contributions
mixing the impurity potentials and the Coulomb potential,
i.e., assuming that |(x − xi)ω| � vF (see Appendix B for the
details), we obtain

GR
r,r ′ (x,x ′; ω) = gR

r (x,x ′; ω)δr,r ′ +
∑
i=1,2

gR
r (x,xi ; ω)

× [
�B

i GR
−r,r ′ (xi,x

′; ω) + �F
i GR

r,r ′ (xi,x
′; ω)

]
,

(7)

where gR
r are the Green’s functions of a clean interacting

homogeneous wire, associated to H0 + Hint. They can be
obtained in the framework of the Tomonaga-Luttinger theory
[1,2]. For an infinite QW with uniform interactions, their
form has been derived explicitly in Ref. [54]. These Green’s
functions depend on a single chiral index r since the chiral
states are eigenstates of the interacting QW in the absence of
impurities:

gR
r (x,x ′; ω) = −eirkF (x−x ′)K2ω+

2�vF ωc

√
π �(1 + γ )

×
(

2i|x − x ′|ωc

aKω+

) 1
2 −γ [

Kγ− 1
2

(
K|x − x ′|ω+

iaωc

)

− sgn[r(x − x ′)]Kγ+ 1
2

(
K|x − x ′|ω+

iaωc

)]
, (8)

where ω+ = ω + i0, kF is the Fermi momentum, ωc = vF /a,
a is the small-distance cutoff of the Tomonaga-Luttinger
liquid theory [1,2], � and K are, respectively, the gamma
and modified gamma functions, and γ = (K + K−1 − 2)/4.

Here, K is the interaction parameter which is related to
the interaction potential by the relation K = [1 + 4V (k ≈
0)/(πvF )]−1/2. In the noninteracting limit K = 1, Eq. (8)
recovers the chiral Green’s functions of a clean noninteracting
QW:

gR
r (x,x ′; ω) = − ieirkF (x−x ′)

�vF

× eiωr(x−x ′)/vF 
[r(x − x ′)]. (9)

From Eq. (7), we can extract the expressions of
GR

r,r (xi,x
′; ω) and GR

−r,r (xi,x
′; ω) by solving a linear set of

equations. We obtain (see Appendix C for the details of the
calculation)

GR
r,r (xi,x

′; ω) =
(
1 − χīī

r

)
gR

r (xi,x
′; ω) + χiī

r gR
r (xī,x

′; ω)(
1 − χ11

r

)(
1 − χ22

r

) − χ12
r χ21

r

(10)

and

GR
−r,r (xi,x

′; ω)

= D−1
∑
j=1,2

gR
−r (xi,xj ; ω)�B

j GR
r,r (xj ,x

′; ω)

+D−1�B
i �F

ī

[
gR

−r (xi,xī ; ω)gR
−r (xī,xi ; ω)

− gR
−r (xi,xi ; ω)gR

−r (xī,xī ; ω)
]
GR

r,r (xi,x
′; ω), (11)

with ī = 1 when i = 2, and ī = 2 when i = 1. Moreover, we
have defined the quantities

D = [
1 − �F

1 gR
−r (x1,x1; ω)

][
1 − �F

2 gR
−r (x2,x2; ω)

]
−�F

1 gR
−r (x1,x2; ω)�F

2 gR
−r (x2,x1; ω) (12)

and

χij
r = �F

i gR
r (xi,xj ; ω) + D−1[�B

1 gR
r (xi,xj̄ ; ω)�B

2 gR
−r (xī,xi ; ω)

+�B
j gR

r (xi,xj ; ω)�F
j̄
gR

−r (x1,x2; ω)�B
j gR

−r (x2,x1; ω)

+�B
i gR

r (xi,xj ; ω)�B
i gR

−r (xi,xi ; ω)

× [
1 − �F

j̄
gR

−r (xj̄ ,xj̄ ; ω)
]]

. (13)

The above formulas contain all the information necessary to
calculate the LDOS of any chiral wire in the presence of
one or two impurities as a function of energy and position.
It is in fact a generalization of the solutions obtained in
Ref. [55] for noninteracting systems to take into account
the effects of interactions. An important improvement with
respect to Ref. [55] is the fact that Eqs. (7), (10), and (11)
are chirality resolved in order to include appropriately the
Coulomb interactions.

In the following sections, we use these solutions to calculate
the dependence of the density of states with energy and position
for an infinite Luttinger liquid with different interaction
strengths and impurity potentials, first for a QW with a single
impurity (Sec. IV) and second in the presence of two impurities
(Sec. V).
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R. ZAMOUM, M. GUIGOU, C. BENA, AND A. CRÉPIEUX PHYSICAL REVIEW B 90, 085408 (2014)

FIG. 2. (Color online) LDOS (left graph) in the presence of Coulomb interactions (K = 0.7) and (right graph) for a noninteracting wire
(K = 1) as a function of position (horizontal axis) and energy (vertical axis) for a weak impurity �

F,B
1 = 0.1�ωc. We take kF = 0.

IV. RESULTS FOR AN INFINITE SPINLESS LUTTINGER
LIQUID WITH A SINGLE IMPURITY

In this section, we consider a QW with a single impurity
located at position x1 = 0. We can thus take �

F,B
2 = 0, and

Eq. (7) simplifies to

GR
r,r ′ (x,x ′; ω) = gR

r (x,x ′; ω)δr,r ′ + gR
r (x,x1; ω)

× [
�B

1 GR
−r,r ′ (x1,x

′; ω) + �F
1 GR

r,r ′ (x1,x
′; ω)

]
.

(14)

The details of solving the above Dyson equation are presented
in Appendix D. We obtain

GR
r,r (x1,x

′; ω) = gR
r (x1,x

′; ω)
[
1 − �F

1 gR
−r (x1,x1; ω)

]
× [

1 − �F
1

[
gR

r (x1,x1; ω) + gR
−r (x1,x1; ω)

]
+ gR

r (x1,x1; ω)
[(

�F
1

)2 − (
�B

1

)2]
× gR

−r (x1,x1; ω)
]−1

(15)

and

GR
−r,r (x1,x

′; ω) = gR
−r (x1,x1; ω)�B

1 GR
r,r (x1,x

′; ω)

1 − �F
1 gR−r (x1,x1; ω)

. (16)

This allows us to determine fully the LDOS.
In Figs. 2 and 3, we show the profiles of the LDOS for

increasing impurity potential in the presence and in the absence
of Coulomb interactions. While the LDOS is asymmetric in

energy at the weak-impurity potential (Fig. 2), it becomes
symmetrical for the strong-impurity potential (Fig. 3). The
effect of the impurity is to introduce spatial oscillations
whose amplitude increases with the impurity potential. In the
presence of interactions, the period of these Friedel oscillations
is modified, and the value of the LDOS is reduced. As shown
in Fig. 4, the amplitude of oscillations and the density of states
at the impurity position are both reduced for K = 0.7 (left
graph) in comparison to K = 1 (right graph).

The reduction of the LDOS at the impurity position (here
x1 = 0) when increasing the strength of the interactions is
observed for all values of the impurity potential (see the left
graph in Fig. 5). However, the LDOS is drastically reduced for
the largest impurity potentials for all values of K (black full
line); this is because a large impurity effectively cuts the wire
into two disconnected pieces.

In the right graph of Fig. 5 is shown the LDOS as a function
of energy (on a logarithmic scale) for a position close to the
impurity. For a weak impurity (red dashed line), the LDOS
exhibits a power-law dependence with energy:

ρ0(ω) = |ω|(K+K−1−2)/2

π�
(

K+K−1

2

) , (17)

which is just the density of states of a clean interacting wire.
Here, � is the gamma function. When the impurity potential
increases, the LDOS deviates from this power law at small
energy but converges and oscillates around this power-law

FIG. 3. (Color online) The same as Fig. 2 for a strong impurity �
F,B
1 = 10�ωc.
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FIG. 4. (Color online) LDOS in the presence of Coulomb inter-
actions K = 0.7 (left graph) and for a noninteracting wire K = 1
(right graph) at ω = 0.01ωc, and for �

F,B
1 = 0.1�ωc (red dashed

lines), �
F,B
1 = �ωc (blue dashed-dotted lines), and �

F,B
1 = 10�ωc

(black solid lines). We take kF = 0.

behavior when the energy increases, as expected (see the
dashed-dotted blue line and the black line). This behavior is
in full agreement with the results obtained in Refs. [53,56].
However, within our approach (and its limitations), we are
not able to recover the expected behavior of the LDOS at low
energy/distance and strong-impurity potential, i.e., a power-
law behavior of |ω|K−1−1 characteristic to injecting an electron
into the end of a semi-infinite wire. As detailed in Appendix B,
this is due to the fact that we neglect the terms mixing the
Coulomb interactions and the impurity potential in the Dyson
equation. This approximation is justified when �

B,F
1 and V0 are

both weak. For strong �
B,F
1 , we need an addition assumption

which is |(x − x1)ω| � vF . This is the reason why our
approach fails at low energy and strong-impurity potentials. At
high energy/large distances, our results are valid. The range of
validity of our approach depends on the impurity strength, the
bulk power law being recovered for |x − x1| � �v/�

B,F
1 and

|�ω| � �
B,F
1 , i.e., when |(x − x1)ω| � v, in agreement with

Ref. [53].

V. RESULTS FOR AN INFINITE SPINLESS LUTTINGER
LIQUID WITH TWO IMPURITIES

In this section, we turn our interest to a QW with two
impurities located at positions x1,2 = ±L/2.

0.2 0.4 0.6 0.8 1.0
0.00
0.05
0.10
0.15
0.20
0.25
0.30

K

ρ
x
0,

0.
01

c

10 6 10 4 0.01 1 100 104 106
0.01
0.02
0.05
0.10
0.20
0.50
1.00

c

ρ
x
a
1,

FIG. 5. (Color online) LDOS (left graph) at the impurity position
(x = 0) as a function of K , at ω = 0.01ωc, and (right graph) close to
the impurity position (x/a = 1) as a function of energy at K = 0.7.
The right graph is plotted in a logarithm scale. On both graphs, we
have �

F,B
1 = 0.01�ωc (red dashed lines), �

F,B
1 = �ωc (blue dashed-

dotted lines), and �
F,B
1 = 10�ωc (black full lines). We take kF = 0.

A. Density of states as a function of position and energy

We focus first on the analysis of the two-dimensional profiles
of the LDOS as a function of position and energy. In Figs. 6–8,
we plot the profile of the density of states for increasing
impurity potentials. For small-impurity potentials (see Fig. 6),
we remark that the LDOS is odd in energy whereas it becomes
even for strong-impurity potentials (see Fig. 8), as it was the
case for a single impurity. In the intermediate regime, the
profile is neither odd nor even (see Fig. 7). Moreover, we note
the evolution of the profiles from the weak-impurity Fabry-
Perot regime to the strong-impurity, localized, Coulomb-
blockade regime [32,36,45,46]. As previously shown for
noninteracting systems, in the Fabry-Perot weak-impurity
regime the effect of the impurities reduces mostly to small
sinusoidal oscillations of the LDOS with energy [55]. In
the Coulomb-blockade regime, the strong-impurity potentials
make the system evolve towards an isolated finite-size wire,
whose LDOS is characterized by discrete energy levels, the
distance between these levels being determined by the ratio
between the Fermi velocity and the length of the central part
of the wire, i.e., πvF /L. As it can be seen from the left panels
of Figs. 6–8, these characteristics persist in the presence of
interactions [42,43] except the distance between the discrete
energy levels which becomes πv/L, with v = vF /K .

The main differences between the profiles of the LDOS
in the interacting and noninteracting regimes consist in
a modification of the amplitude and periodicity of the

FIG. 6. (Color online) LDOS (left graph) in the presence of Coulomb interactions (K = 0.7) and (right graph) for a noninteracting wire
(K = 1) as a function of position (horizontal axis) and energy (vertical axis) for two symmetrical weak impurities �

F,B
1,2 = 0.1�ωc. The wire

length is L/a = 1000, and we take kF = 0.
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FIG. 7. (Color online) The same as Fig. 6 for intermediate impurities �
F,B
1,2 = �ωc.

oscillations observed in the weak-impurity regime, as well
as in a modification of the height, width, and periodicity of the
peaks observed in the strong-impurity regime. Small features
corresponding to a power-law reduction of the LDOS close to
zero energy in the interacting limit are also present, although
they are not very visible in the two-dimensional profiles. To
study these points quantitatively, in what follows we study
separately the dependence of the LDOS on energy for a fixed
position, as well as the dependence of the LDOS on the position
for a given energy.

B. Density of states as a function of energy

Figure 9 shows the density of states as a function of
energy for two different positions: x = 0 (center of the wire)
and x = −L/4 (halfway between the center of the wire and
left impurity). For the interacting wire, in the weak-impurity
regime (see dashed red lines), as expected for a Luttinger
liquid, a power-law reduction of the LDOS can be observed
close to ω = 0. In the strong-impurity regime (see solid black
lines), as mentioned in the previous section, the central part of
the wire is quasi-isolated and its spectrum resembles that of a
finite-size wire of length L which is characterized by discrete
peaks with energies of nπv/L, with n being an integer. The
height and width of the peaks depend on the coupling with
the leads [10,43] which explains the sharpening of the peaks
with increasing the strength of the impurity potentials. Note
that depending on the position x, some peaks may not appear
in the spectrum. Indeed, as it can be seen also from Fig. 8,

for x = −L/4, all the peaks are visible (see the solid black
lines in the bottom graphs of Fig. 9), whereas for x = 0, only
one peak out of two, corresponding to ω = (2n + 1)πv/L, is
visible (see the solid black lines in the upper graphs of Fig. 9).
This is due to the fact that we have a double periodicity: a first
one with energy whose period is nπv/L and a second with
position whose period is related to the first one through πv/ω,
as Fig. 8 clearly shows.

Also, as already mentioned in Secs. IV and V A, the parity
with respect to energy changes with impurity strength both for
interacting and noninteracting wires. To get some insight into
these properties, we have performed a perturbative expansion
of Eq. (7) for K = 1. In the weak-impurity regime, we find
that the LDOS inside the wire can be written as

ρ(x,ω) = ρ0

∑
i=1,2

�B
i sin

(
2ω|x − xi |

vF

)
, (18)

with ρ(x,ω) = ρ(x,ω) − ρ0, where ρ0 is the density of
states of the clean QW which takes a constant value for a
noninteracting wire. This explains the odd parity of the LDOS
described by the dashed red line in the upper right graph in
Fig. 9. We note that in this regime the impurity contribution to
the LDOS is dominated by the backward-scattering terms. The
forward scattering does not play any role since the amplitudes
�F

1 and �F
2 drop out from the asymptotic expression of Eq. (18).

This is not the case in the strong-impurity regime, for which
we have found (not shown here) that the forward-scattering

FIG. 8. (Color online) The same as Fig. 6 for strong impurities �
F,B
1,2 = 10�ωc.
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FIG. 9. (Color online) LDOS (left graphs) in the presence of
Coulomb interactions (K = 0.7) and for a noninteracting wire
(K = 1) (right graphs) as a function of energy at two different
positions, x = 0 (upper graphs) and x = −L/4 (bottom graphs), for
�

F,B
1,2 = 0.1�ωc (red dashed lines), �

F,B
1,2 = �ωc (blue dashed-dotted

lines), and �
F,B
1,2 = 10�ωc (black solid lines). We take L/a = 1000

and kF = 0.

terms are essential to recover the Coulomb-blockade regime
and cannot be neglected.

In order to understand how the effect of the Coulomb
interactions affects the formation of the peaks in the LDOS,
in Fig. 10 we plot the height and the width of the πv/L

peak as a function of K . When K decreases (i.e., when
Coulomb interactions increase), the peak broadens and its
height is reduced. Moreover, the peak disappears completely
for K � 0.4 and is replaced by an oscillating behavior of the
LDOS. This result is quite intriguing as it would seem to
indicate that, in what concerns the formation of the resonant
levels, increasing the interactions effectively renormalizes the
impurity strength to a smaller value, opposite to what would be
intuitively expected from classical Luttinger liquid arguments.
Note that both the distance between the peaks and their
positions are affected by the interaction strength.

C. Density of states as a function of position

We focus now on the dependence of the LDOS on the
position for a given energy (see Fig. 11). In the absence of
interactions and in the strong-impurity regime, the LDOS is
uniformly zero in the central part of the wire for all energies
that do not correspond to the formation of a peak (compare

FIG. 10. (Color online) Evolution of the peak amplitude (left
graph) and peak width (right graph) as a function of K , for ω ≈ πv/L,
x = 0, and �

F,B
1,2 = 10�ωc. We take L/a = 1000 and kF = 0.

FIG. 11. (Color online) LDOS for K = 0.7 (left graph) and K =
1 (right graph) as a function of position, for �

F,B
1,2 = 0.1�ωc (red

dashed lines), �
F,B
1,2 = �ωc (blue dashed-dotted lines), and �

F,B
1,2 =

10�ωc (black solid lines). The energy is taken to be ω = 0.01ωc

(upper graphs) and ω ≈ πv/L (bottom graphs). We take L/a = 1000
and kF = 0.

the solid black lines in the right upper and bottom graphs), as
expected (see Ref. [57]). In the presence of interactions, this
reduction is less apparent (see the solid black lines in the left
upper and bottom graphs) due to a competition between the
Coulomb interactions and the oscillatory behavior related to
the presence of impurities. However, even in the presence of
Coulomb interactions, the LDOS in the strong-impurity regime
is zero at the impurity positions x = x1,2 = ±L/2 since in this
regime the wire is effectively disconnected from the leads (see
the solid black lines in Fig. 11).

Finally, we are interested to compare our results with those
of Ref. [49]. For this, we consider the dependence of the
LDOS as a function of position at kF 	= 0. In Fig. 12, we
plot the LDOS as a function of position at ω ≈ πv/L, and

FIG. 12. LDOS for x ∈ [−L/2,L/2], i.e., between the two
impurities, in the presence of Coulomb interactions K = 0.7 (upper
left graph and bottom graphs) and for a noninteracting wire K = 1
(upper right graph) at energy close to multiples of πv/L: either
ω ≈ πv/L, ω ≈ 2πv/L, or ω ≈ 3πv/L (see the legend of the
vertical axis). We take kF = 40π/L, �F,B

1,2 = 10�ωc, and L/a = 1000.
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kF = 40π/L for an interacting wire K = 0.7 (upper left graph)
and for a noninteracting wire K = 1 (upper right graph). In
both cases, the LDOS exhibits an oscillatory behavior whose
period is π/kF , but in the presence of Coulomb interactions,
an extra modulation appears and adds an envelope to the fast
π/kF oscillations, in agreement with Ref. [49]. Close to the
impurities, the amplitude of oscillations does not decrease,
contrary to what is obtained in Ref. [49]. This discrepancy
comes, as outlined above, from exiting the limits of the regime
of validity of our approach when we reach the impurity
positions. However, recovering the same extra modulation
of the LDOS oscillations as those obtained in Ref. [49]
using a completely different technique, gives us an additional
confirmation of the validity of our method at high energies and
large distances with respect to the impurities. In Fig. 12, we
plot also the LDOS in the presence of Coulomb interaction for
ω ≈ 2πv/L (bottom left graph) and for ω ≈ 3πv/L (bottom
right graph). It shows clearly that the period of the extra
modulation is equal to πv/ω.

VI. CONCLUSION

We have developed an approach based on the Dyson
equations which has allowed us to study the LDOS of
an infinite interacting QW with two impurities of arbitrary
strength. For an infinite homogeneous interacting wire with a
single impurity, we have calculated the form of the Friedel
oscillations as well as the dependence of the LDOS with
energy. We have found that for weak impurities, as well as
for strong impurities at high energies/large distances, our
approach recovers the expected Luttinger liquid power-law
dependence; however, it breaks down for strong impurities at
low energy/small distance.

We have applied this approach to study the transition from
the weak-impurity regime to the strong-impurity regime in
a wire with two impurities, focusing in particular on the
regime of large distances and energies. We have found that
the main effect of interactions is to reduce the amplitude
of the Fabry-Perot oscillations in the weak-impurity limit, as
well as of the Coulomb-blockade peaks in the strong-impurity
limit. In addition, the interactions affect the periodicity of the
oscillations and the distance between the peaks. Moreover, we
see that strong interactions also reduce to zero the LDOS on the
impurity sites. Also, at nonzero kF and for strong impurities,
our results are consistent with those obtained in Ref. [49] for
the LDOS of a Luttinger liquid in a box, in particular, we
recover an extra modulation of the LDOS oscillations in the
presence of interactions, which is absent in the noninteracting
system. This gives an extra confirmation that our approach is
valid in that regime.

Our work provides an important first step in constructing a
nonperturbative approach to understand the interplay between
interactions and arbitrary size impurities in one-dimensional
systems. Our approach is very general and can be easily applied
to more realistic systems such as an inhomogeneous wire
made of a central interacting region and two semi-infinite
noninteracting leads. To model such a system, one has to
consider a spatial inhomogeneity in the interaction strength and
use the Dyson equation method presented here, the fermionic
Green’s function for this system having been calculated in

closed form [58]. Our approach can also be generalized to take
into account other factors such as the electronic spin which will
allow us to characterize a more realistic system, such as carbon
nanotube, and make connection with experiments.

Further improvements of this work would be to include
long-range Coulomb interactions and to take into account the
terms mixing Coulomb interactions and impurities potentials
in the Dyson equation in order to fix the low-energy discrepan-
cies between our results and those predicted by the perturbation
theory in the strong-impurity limit.
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APPENDIX A: DYSON EQUATION DERIVATION

To establish the Dyson equation for the retarded Green’s
function defined in Eq. (6), we evaluate ∂tψr (x,t) =
i[H ; ψr (x,t)]/�, where [a; b] denotes the commutator and H

is given by Eqs. (1)–(4). We obtain

∂tψr (x,t) = rvF ∂xψr (x,t)

− i

�

∑
i=1,2

[
λB

i (x)ψ−r (x,t) + λF
i (x)ψr (x,t)

]

− i

2�

∑
r1,r2,r3

∫ ∞

−∞
dx ′′V (x,x ′′)

× {
ψ†

r1
(x ′′,t)ψr2 (x ′′,t); ψr3 (x,t)

}
. (A1)

Notice that the last term, which corresponds to the Coulomb
interactions contribution, does not depend on r since the
interactions act similarly on both chiralities. After multiplying
by the operator ψ

†
r ′ (x ′,t ′), we get

∂tψr (x,t)ψ†
r ′(x ′,t ′) = rvF ∂xψr (x,t)ψ†

r ′ (x ′,t ′)

− i

�

∑
i=1,2

λB
i (x)ψ−r (x,t)ψ†

r ′ (x ′,t ′)

− i

�

∑
i=1,2

λF
i (x)ψr (x,t)ψ†

r ′(x ′,t ′)

− i

2�

∑
r1,r2,r3

∫ ∞

−∞
dx ′′V (x,x ′′)

× [
ψ†

r1
(x ′′,t)ψr2 (x ′′,t)ψr3 (x,t)ψ†

r ′ (x ′,t ′)

+ψr3 (x,t)ψ†
r1

(x ′′,t)ψr2 (x ′′,t)ψ†
r ′ (x ′,t ′)

]
.

(A2)

Because of Coulomb interactions, Eq. (A2) contains products
of four operators (see the two last lines of the above
expression) which lead after averaging to the appearance of
terms proportional to the two-particle Green’s functions in the
Dyson equation. In the presence of such terms, solving the
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Dyson equation is challenging and goes beyond the scope
of this paper. Here, we make rather the assumption that
the Coulomb potential V (x,x ′′) decreases strongly when the
distance x − x ′′ increases, and we keep only the dominant part
in the integrals over x ′′, i.e., the x ≈ x ′′ contribution, thus

∂tψr (x,t)ψ†
r ′ (x ′,t ′)

= rvF ∂xψr (x,t)ψ†
r ′ (x ′,t ′)

− i

�

∑
i=1,2

λB
i (x)ψ−r (x,t)ψ†

r ′(x ′,t ′)

− i

�

∑
i=1,2

λF
i (x)ψr (x,t)ψ†

r ′ (x ′,t ′) − i

2�

∑
r1,r2,r3

V (x,x)

× [
ψ†

r1
(x,t)ψr2 (x,t)ψr3 (x,t)ψ†

r ′(x ′,t ′)

+ ψr3 (x,t)ψ†
r1

(x,t)︸ ︷︷ ︸
=δr3 ,r1 −ψ

†
r1 (x,t)ψr3 (x,t)

ψr2 (x,t)ψ†
r ′ (x ′,t ′)

]
, (A3)

which reduces to

∂tψr (x,t)ψ†
r ′(x ′,t ′) = rvF ∂xψr (x,t)ψ†

r ′ (x ′,t ′)

− i

�

∑
i=1,2

λB
i (x)ψ−r (x,t)ψ†

r ′ (x ′,t ′)

− i

�

∑
i=1,2

λF
i (x)ψr (x,t)ψ†

r ′(x ′,t ′)

− i

�
V0

∑
r1

ψr1 (x,t)ψ†
r ′ (x ′,t ′) (A4)

since compensations operate between the four operator terms
of the fifth and sixth lines of Eq. (A3) when one sums over
r2 and r3. The only remaining contribution linked to Coulomb
interactions is the one given by the fourth line in Eq. (A4),
where we have introduced V0 = V (x,x). We can show in a
similar manner that

ψ
†
r ′ (x ′,t ′)∂tψr (x,t) = rvF ψ

†
r ′ (x ′,t ′)∂xψr (x,t)

− i

�

∑
i=1,2

λB
i (x)ψ†

r ′ (x ′,t ′)ψ−r (x,t)

− i

�

∑
i=1,2

λF
i (x)ψ†

r ′ (x ′,t ′)ψr (x,t)

− i

�
V0

∑
r1

ψ
†
r ′ (x ′,t ′)ψr1 (x,t). (A5)

Taking the time derivative of Eq. (6),

i∂tG
R
r,r ′ (x,x ′; t,t ′) = δr,r ′δ(x − x ′)δ(t − t ′)

+
(t − t ′)〈{∂tψr (x,t); ψ†
r ′ (x ′,t ′)}〉,

(A6)

and substituting Eqs. (A4) and (A5) in Eq. (A6), we obtain

�(i∂t − irvF ∂x)GR
r,r ′ (x,x ′; t,t ′)

= δr,r ′δ(x − x ′)δ(t − t ′) + V0

∑
r1

GR
r1,r ′ (x,x ′; t,t ′)

+
∑
i=1,2

[
λB

i (x)GR
−r,r ′ (x,x ′; t,t ′)

+ λF
i (x)GR

r,r ′ (x,x ′; t,t ′)
]
. (A7)

Starting from this result, we can deduce immediately the
equation of motion for the Green’s function g0,R

r in the absence
of both impurities and Coulomb interactions, i.e., associated
to the Hamiltonian H0:

�(i∂t − irvF ∂x)g0,R
r (x,x ′; t,t ′) = δ(x − x ′)δ(t − t ′). (A8)

From now, in order to simplify the notations, we remove
the position and time dependence in Eq. (A7) and insert g0

r in
the expression of Gr,r ′ :(

g0
r

)−1
Gr,r ′ = δr,r ′ + V0

∑
r1

Gr1,r ′

+
∑
i=1,2

[
λB

i G−r,r ′ + λF
i Gr,r ′

]
. (A9)

It leads to[(
g0

r

)−1 − V0
]
Gr,r = 1 + V0G−r,r +

∑
i=1,2

[
λB

i G−r,r+λF
i Gr,r

]
(A10)

and[(
g0

−r

)−1 − V0
]
G−r,r = V0Gr,r +

∑
i=1,2

[
λB

i Gr,r + λF
i G−r,r

]
.

(A11)

Inserting Eq. (A11) in (A10), we get[(
g0

r

)−1 − V0 − V0
[(

g0
−r

)−1 − V0
]−1

V0
]
Gr,r

= 1 +
∑
i=1,2

[
λB

i G−r,r + λF
i Gr,r

] + V0g
0
−r

[
1 − V0g

0
−r

]−1

×
∑
i=1,2

[
λB

i Gr,r + λF
i G−r,r

]
. (A12)

Assuming that the terms involving the product of the impurity
potential and the interaction potential in the third line of
Eq. (A12) are negligible (see Appendix B for justification),
we end up with[(

g0
r

)−1 − V0 − V0
[(

g0
−r

)−1 − V0
]−1

V0
]
Gr,r

= 1 +
∑
i=1,2

[
λB

i G−r,r + λF
i Gr,r

]
. (A13)

After some algebra, we find without further assumptions
that the factor in front of Gr,r in Eq. (A13) corresponds to the
inverse of the Green’s function of an interacting clean QW,
i.e., associated to H0 + Hint, namely,

gr = [(
g0

r

)−1 − V0 − V0
[(

g0
−r

)−1 − V0
]−1

V0
]−1

= [
1 − g0

−rV0
] [

1 −
∑
r1

g0
r1
V0

]−1

︸ ︷︷ ︸
=V −1

0 �int

g0
r

= V −1
0 �intg

0
r − g0

−r�intg
0
r
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= V −1
0

[
V0 + V0

∑
r1

g0
r1
�int

]
g0

r − g0
−r�intg

0
r

= g0
r + g0

r �intg
0
r , (A14)

where the self-energy associated to the Coulomb interactions
is defined as

�int = V0 + V0

∑
r1=±

g0
r1
�int = V0 + V0

∑
r1=±

g0
r1
V0

+V0

∑
r1=±

g0
r1
V0

∑
r2=±

g0
r2
V0 + · · · . (A15)

The key point in this calculation is the fact that the self-energy
contains a sum over the two chiralities. Finally, Eq. (A13) can
be written as

Gr,r = gr +
∑
i=1,2

[
grλ

B
i G−r,r + grλ

F
i Gr,r

]
. (A16)

Similarly, we can show using the same approximations that

Gr,−r =
∑
i=1,2

[
grλ

B
i G−r,−r + grλ

F
i Gr,−r

]
. (A17)

Notice that the Coulomb potential V0 does not appear explicitly
in Eqs. (A16) and (A17) because it has been incorporated in
the Green’s function of the clean interacting wire gr .

Restoring the position and time dependencies in Eqs. (A16)
and (A17), we have

GR
r,r ′ (x,x ′; t,t ′) = gR

r (x,x ′; t,t ′)δr,r ′

+
∑
i=1,2

∫
dt ′′

∫
dx ′′gR

r (x,x ′′; t,t ′′)

× [
λB

i (x ′′)GR
−r,r ′ (x ′′,x ′; t ′′,t ′)

+ λF
i (x ′′)GR

r,r ′ (x ′′,x ′; t ′′,t ′)
]
, (A18)

which leads, after a Fourier transform, to Eq. (7), when one
assumes delta-function localized impurities, i.e., λ

F,B
i (x) =

�
F,B
i δ(x − xi) for i = 1,2. We insist on the fact that this

equation is valid when either both V0 and λ
B,F
i are small in

comparison to energy, or at high energy ω and large distance
x − xi to the impurities when λ

B,F
i is large (see Appendix B

for the details).

APPENDIX B: DOMAIN OF VALIDITY

In this appendix, we discuss the domain of validity of the
approximations used in our work. We first consider the regime
where both V0 and λ

B,F
i are small in comparison to the other

energy of the problem, namely, �ω. In that case, we can expand
Eq. (A9), which is exact, up to first-order terms in V0 and λ

B,F
i :

G(1)
r,r = g0

r + g0
r V0g

0
r +

∑
i=1,2

g0
r λ

F
i g

0
r , (B1)

G
(1)
r,−r = g0

r V0g
0
−r +

∑
i=1,2

g0
r λ

B
i g0

−r , (B2)

which coincide with the expansions of Eqs. (A16) and (A17)
except concerning an additional term g0

r V0g
0
−r absent in

Eq. (A17) which, however, gives a negligible contribution to

the LDOS since it is proportional to V0/�ω. Our approach is
thus not limited by any additional assumption when both V0

and λ
B,F
i are small in comparison to �ω.

We now consider the regime where either V0 or λ
B,F
i is

large, in that case, we have to consider higher-order terms in
the expansion with V0 and λ

B,F
i . Here, we restrict our discussion

up to the second-order expansions of Eq. (A9):

G(2)
r,r = G(1)

r,r + g0
r V0

∑
r1=±

g0
r1
V0g

0
r

+
∑
i=1,2

g0
r

[
V0g

0
r λ

F
i + λF

i g
0
r V0

]
g0

r

+
∑
i=1,2

g0
r

[
V0g

0
−rλ

B
i + λB

i g0
−rV0

]
g0

r

+
∑

i,j=1,2

g0
r

[
λB

i g0
−rλ

B
j + λF

i g
0
r λ

F
j

]
g0

r (B3)

and

G
(2)
r,−r = G

(1)
r,−r + g0

r V0

∑
r1=±

g0
r1
V0g

0
−r

+
∑
i=1,2

g0
r

[
V0g

0
−rλ

F
i + λF

i g
0
r V0

]
g0

−r

+
∑
i=1,2

g0
r

[
V0g

0
r λ

B
i + λB

i g0
−rV0

]
g0

−r

+
∑

i,j=1,2

g0
r

[
λB

i g0
−rλ

F
j + λF

i g
0
r λ

B
j

]
g0

−r . (B4)

Equations (B3) and (B4) coincide with the expansions
of Eqs. (A16) and (A17) except concerning the additional
following terms: the terms g0

r V0g
0
−rλ

B
i g0

r and g0
r λ

B
i g0

−rV0g
0
r

of the third line in Eq. (B3), and the terms g0
r V0g

0
−rλ

F
i g

0
−r

and g0
r λ

F
i g

0
r V0g

0
−r of the second line in Eq. (B4). These four

terms are missing in Eqs. (A16) and (A17) that we have use
in this work. The amplitude of these terms can be estimated
using Eq. (9), remembering that we have to restore the position
dependencies and to add an integration over position each time
that we have a product of two Green’s functions. Performing
these integrations, we find that the missing terms are all of
the order of (V0�

B,F
i vF /ω)e2irω(x−xi )/vF , which is small in

comparison to the contributions to the LDOS that we have
considered adequately, i.e., those of the third line of Eq. (B4):

g0
r V0g

0
r λ

B
i g0

−r ∝ (x − xi)V0�
B
i e2irω(x−xi )/vF , (B5)

g0
r λ

B
i g0

−rV0g
0
−r ∝ (x − xi)V0�

B
i e2irω(x−xi )/vF , (B6)

provided that |(x − xi)ω| � vF . This argument can be repro-
duced at any order in the expansion with V0 and λ

B,F
i since the

terms we neglect are always of the form g0
r V0g

0
−r . Notice that

we do not consider in this comparison the terms g0
r V0g

0
r λ

F
i g

0
r

and g0
r λ

F
i g

0
r V0g

0
r of the second line in Eq. (B3) since they

do not contribute at all to the LDOS. Thus, at large λ
B,F
i , our

approach is valid provided that |(x − xi)ω| � vF . Besides, we
need to keep the assumption V0/�ω � 1 in order to be allowed
to neglect the contribution g0

r V0g
0
−r in G

(1)
r,−r .
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APPENDIX C: SOLUTION OF THE DYSON EQUATION
FOR TWO IMPURITIES

By taking first x = x1 and second x = x2, in Eq. (7) with
r = ±r ′, we obtain a set of linear coupled equations (all the
frequency arguments have been dropped in order to simplify
the notations):

GR
r,r (x1,x

′) = gR
r (x1,x

′) + gR
r (x1,x1)�B

1 GR
−r,r (x1,x

′)

+ gR
r (x1,x2)�B

2 GR
−r,r (x2,x

′)

+ gR
r (x1,x1)�F

1 GR
r,r (x1,x

′)

+ gR
r (x1,x2)�F

2 GR
r,r (x2,x

′), (C1)

GR
r,r (x2,x

′) = gR
r (x2,x

′) + gR
r (x2,x1)�B

1 GR
−r,r (x1,x

′)

+ gR
r (x2,x2)�B

2 GR
−r,r (x2,x

′)

+ gR
r (x2,x1)�F

1 GR
r,r (x1,x

′)

+ gR
r (x2,x2)�F

2 GR
r,r (x2,x

′), (C2)

and

GR
−r,r (x1,x

′) = gR
−r (x1,x1)�B

1 GR
r,r (x1,x

′)

+ gR
−r (x1,x2)�B

2 GR
r,r (x2,x

′)

+ gR
−r (x1,x1)�F

1 GR
−r,r (x1,x

′)

+ gR
−r (x1,x2)�F

2 GR
−r,r (x2,x

′), (C3)

GR
−r,r (x2,x

′) = gR
−r (x2,x1)�B

1 GR
r,r (x1,x

′)

+ gR
−r (x2,x2)�B

2 GR
r,r (x2,x

′)

+ gR
−r (x2,x1)�F

1 GR
−r,r (x1,x

′)

+ gR
−r (x2,x2)�F

2 GR
−r,r (x2,x

′). (C4)

From Eqs. (C3) and (C4), we extract the expressions of GR
−r,r

and express them only in terms of the Green’s functions GR
r,r .

Thus, we get

GR
−r,r (x1,x

′) = D−1
∑
j=1,2

gR
−r (x1,xj )�B

j GR
r,r (xj ,x

′)

+D−1�B
1 �F

2

[
gR

−r (x1,x2)gR
−r (x2,x1)

−gR
−r (x1,x1)gR

−r (x2,x2)
]
GR

r,r (x1,x
′) (C5)

and

GR
−r,r (x2,x

′) = D−1
∑
j=1,2

gR
−r (x2,xj )�B

j GR
r,r (xj ,x

′)

+D−1�B
2 �F

1

[
gR

−r (x2,x1)gR
−r (x1,x2)

− gR
−r (x2,x2)gR

−r (x1,x1)
]
GR

r,r (x2,x
′), (C6)

where D is defined by Eq. (12). Equations (C5) and (C6)
correspond to Eq. (11). Next, substituting Eqs. (C5) and (C6)
in Eqs. (C1) and (C2), we end up with a system of two linear
equations whose solutions are

GR
r,r (x1,x

′; ω) =
(
1 − χ22

r

)
gR

r (x1,x
′; ω) + χ12

r gR
r (x2,x

′; ω)(
1 − χ11

r

)(
1 − χ22

r

) − χ12
r χ21

r

(C7)

and

GR
r,r (x2,x

′; ω) =
(
1 − χ11

r

)
gR

r (x2,x
′; ω) + χ21

r gR
r (x1,x

′; ω)(
1 − χ11

r

)(
1 − χ22

r

) − χ12
r χ21

r

,

(C8)

where χ
ij
r is defined by Eq. (13). Equations (C7) and (C8)

correspond to Eq. (10).

APPENDIX D: SOLUTION OF THE DYSON EQUATION
FOR A SINGLE IMPURITY

We consider a single impurity located at position x1. In that
case, �B

2 = �F
2 = 0 and Eq. (A18) simplifies. After a Fourier

transform, we obtain

GR
r,r ′ (x,x ′; ω) = gR

r (x,x ′; ω)δr,r ′ + gR
r (x,x1; ω)

× [
�B

1 GR
−r,r ′ (x1,x

′; ω) + �F
1 GR

r,r ′ (x1,x
′; ω)

]
.

(D1)

We can extract the expressions of GR
r,r (x1,x

′; ω) and
GR

−r,r (x1,x
′; ω) by solving a linear set of equations as done

in Appendix C. We obtain

GR
r,r (x1,x

′; ω) = gR
r (x1,x

′; ω)

1 − χ11
r

(D2)

and

GR
−r,r (x1,x

′; ω) = gR
−r (x1,x1; ω)�B

1 GR
r,r (x1,x

′; ω)

1 − �F
1 gR−r (x1,x1; ω)

, (D3)

where χ11
r for a single impurity reduces to

χ11
r = �F

1 gR
r (x1,x1; ω)

+ gR
r (x1,x1; ω)

(
�B

1

)2
gR

−r (x1,x1; ω)

1 − �F
1 gR−r (x1,x1; ω)

. (D4)

Replacing Eq. (D4) in Eqs. (D2) and (D3), we end up with
Eqs. (15) and (16).
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