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Nonexponential tunneling and control of microwave absorption lineshapes
via Fano resonance for electrons on helium
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We consider the application of a small in-plane magnetic field to electrons on a helium surface in a perpendicular
magnetic field. Certain states that were bound to the helium surface then dissolve into the continuum, turning
into long-lived resonances. As a result microwave absorption lines acquire an asymmetric Fano lineshape that
is tunable by varying the microwave polarization or the in-plane magnetic field. Electrons trapped in a formerly
bound state will tunnel off the surface of helium; we show that under suitable circumstances this “radioactive
decay” can show damped oscillations rather than a simple exponential decay. The mechanism for oscillatory
exponential decay is not specific to electrons on helium and this effect may also be relevant elsewhere in physics.
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Electrons deposited on the surface of a pool of liquid helium
form a high-mobility two-dimensional electron gas that has
been used to study fundamental problems of condensed-matter
physics including electron localization and Wigner crystalliza-
tion [1]. Recently there has been interest in using this system
to build a quantum computer due to its high degree of quantum
coherence [2]. In this design it is envisaged that quantum com-
puting protocols will be implemented by driving transitions
between electronic subband states using microwaves.

The purpose of this article is to show that in the presence
of a strong magnetic field, tilted with respect to the helium
surface, the shape of some microwave absorption lines is
determined by Fano resonance effects [3]. This allows the
lineshape to be precisely controlled by varying the magnetic
field and microwave polarization. Apart from any practical
relevance, using quantum interference to control lineshapes is
also of fundamental interest. For example, electromagnetically
induced transparency is a quantum interference effect that
alters lineshapes [4]; its implementation in Bose condensates
has led to fascinating phenomena, such as an extreme slowing
down of light [5].

The key physics that underlies the effects discussed here is
that in a perpendicular magnetic field it is possible for certain
electronic states that are bound to the surface of helium to
be nevertheless degenerate with unbound continuum states.
When the magnetic field is tilted, these bound states dissolve
into the continuum leaving behind long-lived resonances.
Thus electrons that occupy the formerly bound states will
eventually escape the surface of helium via quantum tunneling.
Remarkably we find that under suitable conditions this “ra-
dioactive decay” can be nonexponential in its time dependence:
the probability that the electron is still bound can undergo
(damped) oscillations, again due to quantum interference. Such
nonexponential tunneling decay may be relevant to other areas
of physics since the mechanism is not unique to electrons on
helium. Indeed there is interest in nonexponential quantum
tunneling as far afield as cosmology where there has been a
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recent analysis of departures from exponential behavior in the
long-time limit [6]. The effect analyzed here applies even in
the short-time limit. Another more formal result derived in
this article is that the dissolved bound state leaves its imprint
on the scattering phase shift of the continuum states; namely,
the phase shift jumps by π as the energy is swept through the
(renormalized) energy of the former bound state.

Before presenting our results it is useful to review Fano’s
analysis [3] of a single bound state |b〉 that is coupled by a
perturbation V to a continuum of states |E〉. The bound and the
continuum states are taken to be eigenstates of an unperturbed
Hamiltonian, H0, with eigenvalues εb and E respectively. It
is assumed that the bound state is normalized, 〈b|b〉 = 1,
and orthogonal to the continuum states, 〈b|E〉 = 0, which
in turn are mutually orthonormal, 〈E|E′〉 = δ(E − E′). The
perturbation couples the bound state to the continuum states via
the matrix element 〈E|V |b〉 = V (E); other matrix elements
of the perturbation are presumed to vanish [〈E|V |E′〉 =
〈b|V |b〉 = 0]. As a result of the perturbation the bound state
dissolves and the full Hamiltonian H0 + V only has continuum
eigenstates, denoted |ψE〉, with continuous eigenvalue E.
Fano’s original evaluation of the perturbed eigenstates |ψE〉
made use of arcane δ function identities but in fact the same
results may be derived by observing that the state |ψE〉 must
obey the familiar Lippmann-Schwinger equation,

|ψE〉 = |E〉 + (E − H0)−1V |ψE〉, (1)

which can be solved iteratively to obtain the overlap

〈b|ψE〉 = 1

πV (E)
sin[�(E)], (2)

and a more complicated expression for 〈E′|ψE〉.1 Together
these overlaps fully determine the perturbed eigenstate |ψE〉.

1Some details: The first-order solution to Eq. (1) is obtained by
replacing the perturbed eigenstate |ψE〉 on the right-hand side with the
unperturbed state |E〉; the second-order solution, by replacing |ψE〉
on the right-hand side with the first-order solution; and so on. The re-
sulting perturbative series is geometric. Its summation is facilitated by
defining the self-energy �(E) = 〈b|V (E − H0)−1V |b〉 by analogy to
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Here the phase angle �(E) is defined via

tan �(E) = π |V (E)|2
E − εb − F (E)

, (3)

and F (E) is the real part of the bound state self-energy

F (E) = P

∫
dE′|V (E′)|2 1

E − E′ . (4)

To the extent that we may assume F (E) and V (E) are slowly
varying, |〈b|ψE〉|2 is a sharply peaked Lorentzian centered at
εb, the renormalized value of the bound state energy [defined
as the energy at which E − εb − F (E) vanishes]. The phase
�(E) varies monotonically from π to zero as E varies from
well below the renormalized energy εb to well above; it equals
π/2 right at εb.

Now suppose a time-dependent perturbation T drives a
transition between some additional state |i〉 and the bound
state |b〉 and the continuum states |E〉. A simple calculation
using Fermi’s golden rule shows that the transition rate to an
exact eigenstate of energy E (normalized to the rate into the
corresponding unperturbed state) is given by

|〈ψE|T |i〉|2
|〈E|T |i〉|2 = |q + ε|2

1 + ε2
. (5)

Here the asymmetry parameter

q = 1

πV (E)∗
〈b|T |i〉
〈E|T |i〉 (6)

compares the relative couplings to the bound and unperturbed
continuum states and ε = cot �(E) is a suitably normalized
measure of the distance in energy from location of the Fano
resonance, εb. Equation (5) is the celebrated lineshape derived
by Fano. It shows that upon adding the perturbation V ,
although the bound state dissolves into the continuum, it leaves
behind a trace in the form of a sharp absorption feature in
transitions to the perturbed continuum. The Fano lineshape is
asymmetric for generic q; it reduces to the familiar symmetric
Lorentzian or Breit-Wigner form only in the limit q → ∞.

We turn now to the mapping between electrons on helium
and Fano’s model. We take the helium surface to lie in
the y-z plane. The electrons are bound to the surface by a
potential V (x) = −Qe/4πε0x + eFx for x > 0. We assume
that electrons cannot penetrate the helium and apply a hard-
wall boundary condition at x = 0. Here e is the magnitude of
the electron charge and Q = 7 × 10−3e is the magnitude of
the image charge that forms in the dielectric helium. F is an
additional holding field that may be applied. In addition the
magnetic field is given by Bx = B⊥, By = 0, and Bz = B‖.
We adopt the gauge Ax = −B‖y, Ay = 0 and Az = B⊥y. It
will be convenient to work in units where eB⊥ = � = m = 1
where m is the electron mass. The case that the in-plane field
vanishes corresponds to the unperturbed problem in Fano’s
model. In this case the Schrödinger equation is separable and
has solutions of the form exp(ipz)ϕn(y − p)ξ (x) where ϕn

Dyson’s equation in field theory. By this procedure we obtain Eq. (2)
and 〈E′|ψE〉 = δ(E − E′) cos � + (1/π )[V (E′)/V (E)] sin �/(E −
E′) in agreement with Fano’s results.

denotes the nth eigenfunction of a one-dimensional harmonic
oscillator of unit mass and frequency. The x motion is governed
by the one-dimensional equation

− 1

2

∂2

∂x2
ξ + V (x)ξ =

[
E −

(
n + 1

2

)]
ξ. (7)

Depending on whether the energy for x motion, k2/2 = E −
(n + 1/2), is negative or positive the wave function will be
a bound subband wave function ξν(x) or a scattering state
ξsc(x,k). In the absence of a holding field F the bound wave
functions have the same form as the s-wave states of hydrogen
and a Bohr spectrum εν = −R/ν2 where ν = 1,2,3, . . . is
the subband index of the bound state and R ≈ 7.6 K. The
scattering states have the asymptotic form

ξsc(x,k) → 1√
2πk

{exp[−ikx − iδ(k)] + exp[ikx + δ(k)]}

(8)

as x → ∞.2 By virtue of the hard-wall boundary condi-
tion the reflected amplitude has unit magnitude and the
scattered state is fully specified by the single phase shift
δ(k) between the incoming and outgoing states. In summary
the eigenstates may be written in the form |p,n,ν〉 for
the bound subband states and |p,n,k(sc)〉 for the unbound
scattering states. The energy of the state is given by E =
(n + 1/2) + εν for the bound states and E = (n + 1/2) + k2/2
for the continuum. Note that the energy is independent of p

reflecting the massive Landau degeneracy of these subband
states.

Figure 1(a) shows these energy levels schematically. From
this figure we see that for a sufficiently large perpendicular
field (of order 6 T) the lowest bound state in the n = 1 Landau
level can be degenerate with the unbound continuum states of
the n = 0 Landau level. If we now turn on a small in-plane
magnetic field the most important effect of this perturbation on
the bound state is to couple it into the n = 0 continuum.3 In the
same way that an atom driven near resonance may be truncated
into a two-level system, here we may truncate the Hilbert
space to just the n = 1 bound state and the n = 0 continuum.
This truncation maps the problem to Fano’s model: the lowest
bound n = 1 subband state is identified with |b〉 and the n = 0
continuum with |E〉. In our units and gauge the perturbation
is −i(B‖/B⊥)y∂/∂x, and the matrix element V (E) in Fano’s
model is given by

V

(
k2

2

)
= − i√

2

B‖
B⊥

∫ ∞

0
dxξb(x)

∂

∂x
ξsc(x,k). (9)

2To be precise the scattering states have the form given by Eq. (8)
only for a confining potential V (x) that vanishes sufficiently rapidly
as x → ∞, as does, for example, the rectangular well potential
studied numerically below. For the Coulomb potential, as well as
for the case of a nonzero holding field, the asymptotic form of the
scattering states is different in detail but still allows definition of a
phase shift and the result of Eq. (12) remains valid in these cases
also.

3More precisely, the bound state with a given p gets coupled to the
continuum state with the same p value.
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FIG. 1. (Color online) (a) Schematic energy level diagram for
electrons on helium in a perpendicular magnetic field. For simplicity
only the lowest bound state and the continuum states are shown for
the n = 0 and n = 1 Landau levels. Also shown are the polarizations
of microwave radiation needed to drive transitions from the n = 0
bound state to the n = 0 continuum and the n = 1 bound state.
(b) The Fano lineshape of Eq. (5) plotted for asymmetry parameter
q = 0 (dashed red curve), q = 1 (dotted blue curve), and q = 2 (solid
green curve). The horizontal axis is scaled by the energy width of
the line. (c) The phase shift for perturbed continuum states (solid
red curve) calculated by numerical solution of the full Schrödinger
equation shows the jump of π relative to the unperturbed phase shift
(dotted blue curve) as predicted by the approximate truncation to
Fano’s model. The energy is in natural units defined in the text.

Having mapped the problem to Fano’s model we now
consider microwave absorption. For the unperturbed problem
with a perpendicular magnetic field it is easy to show that
radiation that is polarized in the plane couples a state |p,n,ν〉
to states with the same p and subband state and Landau index
n ± 1. Radiation polarized perpendicular to the plane leaves
p and the Landau index unchanged but can cause transitions
between the subbands or between a bound subband and a
continuum state. More explicitly the transition matrix element
for radiation polarized in the plane is

〈p′n′ν ′|T‖|pnν〉 = iδ(p − p′)
1√
2

E

ω
δν ′ν

× (
√

nδn′,n−1 − √
n + 1δn′,n+1). (10)

Here E = eE/(
√

�eB⊥) where E is the magnitude of the
oscillating electric field and ω is its frequency. Similarly the
transition matrix element for radiation polarized perpendicular
to the plane is

〈p′n′ν ′|T⊥|pnν〉

= iδ(p − p′)
E

ω
δn′n

∫ ∞

0
dx ξ ∗

ν ′(x)
∂

∂x
ξν(x). (11)

Now if we take the lowest subband state in the n = 0
Landau level as our state |i〉 evidently it is coupled to the
state |b〉 (lowest subband state in the n = 1 Landau level) by
microwaves that are polarized in the plane; it is coupled to the

continuum |E〉 (unbound states in the n = 0 Landau level) by
microwaves polarized perpendicular to the plane. Microwaves
with intermediate polarization will couple to both bound state
and continuum with a relative strength that is tunable by
varying the polarization. It follows that in the presence of
a perturbing in-plane magnetic field the microwave absorption
will show a Fano resonance with an asymmetry parameter q

that can be tuned by varying polarization from zero (pure
perpendicular polarization) to ∞ (pure in-plane polarization).

Another consequence of our mapping to Fano’s model is
that when the in-plane perturbation is turned on, the bound
state |b〉 will dissolve into the continuum |E〉 yielding the
perturbed eigenstates |ψE〉. Using Fano’s expression for the
overlap of |ψE〉 with |E〉 we find by straightforward asymptotic
integration that the wave functions of the corresponding
eigenstates have the x → ∞ asymptotic behavior

1√
2πk

exp(ipz)φ0(y − p){exp[−ikx − iδ(k) − i�]

+ exp[ikx + iδ(k) + i�]}. (12)

Comparing to the asymptotic x dependence of the unperturbed
states |E〉, Eq. (8), we arrive at the elegant conclusion that
although the bound state dissolves into the continuum it leaves
behind an imprint in the perturbed continuum states in the form
of an extra phase shift �. As noted above, the phase � jumps
abruptly by π as we sweep through the renormalized energy
of the formerly bound state.

We have derived this phase shift within the mapping to
Fano’s model. Since the prediction does not depend on the
specific form of the binding potential V (x) we can check our
prediction, and the veracity of the mapping to Fano’s model, by
numerically solving the Schrödinger equation for the case that
the confining potential is a rectangular well, a circumstance
that may be efficiently solved by the numerical methods of
Nöckel and Stone [7]. Figure 1(c) shows that the expected
phase jump indeed occurs without making the truncation to
Fano’s model.

Finally we turn to nonexponential tunneling decay. As a
prelude, consider the basic Fano model of a single bound state
coupled by a perturbation to a continuum. If the system starts
in the bound state initially, the amplitude to remain in the
bound state at time t is

b(t) =
∫

dE|〈b|ψE〉|2 exp[−iEt]

≈ exp(−iεbt) exp

(
− t

2τb

)
. (13)

Here εb is the renormalized bound-state energy defined below
Eq. (4) and τb, the lifetime of the bound state, is 1/2π |V (εb)|2.
The oscillatory exponential behavior of b(t) is because the
amplitude |〈b|ψE〉|2 is a Lorentzian sharply peaked about
the renormalized energy. The probability to remain in the
bound state is therefore a pure exponential decay, |b(t)|2 =
exp(−t/τb). This is the usual reason that tunneling decay is
exponential.

Now consider instead a model in which two or more bound
states are coupled to the same continuum by a perturbation.
Even if the perturbation does not directly couple the two bound
states, they become effectively coupled due to their coupling
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to the same continuum. Thus if the system starts in one bound
state it will undergo damped oscillations into the other bound
state(s), the damping being produced by the tunneling decay
into the continuum.

To put this idea on a quantitative footing consider, again
following Fano [3], a model with n bound states |i〉 where
i = 1,2,3, . . . ,n and a single continuum |E〉. These states are
assumed to be orthonormal and eigenstates of the unperturbed
Hamiltonian H0 with eigenvalues εi and E respectively.
We assume that the only nonvanishing matrix elements of
the perturbation are 〈E|V |i〉 = Vi(E). Once the perturba-
tion is turned on, the bound states will dissolve into the
continuum; the perturbed continuum states will be denoted
|ψE〉. Once again these states are most easily derived using
the Lippmann-Schwinger method. A key quantity in this
analysis is the Hermitian part of the bound-state self-energy
matrix4

Fij (E) = P

∫
dE′ Vi(E′)V ∗

j (E′)

E − E′ . (14)

Formally the oscillations in the tunneling may be traced to the
fact that the self-energy term Fij is not diagonal. It is useful to
determine the eigenvectors of the n × n matrix εiδij + Fij (E)
denoted as Aiν(E) with eigenvalues εν . If we define Vν(E) =∑

i Vi(E)Aiν(E) then we find that the overlap of the perturbed
continuum eigenstates |ψE〉 with the unperturbed bound states
is

n∑
i=1

A∗
iμ(E)〈i|ψE〉 = 1

πVμ(E)
tan[�μ(E)] cos[�(E)]. (15)

Here the phase shifts �μ and � are defined via

tan �μ(E) = π |Vμ(E)|2
E − εμ(E)

; tan � =
n∑

μ=1

tan �μ. (16)

Once again the renormalized energies εμ may be defined as
the values of E at which E − εμ(E) vanishes. The phase �μ

then jumps from π to zero as the energy is swept through εμ

from below.
Fano studied the lineshape of radiative transitions into a

continuum coupled to multiple bound states using the model
and solution outlined above. Here we investigate what happens
if the system starts in one of the bound states |i〉. Making the
same approximations that led to Eq. (13) a straightforward
calculation reveals that the amplitude to remain in the state |i〉
is

bi(t) =
∑

μ

|Aiμ(εμ)|2 exp(−iεμt) exp

(
− t

2τμ

)
. (17)

4The self-energy �ij (E) ≡ 〈i|V (E − H )−1V |j〉.

Here τμ = 2π |Vμ(εμ)|. Since the different terms in the super-
position oscillate at different frequencies they will interfere
leading to oscillations in the probability |bi(t)|2. For example
if there are just two coupled bound states,

|b1(t)|2 = |A11(ε1)|4 exp

(
− t

τ1

)
+ |A12(ε2)|4 exp

(
− t

τ2

)

+ 2|A11|2|A12|2 cos[(εn − εm)]

× exp

(
− t

2

[
1

τ1
+ 1

τ2

])
. (18)

If the decay times are comparable and the oscillation fre-
quency sufficiently high a departure from simple exponential
decay should be easily observable provided the effective
coupling of the two states via the continuum (here quan-
tified by |A12|2) is sufficiently strong. Although we have
here considered only the case of multiple bound states
coupled to a single continuum, similar results are obtained
when multiple bound states are coupled to several coupled
continua.

Evidently this analysis is relevant to electrons on helium
in a tilted magnetic field where there are in fact multiple
bound states that couple to the same continuum. There
are already experimental studies on the tunneling rates of
electrons on helium in a magnetic field [8] but not from
the type of resonant states considered here. It would be
desirable in future work to identify an optimum set of coupled
bound states for an experimental detection of oscillatory
exponential decay. In addition analogs throughout atomic,
solid state, nuclear, and particle physics bear investigation.
Another important extension of this work is to consider the
effects of electron-electron interaction on the Fano resonance.
Experimentally [8] it is known that interaction effects are
unimportant at low density but have significant effects on
magnetotunneling at high density, which have been explained
theoretically by Sharpee et al. [9]. Similarly it is important
to consider the damping of Fano resonant effects by ripplons
and vapor scattering which would become relevant at higher
temperature.

In summary we have shown that electrons on the liquid
helium in a magnetic field have bound states that dissolve into
the continuum when an in-plane magnetic field is applied;
however, they leave behind an imprint in the form of a
phase shift and a sharp microwave absorption feature whose
lineshape is tunable by varying the polarization and the
in-plane magnetic field. In addition we point out that the
tunneling decay of electrons from these formerly bound states
may have an oscillatory exponential form.

We acknowledge discussions with Arnold Dahm and
Francesc Ferrer.
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