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We study the quantum interference correction to the conductivity in HgTe quantum wells using the
Bernevig-Hughes-Zhang model. This model consists of two independent species (blocks) of massive Dirac
fermions. We describe the crossover between the orthogonal and symplectic classes with increasing the
carrier concentration and calculate, respectively, weak localization and antilocalization corrections in the
absence of the block mixing and assuming the white-noise disorder within each block. We have calculated
the interference-induced magnetoresistance in a wide interval of magnetic fields, in particular, beyond the
diffusion regime. Remarkably, each Dirac cone taken separately gives a linear contribution to the low-field
magnetoresistance, which turns out to be asymmetric in magnetic field B. We present an interpretation of this
result in terms of the Berry-phase formalism. The contributions of the two blocks are related to each other by
replacing B to −B, so that the total magnetoresistance is symmetric and parabolic in the limit B → 0. However,
in some range of parameters, field dependence turns out to be strongly nonmonotonous. We also demonstrate that
block mixing gives rise to additional singular diffusive modes which do not show up in the absence of mixing.
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I. INTRODUCTION

It is well known that the low-temperature transport in
disordered systems is crucially affected by quantum inter-
ference effects. The first-order term in a series expansion
of the conductivity in 1/kF l (here kF is the Fermi wave
vector and l is the mean-free path) contains the weak
localization (WL) correction [1] (for a review, see Ref. [2]).
The underlying physics is the coherent enhancement of the
backscattering amplitude which comes from the constructive
interference of the waves propagating in the opposite directions
(clockwise and counterclockwise) along a closed loop formed
by scatterers (see Figs. 1 and 2). A remarkable feature of this
correction is the logarithmic divergence at low temperatures
in the two-dimensional (2D) case. Such a divergency is a
precursor of the strong localization effects and, therefore,
reflects universal symmetry properties of the system. An
external magnetic field breaks the time-reversal symmetry and,
as a consequence, leads to a suppression of the WL correction.
On the other hand, spin-orbit coupling does not violate the
time-reversal symmetry, but strongly modifies the quantum
conductivity correction because of the interference of the spin
parts of the waves. In particular, strong spin-orbit coupling
leads to a destructive interference [3] between clockwise- and
counterclockwise-propagating paths, thus changing the sign of
the quantum correction. The change from the WL to the weak
antilocalization (WAL) behavior was considered for the first
time in Ref. [3] and was further addressed, both theoretically
and experimentally, in a number of more recent papers (see
Refs. [4–31] and references therein).

Recently, the interest in quantum transport in the systems
with strong spin-orbit coupling dramatically increased after the
discovery that such systems may exhibit a topological insulator
(TI) phase [32–38] with preserved time-reversal invariance.
In the 2D case, the TI behavior was predicted by Bernevig,
Hughes, and Zhang (BHZ) [34] for HgTe/HgCdTe quantum

wells (QWs). Soon after this prediction, the existence of a TI
phase was experimentally demonstrated in Refs. [35,39] in
HgTe/HgCdTe QWs with band inversion. The latter resulted
in emergence of delocalized (topologically protected) helical
modes at the edge of the sample. Another realization of a 2D
TI based on InAs/GaSb structures was proposed in Ref. [40]
and was experimentally discovered in Ref. [41].

When the Fermi energy in a HgTe/HgCdTe QW is shifted
away from the band gap, the system exhibits a 2D metallic
phase known as a 2D spin-orbit metal (SOM). The spectrum
of the SOM can be well approximated by the Dirac spectrum
of massive fermions (with the mass proportional to the band
gap), so that the quantum transport in such a system is
strongly affected by the Dirac nature of carriers [42–47]
and, owing to the presence of the Berry phase, bears certain
similarity to interference phenomena in graphene [48–51], in
2D semiconducting hole structures [31,52], and in surface
layers of 3D TI [42,53,54].

The remarkable property of the 2D SOM is the dependence
of the effective spin-orbit coupling on the particle concen-
tration. For low concentration, the spectrum is approximately
parabolic, while the coupling is weak and can be neglected in
the first approximation. Then, the system belongs to so-called
orthogonal symmetry class and one can expect conventional
WL behavior of the quantum correction. On the other hand, at
large concentrations, when the Fermi energy becomes much
larger than the gap width, the spectrum is quasilinear, while
the spin is strongly coupled to the particle momentum, so
that the underlying symmetry class is symplectic and the
SOM would demonstrate WAL similar to graphene-based
structures. Recently, the magnetoresistivity of HgTe/HgCdTe
structures was experimentally studied away from the insulating
regime in Refs. [55–58], both for inverted and normal band
ordering. The experiments demonstrate that the system may
show both WL and WAL behavior. Hence, there is a clear
need in a theory which can rigorously describe the crossover
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FIG. 1. (Color online) Backscattering (a) and nonbackscattering
(b) scattering processes on a complex of impurities consisting of
1,2, . . . ,N impurities and corresponding diagrams (c) and (d).[For
simplicity, we do not show in (a) and (b) diffusive motion of the parti-
cle before and after the loop. Such motion leads to “transportization”
of vertexes i and f .]

between the two symmetry classes that correspond to WL and
WAL regimes.

A theoretical study of the quantum transport in the 2D
SOM in HgTe/HgCdTe QWs was undertaken in Ref. [43] for
the case when the chemical potential is located in the almost
linear range of the spectrum. The conductivity correction
was calculated within the diffusive approximation. The WAL
nature of the correction was demonstrated and attributed
to the Berry-phase mechanism characteristic of the Dirac
systems. It was also shown that the weak nonlinearity of the
dispersion (due to a finite band gap) suppresses the quantum
interference on large scales. Another approach to the problem
based on the analysis of the symmetry properties of the
underlying Dirac-type Hamiltonian and physically important
symmetry-breaking mechanisms was proposed in Ref. [44].
This approach captures the universal properties of the system
and, consequently, allows one to find without microscopic
calculations the singular (logarithmic in 2D) interference
corrections within the diffusion approximation. This approx-
imation is sufficient near the band bottom and in the regime
of almost linear spectrum for relatively weak magnetic fields.
The ballistic case was discussed in Ref. [45] for zero magnetic
field. Also, the quantum transport in HgTe/HgCdTe QWs
was numerically simulated both in the ballistic and diffusive
samples in Ref. [46] where the influence of the Berry phase
(similar to the effect of Berry phase in semiconducting hole
structures [52]) on magnetoresistance was emphasized.

(a)

(b)

(c)

(d)

FIG. 2. (Color online) The processes (a), (b) and corresponding
diagrams leading to the contribution which is complex conjugated to
the one given by the processes shown in Fig. 1.

In this paper, we present a systematic analysis of the
interference corrections in a 2D SOM biased by gate away
from the TI regime. Having in mind to describe the crossover
between two symmetry classes we generalize the approach of
Ref. [45] for nonzero magnetic fields and develop a ballistic
theory of the quantum transport valid beyond the diffusion
approximation and, therefore, applicable for a wide range of
particle concentrations.

We start with discussing the basic equations and properties
of such a SOM (see Sec. II). As a starting model, we will
use BHZ Hamiltonian [34], which allows one to describe TI
in a wide range of particle concentration both in the normal
and in the inverted states. We discuss the dependence of
the conductivity correction on key parameters of the model.
Although our theory is valid for a wide range of parameters,
in order to simplify intermediate calculations we will use the
simplified version of this model which corresponds to two
equivalent massive Dirac cones with momentum-independent
mass and velocity.

Next, we derive a kinetic equation for the Cooperon
propagator within a single cone and find its exact solution
valid beyond the diffusion approximation (see Sec. III). In
Sec. IV, we use these results to evaluate the interference
corrections in a wide interval of electron concentration and
magnetic fields, assuming that two equivalent blocks of the
system (BHZ blocks) are not mixed by any perturbation. One
of the main results of this section is the demonstration of
the strong asymmetry (with respect to the inversion of the
sign of the magnetic field) of the contribution of a single
block. This result can be explained within the Berry-phase
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formalism and turns out to be in a good agreement with
the previous numerical simulations [46]. Summing of the
contributions of two blocks restores symmetry with respect
to the field inversion. However, field dependence turns out to
be strongly nonmonotonous in some range of the parameters.
We also predict a nonmonotonous dependence of the quantum
correction on the phase-breaking rate. Similar result was
predicted earlier for weak localization of holes in conventional
heterostructures [31].

In Sec. V, we generalize obtained results assuming that
blocks are weakly coupled to each other. Most interestingly,
the block mixing gives rise to additional singular diffusive
modes which do not show up in the absence of mixing.
One of these modes is a “purely singular” mode which is
responsible for the WAL at very low temperatures. Existing of
such singular modes leads to an additional mechanism of the
nonmonotonous magnetoresistance.

In the end of the paper, we present plots demonstrating
dependence of the interference correction on different param-
eters (see Sec. VI). We also discuss asymptotical behavior of
the quantum correction in the strong-field limit (see Sec. VI E).
In this limit, the main contribution to the correction is given
by scattering on complexes of three impurities separated by
untypical distances much smaller than the mean-free path (for
discussion of such an asymptotic in the parabolic spectrum,
see Refs. [59,60]). Technical details of the calculations are
placed in Appendices A–E.

II. BASIC EQUATIONS

A. BHZ Hamiltonian

The effective Hamiltonian for a narrow symmetric HgTe
quantum well (QW) was derived by Bernevig, Hughes, and
Zhang (BHZ) in Ref. [34] in the framework of the k · p method.
The BHZ Hamiltonian has a 4 × 4 matrix structure in the spin
(sign of the z projection of the total momentum J, where the
z axis is perpendicular to the QW plane) and E1-H1 (|Jz| = 1

2
and |Jz| = 3

2 bands, respectively) space,

HBHZ =
[
HI(k) 0

0 HII(k)

]
, (1)

where

HI(k) =
[
ε(k) + m(k) v(kx + iky)
v(kx − iky) ε(k) − m(k)

]
(2)

and

HII(k) = H ∗
I (−k) =

[
ε(k) + m(k) −v(kx − iky)
−v(kx + iky) ε(k) − m(k)

]
. (3)

Here, we have used the form given in Refs. [33,40] with
the following arrangement of components in the spinor:
E1+,H1+,E1−,H1−.

The functions ε(k) and m(k) are effective energy and mass
which are assumed to be isotropic in the momentum space.
Within the k · p expansion in the vicinity of the � point, they
are given by

ε(k) = C + Dk2, m(k) = mv2 + Bk2. (4)

We note that, in general, v might also depend on k [61].

The two phases of normal and topological insulator
correspond to m > 0 and m < 0, respectively. The sign of
m changes at the critical thickness dc of the QW of about
6.2 nm [35]. The quantities B and D are positive with B > D.
The parameter C can be eliminated by a shift of the chemical
potential.

As seen from Eq. (1), the Hamiltonian HBHZ breaks up into
two blocks acting independently in the spin-up and spin-down
subspaces. The blocks have the same spectrum

E±
k = ε(k) ±

√
v2k2 + m2(k). (5)

The eigenfunctions for each block are two-component spinors
in E1-H1 space:

ψ
(±)
k (r) = χ

(±)
k eikr. (6)

The spinors χ
(±)
k are different in different blocks:

χ
(I,+)
k = 1√

1 + η

⎛
⎜⎝

1√
ηe−iφk

0
0

⎞
⎟⎠, (7)

χ
(I,−)
k = 1√

1 + η

⎛
⎜⎝

−√
ηeiφk

1
0
0

⎞
⎟⎠, (8)

χ
(II,+)
k = 1√

1 + η

⎛
⎜⎝

0
0
1

−√
ηeiφk

⎞
⎟⎠, (9)

χ
(II,−)
k = 1√

1 + η

⎛
⎜⎝

0
0√

ηe−iφk

1

⎞
⎟⎠, (10)

with φk being the polar angle of the momentum k and

η = η(k) =
[

vk

m(k) +
√

v2k2 + m2(k)

]2

. (11)

Parameter η is the key quantity of the problem. At temperatures
smaller than the Fermi energy one may replace k with kF , so
that we put throughout the paper

η = η(kF ). (12)

This parameter is the function of the particle concentration.
As we will see in the following, η governs the crossover

from WL to WAL. In particular, in the absence of dephasing
processes and for zero magnetic field, the conductivity cor-
rection depends on η only: δσ = δσ (η), so that all essential
information about the particular dependencies m(k) and v(k)
is encoded in η, while the specific dependence ε(k) drops out
from the resulting equations [62]. It is worth stressing that
η is the same for two spectrum branches [see Eq. (5)]. This
implies that the electron and hole conductivity corrections
coincide (for a given value of kF ). Moreover, as we will
see in the following, the dependence of the correction on
η obeys an essential property δσ (η) = δσ (1/η). As follows
from Eq. (11), this property ensures that inversion of sign of
the mass m(kF ) → −m(kF ) does not change the correction.
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In other words, conductivity corrections for normal material
with the mass m(kF ) > 0 and inverted material with the mass
−m(kF ) are equal. This allows us to limit our consideration to
the normal case and upper branch of the spectrum. In this case,

0 � η � 1.

We will see that for η → 0 the quantum correction is negative
(weak localization), while for η → 1, the sign of the quan-
tum correction changes (weak antilocalization). Hence, with
changing the electron (hole) concentration, the system under-
goes a transition between orthogonal and symplectic classes.

In a more general case, when magnetic field is applied
perpendicular to the quantum well plane and dephasing
processes are taken into account, the conductivity correction is
expressed in terms of three parameters (here we neglect block
mixing):

δσ = δσ

(
η,

l

lB
,
τ

τφ

)
, (13)

where τ and l = vF τ are the mean-free time and mean-free
path at the Fermi level, respectively, vF = |(∂Ek/∂k)k=kF

| is
the Fermi velocity, lB is the magnetic length, and τφ is the
phase-breaking time. This equation is valid for both spectrum
branches [which, in general, have slightly different l and
τ/τφ for fixed kF due to the term ε(k)] and is invariant
under replacement: m(kF ) → −m(kF ), η → 1/η (one can
check that τ , l, and vF are invariant under this replacement).
Therefore, the symmetry with respect to mass inversion
m(kF ) → −m(kF ) still holds.

Although our results are valid for general Hamiltonian (1)
with arbitrary parameters B, C, and D, in what follows, in
order to simplify intermediate calculations, we will consider
the simplified model with B = C = D = 0.

B. Single massive Dirac cone

Having in mind symmetry arguments presented in the
previous section, we only consider normal case with the
positive mass. We assume that the Fermi level lies outside
the gap in the region of the positive energies, thus focusing
on the upper branches of the spectrum in both blocks. We
start with the discussion of the properties of a single block
(for definiteness, the block II). The contribution of the other
block and the effects caused by the interblock transitions will
be considered in Secs. IV B and V, respectively.

In the framework of the simplified model with B =
C = D = 0, the expressions for the spectrum and the wave
functions simplify:

Ek =
√

m2v4 + v2k2, (14)

χk = 1√
1 + η

⎛
⎜⎝

0
0
1

−√
ηeiφk

⎞
⎟⎠, (15)

η =
(

k

mv + √
m2v2 + k2

)2

. (16)

Within this approximation, η → 0 for low concentration in
the region of the parabolic spectrum and η → 1 for large

concentrations when the Fermi energy is large compared to
the band gap and the spectrum is quasilinear. The Fermi
velocity, density of states (per block), Fermi energy, and Fermi
momentum are expressed explicitly in terms of η as follows:

vF = 2
√

η

1 + η
v, νF = m

2π�2

1 + η

1 − η
, (17)

EF = mv2 1 + η

1 − η
, kF = 2mv

�

√
η

1 − η
. (18)

Importantly, the particular dependence of these quantities on
η enters only the last two arguments in Eq. (13), l/ lB and
τ/τφ. At the same time, the explicit dependence of δσ on η

arises solely from the spinor structure of the wave functions
and hence is not specific for the model with B = C = D = 0.

The standard way [43] to introduce disorder in the model
is to add the fully diagonal term

Hdis = V (r)Î , (19)

with a random potential V (r) to the effective Hamiltonian
HBHZ (here Î is unit 4 × 4 matrix). While the diffusive behavior
of the quantum interference correction is universal, the precise
from of the correction in the ballistic regime depends on the
particular form of the disorder correlation function. We will
assume the white-noise disorder with the correlation function

〈V (r)V (r′)〉 = Wδ(r − r′). (20)

As usual for the weak localization (antilocalization) regime,
we assume that kF l � 1 and EF τ � 1 that allows us to neglect
mixing of the upper and lower branches. Then, the matrix
Green’s function can be written as

Ĝ(E,k) 	 P̂ (k)G(E,k), (21)

where

G(E,k) = 1

E − Ek − �
, (22)

� is the disorder-induced self-energy and P̂ is the upper-band
projector given by

P̂ (k) = |χk〉 〈χk|. (23)

The spinors |χk〉 “dress” the matrix element of disorder by
an angular-dependent factor 〈χk|χ ′

k〉 [45]:

Vk,k′ → Ṽk,k′ = Vk,k′ 〈χk|χ ′
k〉.

Using Eq. (15) we find

Ṽkk′ = Vkk′ 〈χk|χ ′
k〉 = Vkk′

1 + η exp[i(φk′ − φk)]

1 + η
. (24)

In other words, one can use a single-band approximation with
the particles described by the Green’s functions (22) with self-
energy � determined by the spinor-dressed disorder (24).

The quantum scattering rate γ = 1/τ (the imaginary part
of the self-energy) is related to the disorder correlation
function (20) as follows:

γ =
∫ 2π

0

dφ

2π
γD(φ) = γW

1 + η2

(1 + η)2
, (25)
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where

γD(φk − φk′) = 2π

�

∫
〈|Ṽkk′ |2〉δ(Ek − Ek′)

k′dk′

2π

= γW

∣∣∣∣1 + ηe−i(φk−φk′ )

1 + η

∣∣∣∣
2

= γW

1 + 2η cos(φk − φk′) + η2

(1 + η)2
(26)

(〈. . .〉 denotes the disorder averaging), and

γW = 2πνF

�
W. (27)

Although we consider the short-range scattering potential,
function γD(φk − φk′) turns out to be angle dependent due to
the “dressing” by the factor |〈χk|χk′ 〉|2 . As a consequence, the
transport scattering rate

γtr =
∫ 2π

0

dφ

2π
γD(φ)(1 − cos φ) = γW

1 + η2 − η

(1 + η)2
(28)

differs from the total (quantum) rate

γ

γtr

= 1 + η2

1 + η2 − η
. (29)

It is well known (see Ref. [63] for detailed discussion)
that the quantum conductivity corrections can be expressed
in terms of the Cooperon propagator. Such a propagator
obeys kinetic equation which can be derived by means of
standard diagrammatic technique. The collision integral of this
equation contains both ingoing and outgoing terms describing
the scattering from the momentum k′ to the momentum k.

The outgoing rate is determined by the rate γ = Im� entering
the single-particle Green’s function (22). To find the ingoing
rate, we notice that the disorder vertex lines in the Cooperon
propagator are also “dressed” by the Dirac spinor factors. The
two-particle amplitude of the scattering from k′ to k is dressed
by 〈χk|χk′ 〉 〈χ−k|χ−k′ 〉 (here we neglected the momentum
transferred through disorder vertex lines in these factors).
Hence, the ingoing rate γC(φk − φk′) is given by Eq. (26)
with the replacement 〈|Ṽkk′ |2〉 with 〈Ṽkk′ Ṽ ∗

−k′,−k〉. Simple
calculation yields (here and below, for the sake of brevity
we replace φk → φ and φ′

k → φ′)

γC(φ − φ′) = γW

[
1 + ηe−i(φ−φ′)

1 + η

]2

=
∑
M

γMeiM(φ−φ′),

(30)
where

γ0 = γ

1 + η2
, γ−1 = 2ηγ

1 + η2
, γ−2 = η2γ

1 + η2
, (31)

and γM = 0 for M 
= 0,−1,−2. We see that the outgoing rate
considered as a function of φ contains only three harmonics:
M = 0,−1,−2. Remarkably,

γM 
= γ, for any M, (32)

that means that the Cooperon propagator has a finite decay
rate even in the absence of the inelastic scattering [43].
More specifically, the kernel of the collision integral can be

written as

γC(φ − φ′) − γ δ(φ − φ′)

= − γ

1 + η2
[η2 + (1 − η)2e−i(φ−φ′) + e−2i(φ−φ′)]

− γ
∑

M 
=0,−1,−2

eiM(φ−φ′).

We see that in the limit η → 0 (orthogonal class), the Cooperon
mode with the moment M = 0 does not decay, while for η → 1
(symplectic class) there is also a nondecaying mode with the
moment M = −1. However, for arbitrary η all modes decay.
We also note that the function γC(φ) is asymmetric with respect
to inversion of the scattering angle φ → −φ :

γC(φ) = γ ∗
C(−φ) 
= γC(−φ). (33)

Equation (30) for the ingoing scattering rate in the Cooper
channel was derived for the block II. One can easily show that
in the block I the ingoing rate is given by the equation which
is complex conjugated to Eq. (30): γC(φ) → γ ∗

C(φ).
In the end of this section, we note that for η = 0 the system

is in the orthogonal symmetry class (the two-particle scattering
amplitude has no angular dependence), whereas the limit η = 1
corresponds to the symplectic symmetry class with the disorder
scattering dressed by the “Berry phase.” The intermediate case
corresponds to the unitary symmetry class, where the quantum
interference is partially killed by the Berry-phase fluctuations
(see discussion in Sec. IV C).

III. KINETIC EQUATION FOR THE COOPERON

With the projection on the upper band and dressing the
disorder correlation functions in the Cooperon ladders, the
calculation of the correction to the conductivity reduces to
the solution of a kinetic equation for a Cooperon propagator
moving in an effective disorder characterized by the correlation
functions (30) in the ingoing part of the collision integral and
by (26) in the outgoing term. This equation is analyzed below
separately for the cases of zero and nonzero magnetic fields.
In this section, we focus on the contribution of the block II.
Contribution of the block I will be discussed in Sec. IV B.

A. Zero magnetic field

The kinetic equation for the Cooperon in (q,ω) domain at
ω = 0 has the form

[1/τφ + iqvF ]Cq(φ,φ0)

=
∫

dφ′

2π
[γC(φ − φ′)Cq(φ′,φ0) − γD(φ − φ′)Cq(φ,φ0)]

+ γ δ(φ − φ0). (34)

Introducing dimensionless variables

� = 1/γ τφ, Q = ql, (35)

where

l = vF

γ
= 2�

3v

mW0

√
η(1 − η)

1 + η2
(36)
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is the mean-free path, we rewrite Eq. (34) as follows:

(1 + � + iQn)CQ(φ,φ0)

=
∫

dφ′

2π

[1 + ηe−i(φ−φ′)]2

1 + η2
CQ(φ′,φ0) + δ(φ − φ0), (37)

where n = (cos φ, sin φ).
Before solving this equation, we note that the Fourier

transform of the Cooperon propagator gives (see Ref. [63])
the quasiprobability (per unit area) for electron starting with
momentum direction n0 from initial point r0 to arrive at the
point r with the momentum direction n:

C(φ,φ0,r − r0) = 1

l2

∫
d2Q

(2π )2
eiQ(r−r0)/lCQ(φ,φ0). (38)

In particular, the conductivity can be expressed in terms
of this “probability” taken at r − r0 = 0, so-called “return
probability” [63]

W (φ − φ0) = C(φ,φ0,0). (39)

It is worth noting that return “probability” which was defined
above as a formal solution of the kinetic equation for the
Cooperon can be negative or complex.

Usually, the solution of the Cooperon kinetic equation
is searched in the diffusion approximation. Within such an
approximation, one can obtain a solution for an arbitrary
type of the disorder. It is also known that in the case of
the short-range disorder, when the collision integral contains
only zero harmonic with the moment 0, the exact solution can
be found which is valid beyond the diffusion approximation
and, consequently, describes the ballistic case. As seen from
Eq. (37), in our case the incoming term of the collision integral
contains only three angular harmonics with the moments 0,−1,

and −2. This allows one to find the exact solution of Eq. (37)
valid beyond the diffusion approximation. The details of the
calculations are presented in Appendix A 1. We find that the
return probability is given by

W (φ) = 1

2πl2

∞∑
n=−∞

wne
i(n−1)φ, (40)

where

wn =
∫

d2Q
(2π )2

⎡
⎣Pn−1

Pn

Pn+1

⎤
⎦

T (
M̂−1 − M̂−1

Q=∞
)⎡⎣Pn−1

Pn

Pn+1

⎤
⎦ , (41)

and matrix M̂ reads as

M̂ =

⎡
⎢⎣

1 + η2 − P0 −P1 −P2

−P1
1+η2

2η
− P0 −P1

−P2 −P1
1+η2

η2 − P0

⎤
⎥⎦ . (42)

Here,

Pn =
∫

dφ

2π

e−inφ

1 + � + iQ cos φ
(43)

= (−i)|n|P0

[
1 − P0(1 + �)

1 + P0(1 + �)

]|n|/2

(44)

and

P0 = 1√
(1 + �)2 + Q2

. (45)

On the technical level, the logarithmic divergency of
conductivity, specific for WL (WAL) corrections, comes from
singular behavior of the matrix M̂−1 at Q → 0. Let us
consider the limiting case Q = 0, � = 0. In this case P0 = 1,
P1 = P2 = 0, and we find

M̂−1 =
⎛
⎝

1
η2 0 0

0 2η

(1−η)2 0
0 0 η2

⎞
⎠. (46)

Then, in the limit η → 0 (orthogonal class), the
singular mode corresponds to M = 0 [see Eq. (A1)] and
CQ=0(φ,φ0) ∝ 1/η2, while in the limit η → 1 (symplectic
class) the singular mode corresponds to M = −1 and
CQ=0(φ,φ0) ∝ e−i(φ−φ0)/(1 − η)2.

B. Nonzero magnetic field

Now, we assume that the magnetic field B is applied
to the system perpendicular to the plane of the well. For
sufficiently weak fields when the mean-free path is smaller
than the cyclotron radius, the bending of the trajectories by
the magnetic field can be neglected, and the only effect of
the field is the phase difference between two trajectories
propagating along a closed loop in the opposite directions.
This phase can be taken into account by rewriting Eq. (34)
in the (ω,r) representation and modification of the operator q
as follows: q̂ = −i∂/∂r + 2eA/c�, where A = (By,0) is the
vector potential in the Landau gauge. The components of this
operator

q̂x = −i
∂

∂x
+ y

l2
B

, q̂y = −i
∂

∂y
(47)

obey the following commutation rule:

[q̂x,q̂y] = i

l2
B

sign(B). (48)

Here,

lB =
√

�c

2e|B| (49)

is the magnetic length for the particle with the charge 2e.

Instead of Eq. (37), we get

[1 + � + ilq̂n]C(r,r0,φ,φ0)

=
∫

dφ′

2π

[1 + ηe−i(φ−φ′)]2

1 + η2
C(r,r0,φ

′,φ0)

+ δ(r − r0)δ(φ − φ0), (50)

where q̂n = q̂x cos φ + q̂y sin φ and q̂x,q̂y are given by
Eq. (47). Exact solution of this equation valid beyond the
diffusion approximation is obtained in Appendix A 2. We
demonstrate that return probability is given by Eq. (40) where
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wn are now given by

wn = l2

2πl2
B

∞∑
m=−∞

⎡
⎣Pn+m,m+1

Pn+m,m

Pn+m,m−1

⎤
⎦

T (
M̂−1

m − M̂−1
m=∞

)⎡⎣Pn+m,m+1

Pn+m,m

Pn+m,m−1

⎤
⎦ . (51)

Here,

M̂m =

⎡
⎢⎢⎣

1 + η2 − Pm+1,m+1 −Pm+1,m −Pm+1,m−1

−Pm+1,m
1+η2

2η
− Pm,m −Pm,m−1

−Pm+1,m−1 −Pm,m−1
1+η2

η2 − Pm−1,m−1

⎤
⎥⎥⎦ (52)

and

Pnm = lB

l

[
min(n,m)!

max(n,m)!

]1/2

θ (n)θ (m)
∫ ∞

0
dt e−t(1+�)lB/ le−t2/4

(−it√
2

)|n−m|
L

|n−m|
min(n,m)

(
t2

2

)
, (53)

where Lk
N are generalized Laguerre polynomials. Although

Pnm are defined for n ≥ 0 and m ≥ 0, it is convenient to
introduce theta functions θ (n) and θ (m) [θ (n) = 1 for n � 0
and θ (n) = 0 for n < 0] in the definition of Pnm, assuming that
they are defined for arbitrary integers n and m. From Eq. (53)
we see that Pnm = Pmn. One can check that wn are real, in
spite of the fact that Pnm contains factor i|n−m|.

Let us now demonstrate that for B → 0, Eq. (51) coincides
with Eq. (41). Using the asymptotical Tricomi expression for
generalized Laguerre polynomials

Lα
n(t2) ≈ et2/2

tα

(
n + α + 1

2

)α/2

×Jα

(
2

√
n + α + 1

2
t

)
for n → ∞

(here Jα is the Bessel function), we find from Eq. (53)

Pm,m+α → Pα(Qm,α) for m → ∞, (54)

where

Qm,α = l

lB

√
2m + α + 1 (55)

and Pα(Q) is given by Eq. (43). Substituting Eq. (54) into
Eqs. (52) and (51), neglecting at large m dependence of Qm,α

on α, and replacing summation over m in Eq. (51) with
integration over dQ2l2

B/2l2, after simple calculations we arrive
to Eq. (41).

Finally, we note that Eqs. (51) and (52) were derived for
block II. Analogous equations valid in the block I are presented
in Sec. IV B.

C. Diffusion approximation

The diffusion approximation is valid provided that the typ-
ical length of interfering diffusive trajectory is long compared
to the mean-free path l. On the formal level, this implies that
there is a diffusive Cooperon mode with the gap much smaller
than γ. To guarantee that this condition is fulfilled, we assume
that � � 1, dimensionless magnetic field

b = l2

2l2
B

sign(B) (56)

is weak, |b| � 1, and one of the conditions η � 1 or 1 −
η � 1 is satisfied. In this case, calculation of wn essentially
simplifies. Let us start with discussion of the case of zero field
and then generalize obtained results for the case of finite fields.

(a) b = 0. The formal solution of Eq. (34) is written as

Ĉ = γ

γ + γϕ − γ̂C + iqn
, (57)

where γϕ = 1/τϕ and the kernel of the operator γ̂C is given by
Eq. (30). For ql � 1, we find from Eq. (57)

Cq(φ,φ0) ≈ γ

2π

∑
M

eiM(φ−φ0)

τ−1
M + v2

F

〈
qn 1

γ+γϕ−γ̂C
qn

〉
M

= γ

2π

∑
M

eiM(φ−φ0)

τ−1
M + q2DM

,

where

τM = 1

γϕ + γ − γM

, (58)

DM = v2
F (τM+1 + τM−1)

4
, (59)

〈. . .〉M stands for projection on the Mth harmonic and γM

are given by Eq. (31) We note that for calculation DM

one may set γϕ = 0 in Eq. (58). Within this approximation,
we find τ0 = (1 + η2)/γ η2,τ−1 = (1 + η2)/γ (1 − η)2,τ−2 =
(1 + η2)/γ, and τM = 1/γ, for M 
= 0,−1,−2. Here, we took
into account that � � 1(γϕ � γ ). For wM , we find

wM =
∫

ql�1

l2d2q
(2π )2

γ

τ−1
M−1 + q2DM−1

. (60)

Since we use the diffusion approximation, the integration in
Eq. (60) is limited by small q : ql � 1.

(b) b 
= 0. In this case, one should take into account that
operators q̂x and q̂y no longer commute [see Eq. (48)]. Simple
calculation yields

v2
F

〈
q̂n

1

γ + γϕ − γ̂C

q̂n
〉
M

= (
q̂2

x + q̂2
y

)
DM + i[q̂x,q̂y]D̃M, (61)
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where

D̃M = v2
F (τM−1 − τM+1)

4
. (62)

As a next step, one should replace in Eq. (61) the opera-
tor q̂2

x + q̂2
y by its eigenvalue q̂2

x + q̂2
y = (4/l2)|b|(n + 1/2).

Importantly, the operator q̂2
x + q̂2

y is positively defined and
depends on the absolute value of the magnetic field. In contrast,
commutator [q̂x,q̂y] changes sign with inversion of field.
Hence, Eq. (61) contains the sum of two equations of different
parity with respect to the field inversion:

v2
F

〈
q̂n

1

γ + γϕ − γ̂C

q̂n
〉
M

= 2

l2
[|b|(2n + 1)DM − bD̃M ].

(63)

One should also modify Eq. (60) by replacing the integral over
d2q with the sum over n:∫

ql<1

l2d2q
(2π )2

→ |b|
π

N∑
n=0

, (64)

where N ∝ 1/|b| limits the region where diffusion approxi-
mation is applicable. Analytical expression for wM reads as

wM = |b|
π

N∑
n=0

γ l2

l2/τM−1 + 2|b|(2n + 1)DM−1 − 2bD̃M−1
.

(65)

We see that wM turns out to be asymmetric with respect
to inversion of b: wM (b) 
= wM (−b), so that contribution
to the conductivity correction coming from a single cone
is an asymmetric function of b. Of course, after summing
contributions of two cones, conductivity becomes an even
function of magnetic field as it should be.

IV. INTERFERENCE CORRECTION TO THE
CONDUCTIVITY

A. Contribution of the single Dirac cone

In this section, we calculate the contribution to the inter-
ference correction coming from the single cone. We will use
expressions derived in the previous section for the Cooperon
propagator in the block II.

The Cooperon propagator enters as a building block into di-
agrams describing the quantum correction to the conductivity.
Such diagrams can be calculated in a standard way. However,
instead of formal summation of the diagrams, one can use a
semiclassical method developed in Ref. [60]. It was shown in
this paper that there are two contributions to the coherent
scattering, so-called backscattering and nonbackscattering
contributions. Both of them can be expressed in terms of
renormalization of the cross section of the scattering by a
single impurity. The main advantage of this method compared
to the standard diagrammatic machinery is the simplicity of
the calculations and the physical transparency that will allow
us to clarify the physical sense of the obtained results. This
method is based on considering the trajectories corresponding
to the condition of the phase stationarity. Such trajectories give
the dominant contribution in the weak localization regime,

when kF l � 1. The method was developed in Ref. [60] for the
case of the isotropic scattering of spinless particle by a short-
range potential, that corresponds to η → 0 in our notations.
Generalization for the case of finite η is straightforward. The
only additional ingredient of the discussed problem is the spin
projectors [Eq. (23)] entering Green’s functions [Eq. (21)].
As we already mentioned above, such projectors can be taken
into account by dressing of the disorder correlation functions.
Following, we demonstrate it by discussing the simplest coher-
ent scattering processes at a scattering complex consisting of
N = 5 impurities. Such processes and corresponding diagrams
are shown in Figs. 1 and 2.

The coherent backscattering process plotted in Fig. 1(a)
corresponds to diagram shown in Fig. 1(c). In this process,
two electron waves with the amplitude A (solid line) and B

(dashed line) start at the point i and interfere at the point
f after traveling in the opposite directions around a closed
loop formed by impurities 1,2, . . . ,N. The contribution of
this process to the conductivity is proportional to AB∗. This
process leads to correction to the scattering cross section (delta
peaked at the scattering angle φ = π ) of the impurity 1 (for
a more detailed discussion, see Ref. [60]). The scatterings
on impurities 2,3, . . . ,N are dressed by spinor factors and
described by the Cooperon correlation function γC defined
by Eq. (30). One can easily show that the impurity 1 is
also dressed by a spinor factor proportional to γC(π − φ),
where φ is the angle between n and n0 [see Fig. 1(a)].
The process shown in Fig. 1(b) leads to nonbackscattering
contribution described by diagram shown in Fig. 1(d). One
can easily check that in this process the impurity 1 is dressed
by the same spinor factor ∝γC(π − φ). The sum of these two
processes and the processes Figs. 2(a) and 2(b) [described
by diagrams 2(c) and 2(d), respectively] which are complex
conjugated to Figs. 1(c) and 1(d) leads to the correction to the
scattering cross section:

δ�(φ)

�tr

≈ λF ltr
1

γ

[
δ(φ − π )

∫
dφ′γC(π − φ′)W (φ′)

− γC(π − φ)W (φ)

]
,

where first and second terms represent backscattering and
nonbackscattering contributions, respectively. Here, λF ltr is
the effective return area and the coefficient 1/γ appeared due to
the normalization of the Cooperon propagator [see coefficient
γ in front of the delta function in Eq. (34)]. The quantum
correction to the cross section incorporating both types of the
coherent processes is given by

∫
(dφ/2π )δ�(φ)(1 − cos φ)

and corresponding conductivity correction reads as

δσII = −e2

�

(
ltr

l

)2

l2
∫

dφ

2π

γC(π − φ)

γ
W (φ)(1 + cos φ).

(66)

Equation (66) can be also derived within the standard dia-
grammatic approach, in which factor l2 appears due to the
integration over coordinates of the points i and f , whereas
factor (ltr/ l)2 accounts for the transportization of the vertexes.
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As a result, we obtain

δσII = −e2

�

(1 + η2)l2

(1 + η2 − η)2

×
∫

dφ

2π
(1 − 2ηeiφ + η2e2iφ)W (φ)(1 + cos φ),

(67)

or, finally, with the use of Eq. (40)

δσII = − e2

2π�

1 + η2

(1 + η2 − η)2

[
(1 − η)w1 + 1 + η2 − 4η

2
w0

+ w2

2
+ (η2 − η)w−1 + η2

2
w−2

]
, (68)

where wn are given by Eqs. (41) and (51) for B = 0 and B 
= 0,

respectively.
As we mentioned above, for η → 0 and 1 one of the modes

becomes singular and diffusion approximation is applicable
provided that � � 1, |b| � 1. Next, we consider limiting
cases described within this approximation. One can use
two alternative approaches: to explore simplified equations
obtained in Sec. III C or obtain results directly from rigorous
equations (41) and (51). In the following two subsections, we
use the first approach. In Appendix B, we demonstrate that the
second approach yields the same results.

At the end of this section, we note that the conductiv-
ity correction, Eq. (68), is invariant over the replacement

η → 1/η. As was explained in Sec. II A, this means that
although this equation was derived for the normal case,
it equally applies for inverted semiconductor both for the
electron and the hole spectrum branches.

1. Limiting cases for B = 0

(a) η → 0. As seen from Eq. (60), in this case the
singular contribution comes from w1 because τ−1

0 = γϕ +
γ η2/(1 + η2) → γϕ + γ η2 � γ. The diffusion coefficient en-
tering Eq. (60) reads as D0 ≈ v2

F /2γ, so that from Eqs. (60)
and (68) we find

δσII ≈ − e2

4π2�
ln

(
1

η2 + �

)
. (69)

(b) η → 1. The singular contribution comes from w0

because τ−1
−1 → γϕ + γ (1 − η)2/2 � 1. The diffusion coef-

ficient in this mode reads as D−1 ≈ v2
F /γ. From Eqs. (60)

and (68), we obtain

δσII ≈ e2

4π2�
ln

[
1

(1 − η)2/2 + �

]
. (70)

A more general approach based on exact equation (41)
allows one to find analytically corrections to Eqs. (69)
and (70) [45]:

δσII ≈ e2

4π2�

⎧⎨
⎩

−(
1 − 5η2

2

)
ln

(
1
η2

) + ln 2 + 4η ln 2 − η + O(η2) for η → 0,[
1 − 7(1−η)2

2

]
ln

[
1

(1−η)2

] + 3(ln 2 − 1) + η − 1 + O[(1 − η)2] for η → 1. (71)

For simplicity, we neglected here dephasing processes thus
setting � = 0. [For comparison of Eq. (71) in the limit η → 1
with the previously obtained results [43], see Ref. [45].]

2. Limiting cases for B �= 0

(a) η → 0. In this case, D̃0 ≈ ηv2
F /2γ and from Eq. (65)

we find the expression for the singular mode

w1 = |b|
π

N∑
n=0

1

� + η2 + 2|b|(n + 1/2) − bη
. (72)

Let us introduce the function

h(|b|,A) =
N∼1/|b|∑

n=0

|b|
|b|(n + 1/2) + A

≈ ln

(
C∗
|b|

)
− ψ(A/|b| + 1/2), (73)

where

ψ(z) =
∞∑

k=1

(
1

k
− 1

k + z − 1

)
− C

is the digamma function, C is the Euler constant, and the
field-independent coefficient C∗ ∼ N |b| ∼ 1 is determined by
the ballistic effects and can not be found within the diffusion
approximation. We will see that this coefficient drops out
from the equation for the magnetoconductivity [see Eq. (77)].
Asymptotical behavior of h(|b|,A) in the limits of weak and
strong fields can be found with the use of the following
asymptotic of ψ(z):

ψ(z) ≈ ln z − 1

2z
− 1

12z2
for z � 1. (74)

In our case, A = (� + η2 − bη)/2 and the variable z =
b∗/|b| + 1/2 − ηb/2|b| changes in the following interval:
(1 − η)/2 < z < ∞. Here,

b∗ = � + η2

2
.
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From Eqs. (73) and (74), we find

h

(
|b|,� + η2 − bη

2

)
≈

⎧⎨
⎩

ln
(

C∗
b∗

) + ηb

2b∗
− b2

24b2∗
for |b| � b∗,

ln
(

C∗
|b|
) − ψ(1/2) − π2

2
b∗−ηb/2

|b| for b∗ � |b| � 1.
(75)

We see that function h is asymmetric with respect to inversion
of the magnetic field. In the low-field limit, the asymmetry
is due to the term ηb/2b∗, which shifts the position of the
maximum of h from point b = 0 to the point b = 6ηb∗.
In the opposite strong-field limit, a small asymmetry comes
from the term π2b/4|b|, which arises as a result of expansion
of the digamma function near the point z = 1

2 [in order to
avoid cumbersome equations, in the following we neglect ev-
erywhere small correction −ψ(1/2) − (π2/2)(b∗ − ηb/2)/|b|
to the logarithmic strong-field asymptotic of h].

The function w1 is expressed in terms of function h as
follows:

w1 = h

(
|b|,� + η2 − bη

2

)/
2π. (76)

Using Eqs. (68), (75), and (76) we find

�σII = δσII(b) − δσII(0)

= − e2

4π2�

[
h

(
|b|,� + η2 − bη

2

)
− h

(
0,

� + η2

2

)]

≈ − e2

4π2�

⎧⎨
⎩

ηb

2b∗
− b2

24b2∗
for |b| � b∗,

ln
(

b∗
|b|
)

for |b| � b∗ .
(77)

Remarkably, Eq. (77) contains the linear-in-b term in the limit
of low fields. It is worth noting that this term can be taken into
account on the formal level as renormalization of the Cooperon
decay rate η2 → η2 − ηb in the argument of the function h.

The existence of linear contribution to the conductivity means
that in a single Dirac cone the minimum of the conductivity
correction as a function of b is shifted from the point b = 0 to
the point b = 6ηb∗. However, as we already mentioned, after
summing contributions of two blocks, the linear-in-b terms
existing in these blocks cancel each other.

(b) η → 1. In this case, D̃−1 ≈ −(1 − η)v2
F /γ and from

Eq. (65) we find

w0 = |b|
π

N∑
n=0

1

� + (1 − η)2/2 + 2|b|(2n + 1) + 2b(1 − η)
.

(78)

By using the asymptotic of the digamma function, we find for
the conductivity correction

�σII = δσII(b) − δσII(0)

= e2

4π2�

{
h

[
|b|,� + (1 − η)2/2 + 2b(1 − η)

4

]

− h

[
0,

� + (1 − η)2/2

4

]}

≈ e2

4π2�

{− (1−η)b
2b∗

− b2

24b2∗
for |b| � b∗,

ln
(

b∗
|b|
)

for b∗ � |b| � 1 ,

(79)

where

b∗ = � + (1 − η)2/2

4
.

Again, we see that Eq. (79) contains the linear-in-b term in the
limit of low fields. We also see that this term can be formally
taken into account by renormalization of the Cooperon decay
rate (1 − η)2/2 → (1 − η)2/2 + 2(1 − η)b in the argument of
the function h.

B. Contribution of the other Dirac cone and inversion
of the sign of the magnetic field

Next, we take into account the contribution to the conduc-
tivity correction coming from the block I. The only difference
is that the scattering rate γC(φ − φ′) is given by the equation
which is complex conjugated to Eq. (30):

γC(φ − φ′) = γW

[
1 + ηei(φ−φ′)

1 + η

]2

. (80)

The calculations are quite analogous to the ones presented
above. The return probability reads as

W (φ) = 1

2πl2

∞∑
n=−∞

wne
−i(n−1)φ (81)

[we notice sign minus in the exponent compared to Eq. (40)],
where

wn = l2

2πl2
B

∞∑
m=−∞

⎡
⎢⎣

Pm−n,m−1

Pm−n,m

Pm−n,m+1

⎤
⎥⎦

T (
M̂−1

m − M̂−1
m=∞

)⎡⎢⎣
Pm−n,m−1

Pm−n,m

Pm−n,m+1

⎤
⎥⎦ (82)
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and

M̂m =

⎡
⎢⎢⎣

1 + η2 − Pm−1,m−1 −Pm,m−1 −Pm+1,m−1

−Pm,m−1
1+η2

2η
− Pm,m −Pm+1,m

−Pm+1,m−1 −Pm+1,m
1+η2

η2 − Pm+1,m+1

⎤
⎥⎥⎦ . (83)

The contribution to the conductivity correction is expressed
in terms of wn according to Eq. (68). For zero field, Eq. (82)
transforms to Eq. (41), so that the account for the second cone
doubles the conductivity correction:

δσtot = 2δσII. (84)

However, this is not the case for the nonzero field when the
total conductivity correction is given by

δσtot = δσI + δσII, (85)

where δσI and δσII are found from Eqs. (82), (83), (53), (68)
and Eqs. (51), (52), (53), and (68), respectively.

Let us now discuss what happens with the inversion of the
sign of the magnetic field. Such inversion changes the sign
of the commutator (48). The calculations fully analogous to
those presented in Sec. III B and Appendix A 2 yield that the
magnetic field inversion is equivalent to the replacement of δσI

and δσII :

δσI(b) = δσII(−b). (86)

Importantly, δσI(b) 
= δσII(b), δσI(b) 
= δσI(−b), and
δσII(b) 
= δσII(−b). As we demonstrate in the following (see
Sec. VI), numerical evaluation of the conductivity correction
shows strong magnetic field asymmetry of the functions
δσI(b) and δσII(b). Only the total conductivity correction is an
even function of the magnetic field

δσtot(b) = δσtot(−b). (87)

C. Interpretation of the obtained results in terms
of the Berry phase

In this section, we will use the Berry-phase picture for
a qualitative interpretation of the obtained results. We will
follow the approach discussed in Ref. [52] in connection with
the weak localization of holes and later on used for description
of the interference corrections in the 2D HgTe/CdTe based
TI [46] and topological crystalline insulators with a quadratic
surface spectrum [47].

The Berry “vector potential” A is defined as (see
Refs. [46,52] and references therein)

A = i〈χk| ∂

∂k
|χk〉. (88)

The Berry phase is given by the integration of the vector
potential along a closed loop on the Fermi surface: �B =∮

A dk. Substituting into Eq. (88) spinor functions χ
(I,+)
k and

χ
(II,+)
k we find after simple algebra

�I
B = −�II

B = 2πη

1 + η
. (89)

We see that the Berry phases in two blocks have opposite signs.
For η � 1, we have �I

B = −�II
B ≈ 2πη. In the opposite limit

1 − η � 1, we get �I
B = −�II

B ≈ π − π (1 − η)/2.

Next, we use Eq. (89) to clarify the underlying physics of the
results obtained in the previous sections. Since we have already
presented the rigorous derivations, in this section we will limit
ourselves to the qualitative estimates omitting coefficients on
the order of unity. The estimates are valid in the diffusion
approximation, so that we will only discuss the regions η � 1
and 1 − η � 1.

Let us start with the case of zero magnetic field. Redrawing
in the momentum space coherent scattering processes shown
in Figs. 1 and 2, and taking into account that the amplitudes
of the trajectories shown by dashed lines should be complex
conjugated, one easily finds that the total geometrical phase
factor entering the return probability W (φ) is given by

eiθ = ei�B (1+2n), (90)

where −∞ < n < ∞ is an integer number (winding number)
and �B equals �I

B or �II
B. For a given value of φ, the

winding number strongly fluctuates due to the diffusive nature
of the particle motion. In the diffusion approximation, the
distribution of the directions of the particle momentum obeys
the diffusion law P (φk) = exp(−φ2

k/4γ t)/
√

4πγ t (since we
present order-of-magnitude estimates only, we do not distin-
guish between total and transport scattering rates). We used
here the extended Fermi surface, assuming that −∞ < φk <

∞. Putting φk ≈ 2πn and averaging Eq. (90) over n with the
function P (φk) = P (2πn), we find

〈eiθ 〉 ∝
{

exp(−η2γ t) for η → 0,

− exp[−(1 − η)2γ t] for η → 1.
(91)

Equation (91) allows one to interpret the finite gap in the
Cooperon propagator in terms of decay of the averaged Berry-
phase factor due to the diffusive fluctuations of the winding
number. Indeed, multiplying Eq. (91) with the product of the
diffusive return probability 1/Dt (here D ∼ v2

F /γ ) and the
decoherence factor exp(−t/τϕ), and integrating over t from
t ∼ 1/γ to t = ∞, one easily reproduces logarithms entering
Eqs. (69) and (70). It is worth noting that the negative sign
in front of the exponent in the second line of Eq. (91) is
responsible for the change of WL to WAL and also arises due
to the geometrical reasons (because �B = π for η = 1).

The approach based on the Berry-phase picture also allows
one to give a transparent physical interpretation of the low-field
linear magnetoresistance. For B 
= 0, the return probability
acquires the phase factor [63] exp(2ieBS/�c) = exp(iS/ l2

B)
in addition to the Berry-phase factor. Here, S is the algebraic
area covered by the particle while propagating along the
closed loop. Let us assume that Dτϕ � l2

B. We also assume
that 1/τϕ � η2γ (� � η2) in the region η � 1 and 1/τϕ �
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(1 − η)2γ [� � (1 − η)2] in the region 1 − η � 1. In this
case, both phase factors can be expanded in the Taylor series.
As a next step, one should average over diffusion motion of
the particle. Evidently,

〈S〉 = 0, 〈S2〉 ∼ (Dτϕ)2, (92)

〈n〉 = 0, 〈n2〉 ∼ τϕγ. (93)

It is also clear physically that some correlations between S and
n should exist. To calculate the correlation function 〈nS〉 at a
given time t (t ∼ τϕ � γ −1), we write

nS ≈ φ(t)

2π

∫ t

0
dt2

∫ t2

0
dt1v

2
F sin[φ(t2) − φ(t2)]/2, (94)

and average by functional integration over {Dφ} with the
weight exp(− ∫ t

0 φ̇2dt τ ). Standard calculation yields

〈nS〉 ∼ Dτϕ. (95)

Magnetoconductivity is estimated as

δσ (b) − δσ (0) ∝ −ei�B
〈−S2/2l4

B − 2�BnS/l2
B

〉
. (96)

Using Eqs. (92) and (95), we find

δσ I,II(b) − δσ I,II(0)

∝
{

b2/b2
∗ ± ηb/b∗ for η → 0,

−b2/b2
∗ ± (1 − η)b/b∗ for η → 1,

(97)

where signs + and − stand for I and II blocks, respectively,
and b∗ ∼ � under approximations used in this subsection.
Hence, we reproduce by the order of magnitude the low-field
magnetoconductivity given by Eqs. (77) and (79). We see that
within the Berry-phase formalism, linear-in-b terms appear
due to correlation between S and n.

V. BLOCK MIXING

A. Zero magnetic field B = 0.

Let us now assume that blocks are mixed by weak
perturbation. We consider only positive energies E > M, so
that the Hilbert space is limited to the states χ

(I,+)
k ,χ

(II,+)
k . It is

convenient to redefine these states multiplying χ
(I,+)
k by a phase

factor eiφk . Hence, the spinors corresponding to the states in
two blocks with positive energies are chosen as follows:

|Ik〉 = 1√
1 + η

⎛
⎜⎜⎜⎝

eiφ

√
η

0

0

⎞
⎟⎟⎟⎠, |IIk〉 = 1√

1 + η

⎛
⎜⎜⎜⎝

0

0

1

−√
ηeiφ

⎞
⎟⎟⎟⎠.

(98)

The general form of a perturbation which mixes blocks and
conserves the time-reversal symmetry is presented in Ref. [44].
In the following, we assume the simplest form of the mixing
potential:

V̂ = V (r)

⎡
⎢⎢⎢⎣

1 0 0 −�

0 1 � 0

0 �∗ 1 0

−�∗ 0 0 1

⎤
⎥⎥⎥⎦ , (99)

where V (r) is a short-range potential with the correlation
function given by Eq. (20) and � is a parameter responsible
for the block mixing. In the following, we assume that � is
small and real:

� � 1, � = �∗.

The potential (99) obeys the symmetry V̂ = Û V̂ ∗Û−1, where

Û =

⎡
⎢⎢⎢⎣

0 0 −i 0

0 0 0 −i

i 0 0 0

0 i 0 0

⎤
⎥⎥⎥⎦ , Û Û ∗ = −1. (100)

The matrix elements of V̂ read as

〈Ik|V̂ |Ik′ 〉 = Vkk′
η + ei(φ′−φ)

1 + η
,

〈IIk|V̂ |IIk′ 〉 = Vkk′
1 + ηei(φ′−φ)

1 + η
,

(101)
〈Ik|V̂ |IIk′ 〉 = 〈IIk|V̂ |Ik′ 〉

= Vkk′
1 + ei(φ′−φ)

1 + η
�

√
η.

Using these equations, one can derive the equation for
the Cooperon using standard diagrammatic rules. However,
one can see that this representation is inconvenient because
the single-particle Green’s functions (calculated in the self-
consistent Born approximation) turn out to be matrices 2 × 2.

It is more convenient to make a unitary transformation which
diagonalizes the Green’s functions. Such a transformation
looks like

|1k〉 = |Ik〉 + |IIk〉√
2

, |2k〉 = |Ik〉 − |IIk〉√
2

. (102)

Derivation of kinetic equation for the Cooperon in the new
basis is presented in Appendix C 1. This equation has a matrix
form

[1/τφ + iqvF + γ̂D]Ĉq(φ,φ0)

=
∫

dφ′

2π
γ̂C(φ − φ′)Ĉq(φ′,φ0) + γ Î δ(φ − φ0), (103)

where Î is the unit matrix 4 × 4, and the matrix γ̂C(φ) contains
three angular harmonics

γ̂C(φ) = γ̂0 + γ̂−1e
−iφ + γ̂−2e

−2iφ. (104)

The expressions for matrices γ̂0,γ̂−1,γ̂−2, and γ̂D are presented
in the Appendix C 1.

The conductivity correction is expressed in terms of the
matrix return probability as follows:

δσtot = −e2

�

l2
tr

γ

∫
dφ

2π
Tr[γ̂ (π − φ)ξ̂ Ŵ (φ)](1 + cos φ),

(105)
where

Ŵ (φ − φ0) =
∫

d2q
(2π )2

Ĉq(φ,φ0) (106)
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and

ξ̂ =

⎡
⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 1

⎤
⎥⎥⎥⎦ . (107)

Expanding Ŵ (φ) in the Fourier series

Ŵ (φ) = 1

2πl2

∞∑
M=−∞

ŵMei(M−1)φ, (108)

we can write the conductivity correction in a form similar to
Eq. (68):

δσtot = − e2

2π�

(
ltr

l

)2 1

γ
Tr

[
γ̂−2

2
ξ̂ ŵ−2

+
(

γ̂−2 − γ̂−1

2

)
ξ̂ ŵ−1 −

(
γ̂−1 − γ̂0 + γ̂−2

2

)
ξ̂ ŵ0

+
(

γ̂0 − γ̂−1

2

)
ξ̂ ŵ1 + γ̂0

2
ξ̂ ŵ2

]
. (109)

Since � � 1, the matrices standing in front of ŵn can be
calculated for � = 0. They are written in Appendix C 2.

For q = 0, Eq. (103) is easily solved by expansion Ĉq(φ,φ0)
in the Fourier series over exp(iMφ). Doing so, one can
find “masses” of the diffusive modes which are given by
the eigenvalues of the matrices γ̂D − γ̂M (M = 0,−1,−2).
These matrices are presented in Appendix C 3. For q 
= 0,
different harmonics couple with each other. In the diffusion
approximation, when ql � 1, the coupling is weak and
the mode eiMφ is only effectively coupled with the nearest
modes ei(M±1)φ. The main formulas describing diffusion
approximation in the presence of the block mixing are quite
similar to those obtained in Sec. III C. We present them in
Appendix C 4.

Next, we demonstrate that the interblock mixing leads to
appearance of two additional singular modes which do not
show up in the absence of mixing. To this end, let us analyze
eigenvalues of the matrix γ̂D − γ̂−1. This matrix is diagonal,
so that its eigenvalues are given by the diagonal elements. The
matrix element (γ̂D − γ̂−1)44 is exactly equal to zero, while the
element (γ̂D − γ̂−1)33 = 4η�2 turns to zero for � = 0 when
interblock transitions are absent. Hence, there are two modes
which are singular (gapless for any η) in the limit � → 0.

We will call these modes interblock singular modes (ISM). In
Appendix D, we present calculation of the contribution of ISM
to the conductivity and also find equations describing limiting
cases η → 0 or 1. In the following, we summarize the results
of the calculations. For b = 0, conductivity correction coming
from ISM reads as

δσISM = e2

4π2�

[
ln

(
1

�

)
− ln

(
1

� + 4�2η/(1 + η2)

)]
.

(110)

We see that contributions of two modes exactly cancel each
other in the limit � → 0. This explains why these modes do

not show up in the model of independent blocks. In the limit
� → 0, the first logarithm dominates. It represents a standard
singlet contribution responsible for weak antilocalization.

Importantly, Eq. (110) is valid in the whole interval 0 <

η < 1 because the applicability of the diffusion approximation
which was used in our derivation is guaranteed by the
smallness of dimensionless gaps of the diffusive modes:
� � 1 and � + 4�2η/(1 + η2) � 1. Next, we notice that
other modes, discussed in previous sections, are not strongly
affected by block mixing provided that η is not too close to
0 or 1. This allows one to find analytical expression for total
conductivity correction valid in the whole interval 0 < η < 1,

except narrow regions near points η = 0 and 1:

δσtot = δσISM + 2δσII, (111)

where δσII is given by Eq. (68) with wn determined by Eq. (41)
and coefficient 2 in front of δσII accounts for the contribution
of two blocks. To avoid confusion, we stress again that adding
expression for δσISM obtained in the diffusion approximation
to the ballistic contribution 2δσII is well controlled because for
small � and � gaps of ISM are much smaller than γ.

B. Nonzero magnetic field B �= 0.

In a finite magnetic field, the contribution of ISM becomes

δσISM = − e2

4π2�

×
N∑

n=0

[ |b|
|b|(n + 1/2) + A1

− |b|
|b|(n + 1/2) + A2

]

= − e2

4π2�
[h (|b|,A1) − h (|b|,A2)] , (112)

where

A1 =
(

� + 4η�2

1 + η2

)
1 + η2 − η

2(1 + η2)
, A2 = �

1 + η2 − η

2(1 + η2)
.

(113)

Next, we write

�σISM = δσISM(b) − δσISM(0)

= e2

4π2�
[h(|b|,A2) − h(|b|,A1) − h(0,A2) + h(0,A1)]

(114)

and use Eq. (75) to find asymptotes of Eq. (114) for the case
η�2 � �:

�σISM ≈ − e2

4π2�

×
⎧⎨
⎩

b2

6
(1+η2)2

(1+η2−η)2

[
1
�2 − 1

(�+ 4η�2

1+η2 )2

]
for |b| � �,

−π2η�2(1+η2−η)
(1+η2)2|b| for |b| � �.

(115)
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For stronger interblock coupling η�2 � �, we get

�σISM ≈ − e2

4π2�

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

b2

6
(1+η2)2

(1+η2−η)2�2 for |b| � �,

ln
( |b|

�

) − b2

96
(1+η2)4

(1+η2−η)2η2�4 for � � |b| � η�2,

−π2η�2(1+η2−η)
(1+η2)2|b| − ln

(
�

η�2

)
for |b| � η�2.

(116)

The total conductivity correction reads as

δσtot = δσISM + δσI + δσII, (117)

where δσI,II are given by Eq. (68) with wn determined by
Eqs. (51) and (82), respectively (see Sec. IV B). Equation (117)
yields the most general expression for conductivity correction
in magnetic field. Just in the absence of field, expression
δσISM(b) was found in the diffusion approximation, while δσI

and δσII are calculated by using exact ballistic formulas. Such
an approach is well controlled for small � and � provided that
η is not too close to 0 or 1.

Let us now consider the behavior of the conductivity
correction near points η = 0 and 1. At zero field, in the absence
of block mixing, the total conductivity correction is given by
Eqs. (69) and (70), respectively, multiplied by a factor 2 which
accounts for the contribution of the block I. Block mixing
slightly modifies these equations because neglect of � in δσI

and δσII is no longer justified. On the other hand, calculation
of conductivity near these points can be essentially simplified
because these are the points where the diffusion approximation
works well.

(a) η → 0. As shown in Appendix D, in the presence of the
block mixing instead of Eq. (69) (multiplied by the factor 2),
we get the following equation:

δση ≈ − e2

2π2�
ln

(
1

� + η2 + 2η�2

)
, (118)

which accounts for two weakly mixed blocks at b = 0. The
total conductivity is given by the sum of δσISM and δση:

δσtot = δση + δσISM

≈ e2

4π2�

[
ln

(
1

�

)
− ln

(
1

� + 4�2η

)

− 2 ln

(
1

� + η2 + 2η�2

)]
. (119)

This equation is valid, provided that η � 1. In the interval
�2 � η � 1 it matches with Eq. (111).

The variation of the total conductivity correction with the
magnetic field �σtot(b) = δσtot(b) − δσtot(0) is presented as a
sum of two terms:

�σtot = �σISM + �ση (120)

where �σISM is given by Eqs. (114)–(116), whereas

�ση = δση(b) − δση(0)

= − e2

4π2�

[
h

(
|b|,� + η2 − ηb + 2η�2

2

)
+ h

(
|b|,� + η2 + ηb + 2η�2

2

)
− 2h

(
0,

� + η2 + 2η�2

2

)]

≈ − e2

2π2�

⎧⎨
⎩

− b2

6
1

(�+η2+2η�2)2 for |b| � � + η2 + 2η�2,

ln
(

�+η2+2η�2

|b|
)

for |b| � � + η2 + 2η�2.
(121)

The low-field asymptotic of �σtot deserves special attention. From Eqs. (115) and (121), we find for |b| → 0,η � 1

�σtot ≈ e2b2

12π2�

[
1

(� + η2 + 2η�2)2
− 4η�2(� + 2η�2)

�2(� + 4η�2)2

]
. (122)

We see that coefficient in the square brackets changes sign with increasing of η or �. Consequently, the magnetoconductivity
also changes sign and becomes negative.

(b) η → 1. Instead of Eq. (70) (multiplied by the factor 2), we get the following equation:

δσ1−η = e2

4π2�

[
ln

(
1

� + (1 − η)2/2

)
+ ln

(
1

� + (1 − η)2/2 + 2�2

)]
, (123)

which should be added to δσISM:

δσtot = δσ1−η + δσISM

≈ e2

4π2�

[
ln

(
1

�

)
− ln

(
1

� + 2�2

)
+ ln

(
1

� + (1 − η)2/2 + 2�2

)
+ ln

(
1

� + (1 − η)2/2

)]
. (124)

This equation for zero-field correction is valid, provided that 1 − η � 1. In the interval �2 � 1 − η � 1, it matches with
Eq. (111).
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The variation of the total conductivity correction with the magnetic field is written as

�σtot = �σISM + �σ1−η, (125)

where �σISM is given by Eqs. (114)–(116), whereas

�σ1−η = δσ1−η(b) − δσ1−η(0)

= e2

8π2�

{
h

[
|b|,� + (1 − η)2/2 + 2b(1 − η)

4

]
+ h

[
|b|,� + (1 − η)2/2 + 2b(1 − η) + 2�2

4

]

+h

[
|b|,� + (1 − η)2/2 − 2b(1 − η)

4

]
+ h

[
|b|,� + (1 − η)2/2 − 2b(1 − η) + 2�2

4

]

− 2h

[
0,

� + (1 − η)2/2

4

]
− 2h

[
0,

� + (1 − η)2/2 + 2�2

4

]}

≈ e2

4π2�

⎧⎨
⎩

− 2b2

3

{
1

[�+ (1−η)2

2 ]2
+ 1

[�+ (1−η)2

2 +2�2]2

}
for |b| → 0,

ln
{ [�+ (1−η)2

2 ][�+ (1−η)2

2 +2�2]
b2

}
for |b| � � + (1 − η)2/2 + 2�2.

(126)

C. Crossover between ensembles

Let us discuss results obtained in Secs. V A and V B in
the context of crossover between orthogonal and symplectic
ensembles. For an arbitrary value of η between 0 and 1 and � 
=
0, all symmetries are broken except time-reversal symmetry
(see Ref. [44] for detailed discussion of symmetries existing
in the system), so that in the absence of dephasing (� = 0)
there exists only one gapless mode. This mode gives rise to
antilocalizing conductivity correction described by the first
logarithm in Eq. (110).

In the limit η → 0, the spin degree of freedom is irrelevant,
so that we have two copies of a system with orthogonal
symmetry. Indeed, as seen from Eq. (119) for η = 0 we have
two (due to the spin degeneracy) gapless modes yielding
the WL correction to the conductivity [described by the last
logarithm in Eq. (119)].

The case η → 1 turns out to be more subtle. Indeed,
one may expect that in this case all symmetries are broken
because of the interblock transition, and one may conclude
that there exists a single copy of a system with symplectic
symmetry corresponding to a divergent (in the limit � → 0)
logarithm. However, such a conclusion is not supported by
our calculations. Indeed, as seen from Eq. (124), in addition
to always singular mode [one of the ISM described by the

FIG. 3. (Color online) Conductivity correction as a function of η

for infinite dephasing time. Dashed line: sum of two logarithms.

first term in Eq. (124)] there also exists a mode which
becomes singular when η becomes exactly equal to 1. This
mode corresponds to the last term in Eq. (124). In other
words, for η = 1 there exist two copies of the symplectic
ensembles instead of one expected. The physical explanation
of this fact follows from analysis of the interblock matrix
element. Specifically, from the last line of Eq. (C1) we
see that in the limit η → 1, the interblock matrix element

(a)

(b)

FIG. 4. (Color online) Conductivity correction as a function of
dephasing rate for different values of η (a). Conductivity correction
as a function of dephasing rate for η = 0.54 (b).
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(a)

(b)

FIG. 5. (Color online) Magnetoconductivity within the block II
in the intervals −10 < b < 10 (a) and −0.5 < b < 0.5 (b) for η =
0.1,� = 0.01.

exactly equals to zero, which means that perturbation (99)
does not effectively mix blocks and, therefore, is not sufficient
to break all symmetries except the time-reversal one. One
may expect that this symmetry, however, is broken by the
Rashba term arising in asymmetric quantum wells (see
discussion and symmetry arguments in Refs. [44,45]), so
that only single singular antilocalizing mode should survive.
The detailed analysis of the interference correction in the
presence of the Rashba coupling is out of the scope of this
work.

VI. PLOTS OF THE CONDUCTIVITY CORRECTION

As seen from equations derived in the previous sections,
interference correction at zero field as well as magnetoconduc-
tivity can be negative or positive depending on η, �, and �.

In this section, we present corresponding pictures for different
values of parameters.

A. Interference correction at zero field

In the absence of magnetic field and block mixing
(b = 0, � = 0), interference correction depends on two pa-
rameters, η and � : δσtot = δσtot(η,�). In Fig. 3, the conduc-
tivity calculated by using Eqs. (41), (68), and (84) is plotted
as a function of η for � = 0.

As seen, δσtot diverges at η → 0 and 1, but remains finite for
intermediate values of η. As a rough approximation, one can
describe this dependence as a sum of two logarithmic terms,

(a)

(b)

FIG. 6. (Color online) Magnetoconductivity within the block II
in the intervals −10 < b < 10 (a) and −0.5 < b < 0.5 (b) for η =
0.3,� = 0.01.

Eqs. (69) and (70) (multiplied by a factor 2 accounting for the
contribution of the block II). This sum is shown by a dashed
line.

With increasing �, correction is suppressed. This is il-
lustrated in detail in Fig. 4(a), where the dependence of
δσtot on � is plotted for different η increasing from bottom
to top. Although at very large � correction always decays
(by absolute value), the dependence of δσtot on � can be
nonmonotonous for some intermediate values of η as shown in
Fig. 4(b) for η = 0.54. Such a counterintuitive behavior arises
due to the competition between localizing and antilocalizing
contributions into interference correction (an analogous result
was obtained for two-dimensional holes in semiconductor
heterostructures [31]).

B. Magnetoconductivity in a single cone

In this section we present results of numerical simulations
of magnetoconductivity in a single Dirac cone (block II)
for � = 0. In Figs. 5–10 we plotted dependence δσII(b) for
fixed low dephasing rate, � = 0.01, and different η. In the
upper panels of these pictures, δσII(b) is plotted within the
interval −10 < b < 10, while in the lower panels we plot
in more detail the low-field behavior −0.5 < b < 0.5. The
most important information presented in these pictures is the
asymmetry of the function δσII(b). (Such an asymmetry was
previously found numerically in Ref. [46].) For η close to
0 and 1, the asymmetry is not that strong, however, even in

085401-16



INTERFERENCE-INDUCED MAGNETORESISTANCE IN . . . PHYSICAL REVIEW B 90, 085401 (2014)

(a)

(b)

FIG. 7. (Color online) Magnetoconductivity within the block II
in the intervals −10 < b < 10 (a) and −0.5 < b < 0.5 (b) for η =
0.5,� = 0.01.

these cases the peak of the magnetoconductivity is shifted
away from the point b = 0. The most asymmetric curves
are obtained for intermediate values of η [see, for example,
plots of magnetoconductivity for η = 0.5 (Fig. 7) and η = 0.6
(Fig. 8)].

C. Total magnetoconductivity in the absence of the block mixing

In the previous section we demonstrated that in a single
Dirac cone the magnetoconducitivty is a strongly asymmetric
function of b. Taking into account contribution of the second
block restores symmetry with respect to field inversion since,
as mentioned above, δσI(b) = δσII(−b) and, consequently, the
total correction δσtot = δσI(b) + δσII(b) is an even function
of b. As an example, let us consider the dependence of δσtot

on b in the absence of block mixing (� = 0) for � = 0.01
and different values of η (see Figs. 11–16). Comparing this
curve with Figs. 5–10 plotted for the same parameters but for
a single block, we see that adding of the contribution of the
second block shifts the minimum of the conductivity back to
the point b = 0.

The most interesting result is obtained for intermediate
values of η. In particular, for η = 0.5, we see two minima in
the low-field region symmetrical with respect to point b = 0.

(a)

(b)

FIG. 8. (Color online) Magnetoconductivity within the block II
in the intervals −10 < b < 10 (a) and −0.5 < b < 0.5 (b) for η =
0.6,� = 0.01.

(a)

(b)

FIG. 9. (Color online) Magnetoconductivity within the block II
in the intervals −10 < b < 10 (a) and −0.5 < b < 0.5 (b) for η =
0.7,� = 0.01.
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(a)

(b)

FIG. 10. (Color online) Magnetoconductivity within the block II
in the intervals −10 < b < 10 (a) and −0.5 < b < 0.5 (b) for η =
0.9,� = 0.01.

(a)

(b)

FIG. 11. (Color online) Total magnetoconductivity in the inter-
vals −10 < b < 10 (a) and −0.5 < b < 0.5 (b) for η=0.1,�=0.01.

(a)

(b)

FIG. 12. (Color online) Total magnetoconductivity in the inter-
vals −10 < b < 10 (a) and −0.5 < b < 0.5 (b) for η=0.3,�=0.01.

(a)

(b)

FIG. 13. (Color online) Total magnetoconductivity in the inter-
vals −10 < b < 10 (a) and −0.5 < b < 0.5 (b) for η=0.5,�=0.01.
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(a)

(b)

FIG. 14. (Color online) Total magnetoconductivity in the inter-
vals −10 < b < 10 (a) and −0.5 < b < 0.5 (b) for η = 0.6,� =
0.01.

D. Total magnetoconductivity in the presence
of the block mixing

In this section we present the plots for magnetoconductivity
in the presence of the block mixing. As we mentioned in
Sec. V, for weak coupling between blocks (� � 1) one can use
the diffusion approximation for calculation of the contribution
of the ISM. This contribution should be added to the term
δσI + δσII, where δσI and δσII can be calculated by using
exact ballistic equations with � = 0. Such an approach can be
applied within the whole interval 0 < η < 1 except vicinities
of the points η = 0 and 1. At these special points, one can also
obtain analytical results by using the diffusion approximation
for all terms contributing to the conductivity correction δσtot.
Using the approach described above, we plotted in Fig. 17 total
correction δσtot for different η both for the absence of the block
mixing [� = 0, see Fig. 17(a)] and for weak interblock cou-
pling [� = 0.1, see Fig. 17(b)]. Comparing these plots, we see
that the main effect of the mixing is the appearance of the pos-
itive peak in the region of low b for η � 0.1. This peak is most
pronounced for η = 0.3. as shown in Fig. 18. Physically, low-
field negative magnetoconductivity arises due to the contribu-
tion of ISM. The peak at b = 0 is well described by Eq. (112)
[see also Eq. (122) and discussion after this equation].

E. Strong-field asymptotic of the conductivity

Finally, we present the results for the asymptotical behavior
of the conductivity correction at sufficiently strong B, such that
the magnetic length becomes much smaller than the mean-free

(a)

(b)

FIG. 15. (Color online) Total magnetoconductivity in the inter-
vals −10 < b < 10 (a) and −0.5 < b < 0.5 (b) for η = 0.7,� =
0.01.

path (|b| � 1). In this case, the main contribution to the
quantum correction comes from the short electron trajectories
involving scattering on untypical impurity configurations,
namely, on the complexes of three impurities separated by
untypical distance lB � l [59,60].

For simplicity, we neglect here block mixing and consider
δσII. As shown in Appendix E in the strong-field limit
conductivity correction can be presented as

δσII = e2

2π�

lB

l
AII(η) ∝ 1√

b
, (127)

so that conductivity decays as a square root of the field: δσII ∝
1/

√|b|. The coefficient AII(η) is different for the positive and
negative b. Its analytical dependence is found in Appendix E.
The plots of AII(η) for positive and negative fields are shown
in Fig. 19. Due to the property δσI(b) = δσII(−b), Fig. 19
presents at the same time dependence of AI(η) for negative
and positive fields, respectively. The sum AI(η) + AII(η) which
determines asymptotical behavior of the total correction turns
to zero at η ≈ 0.715.

VII. SUMMARY

We have developed a microscopic theory of the quantum
transport in spin-orbit metals realized in HgTe quantum wells
away from the topological insulator phase. Our theory is
applicable to a wide range of particle concentrations and
describes the crossover between WL and WAL regimes. We
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(a)

(b)

FIG. 16. (Color online) Total magnetoconductivity in the inter-
vals −10 < b < 10 (a) and −0.5 < b < 0.5 (b) for η = 0.9,� =
0.01.

(a)

(b)

FIG. 17. (Color online) Conductivity correction as a function of
b at � = 0.01 and different η (η = 0.1,0.3,0.5,0.6,0.7,0.9) in the
absence of the block mixing � = 0 (a) and for weak mixing � = 0.1
(b).

FIG. 18. (Color online) Conductivity correction as a function of
b at � = 0.001, η = 0.3, � = 0.1.

demonstrated that this crossover is governed by the single
parameter η (0 � η � 1). All essential information about
details of the spectrum and eigenfunctions at the Fermi
energy is encoded in this parameter. Hence, our results are
applicable not only to the HgTe quantum wells, but also to
other systems governed by the generic Hamiltonian (1), in
particular, to surfaces of 3D topological insulators [53], to
massive Dirac fermions in graphene on the BN substrate [64],
and to semiconductors with strong Rashba splitting of the
spectrum [10].

We have found analytically an exact expression for the
Cooperon propagator in magnetic field valid beyond the
diffusion approximation. Using this equation, we have cal-
culated the interference-induced magnetoresistance in a wide
interval of magnetic fields. We found that the contributions
of the two massive Dirac cones do not coincide, δσI(b) 
=
δσII(b), and both are asymmetric functions of the magnetic
field: δσI(b) 
= δσI(−b) and δσII(b) 
= δσII(−b). Only the total
conductivity correction δσI + δσII is an even function of the
magnetic field. Special attention was given to the low- and
strong-field limits. In particular, we have found that each
Dirac cone taken separately gives a linear contribution to the
low-field magnetoresistance, whereas the total correction is
parabolic in the limit B → 0. In the opposite limit of large

FIG. 19. (Color online) Coefficient A as a function of η for b →
∞ (lower curve) and for b → −∞ (upper curve).
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B, the magnetoresistance decays as 1/
√

B with the prefactor
being a function of the electron concentration. We have also
demonstrated that the block mixing gives rise to additional
singular diffusive modes which do not show up in the absence
of the mixing. One of these modes remains singular at B = 0
and T = 0 for arbitrary electron concentration and yields
the WAL correction. This implies that any small but finite
coupling between blocks turns the system into WAL regime at
sufficiently low temperatures. We have shown that the quantum
correction might change in nonmonotonous way both with the
phase-breaking rate and with the magnetic field and that the
block mixing might lead to an additional mechanism of the
nonmonotonous magnetoresistance.

Finally, we note that the crossover from WL to WAL with
increasing carrier concentration in HgTe-based quantum wells
was already observed in a number of experiments [55–58].
Detailed analysis of experimental data is out of scope of this
paper. It is worth, however, stressing that on the qualitative
level our theoretical predictions for magnetoconducitivity (see
Fig. 17) are in a good agreement with experimental results (see
Fig. 3 of Ref. [55]).
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APPENDIX A: SOLUTION OF THE KINETIC EQUATION
FOR THE COOPERON IN THE ABSENCE

OF THE BLOCK MIXING

1. Zero magnetic field

Here, we find analytically rigorous solution of Eq. (37)
valid beyond the diffusion approximation. As seen from this
equation, the incoming term of the collision integral contains
only three angular harmonics: 0,−1,−2. This allows us to
present the solution of Eq. (37) in the following form:

CQ(φ,φ0) = C0 + ei(φQ−φ)C−1 + e2i(φQ−φ)C−2 + δ(φ − φ0)

1 + � + iQn
,

(A1)

where the coefficients

C0 = 1

1 + η2

∫
dφ

2π
CQ(φ,φ0), (A2)

C−1 = 2η

1 + η2

∫
dφ

2π
CQ(φ,φ0)ei(φ−φQ), (A3)

C−2 = η2

1 + η2

∫
dφ

2π
CQ(φ,φ0)e2i(φ−φQ) (A4)

do not depend on φ being the functions of φ0 and φQ only.
Here, φQ is the angle of the vector Q. From Eqs. (A1)–(A4),

we find a system of equations for C0, C−1, and C−2:

M̂

⎡
⎢⎣

C0

C−1

C−2

⎤
⎥⎦ = 1

2π (1 + � + iQn0)

⎡
⎢⎣

1

ei(φ0−φQ)

e2i(φ0−φQ)

⎤
⎥⎦ . (A5)

Here, matrix M̂ and its elements are given, respectively, by
Eqs. (42) and (43) of the main text. From Eqs. (A1), (A5),
and (42), we find

CQ(φ,φ0) = δ(φ − φ0)

1 + � + iQn

+ 1

2π (1 + � + iQn)(1 + � + iQn0)

×

⎡
⎢⎢⎣

1

ei(φQ−φ)

e2i(φQ−φ)

⎤
⎥⎥⎦

T

M̂−1

⎡
⎢⎢⎣

1

ei(φ0−φQ)

e2i(φ0−φQ)

⎤
⎥⎥⎦ , (A6)

where n = (cos φ0, sin φ0).
Different terms entering the right-hand side of Eq. (A6)

have transparent physical sense. The first term corresponds
to ballistic propagation. The second one can be presented
as a series over functions Pn (by expanding of the matrix
M̂−1) which, in fact, is an expansion over number N of
collisions (the zero term in this expansion corresponds to
N = 1) [63]. Having in mind to calculate interference-induced
magnetoresistance, we can exclude the term N = 1 from the
summation [65]. Physically, this term describes return to the
initial point after a single scattering, so that corresponding
trajectory does not cover any area and, consequently, is not
affected by the magnetic field. We neglect both ballistic
(N = 0) and N = 1 terms in the Cooperon propagator, and
find

CQ(φ,φ0) = 1

2π (1 + � + iQn)(1 + � + iQn0)

×

⎡
⎢⎢⎣

1

ei(φQ−φ)

e2i(φQ−φ)

⎤
⎥⎥⎦

T

(
M̂−1 − M̂−1

Q=∞
)
⎡
⎢⎢⎣

1

ei(φ0−φQ)

e2i(φ0−φQ)

⎤
⎥⎥⎦.

(A7)

Here, we took into account that Pn → 0 for Q → ∞. Let
us now find the return probability. To this end, we make
expansions

1

1 + � + iQn
=

∞∑
n=−∞

Pne
in(φ−φQ),

1

1 + � + iQn0
=

∞∑
m=−∞

Pme−im(φ0−φQ)

in Eq. (A7), substitute the obtained equation into Eq. (38),
take r = r0, and average over φQ, thus arriving to Eqs. (40)
and (41) of the main text.
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2. Nonzero magnetic field

In this Appendix, we find the exact solution of Eq. (50)
valid beyond the diffusion approximation. Below, for the sake
of brevity, we omit arguments r0 and φ0 in the Cooperon
propagator. First, we make a Fourier transform with respect to
x coordinate

C(r,φ) =
∫

dk

2π
eikxC(k,y,φ) (A8)

and rewrite Eq. (50) in a form similar to Eq. (37):

C(k,y,φ) = R̂[C0(k,y) + e−iφC−1(k,y)

+ e−2iφC−2(k,y) + e−ikx0δ(y − y0)δ(φ − φ0)],

(A9)

where

C0(k,y) = 1

1 + η2

∫
dφ

2π
C(k,y,φ), (A10)

C−1(k,y) = 2η

1 + η2

∫
dφ

2π
C(k,y,φ)eiφ, (A11)

C−2(k,y) = η2

1 + η2

∫
dφ

2π
C(k,y,φ)e2iφ, (A12)

and

R̂ = 1

1 + � + iq̂nl

= 1

1 + � + il
[

cos φ
(
k + y/l2

B

) + sin φ(−i∂/∂y)
] .
(A13)

Next, we introduce the canonically conjugated variables

ξx = lB

(
k + y

l2
B

)
, ξy = −ilB

∂

∂y
, [ξ̂x,ξ̂y] = i, (A14)

and use the property

ξn = eiφa†aξxe
−iφa†a, (A15)

where

a† = ξx − iξy√
2

, a = ξx + iξy√
2

, [a,a†] = 1. (A16)

Using this property, we can transform the operator R̂ entering
the right-hand side of Eq. (A9) as follows:

R̂ = eiφa†a 1

1 + � + iξxl/ lB
e−iφa†a (A17)

that allows us to present the kernel of this operator in the ξx

representation in a simple form

〈ξx |R̂|ξ ′
x〉 =

n=∞∑
n=0

m=∞∑
m=0

eiφ(n−m)Pnm�∗
n (ξx)�m(ξ ′

x), (A18)

where �n(ξ ) = π−1/4(2nn!)−1/2 exp(−ξ 2/2)Hn(ξ ) are the
eigenfunction of the harmonic oscillator with the Hamil-
tonian a†a + 1

2 [here, Hn(ξ ) are Hermitian polynomials]

and

Pnm =
∫ ∞

−∞
dξ

�∗
n (ξ )�m(ξ )

1 + � + iξ l/ lB
. (A19)

By writing [1 + � + iξ l/ lB]−1 = (lB/ l)
∫ ∞

0 dt exp[−t(1 +
�)lB/ l − itξ ], after simple calculations we find Eqs. (53) of
the main text.

As a next step, we change in Eq. (A9) variable y to
ξx and expand functions C(k,y,φ), C0(k,y), C−1(k,y,φ),
and C−2(k,y,φ) over a full set of functions �n(ξx) =
�n (klB + y/lB ):

C(k,y,φ) =
∞∑

n=0

C(n)(k,φ)�n(ξx),

(A20)

Cl(k,y) =
∞∑

n=0

C
(n)
l (k)�n(ξx), l = 0,−1,−2.

Doing so, we find

C(n)(k,φ) =
∞∑

m=0

eiφ(n−m)Pnm

[
C

(m)
0 (k) + e−iφC

(m)
−1 (k)

+ e−2iφC
(m)
−2 (k) + l−1

B e−ikx0δ(φ − φ0)�m

(
ξ 0
x

)]
,

(A21)

where ξ 0
x = klB + y0/lB. Now, we multiply Eq. (A21) con-

sequently by 1, eiφ, e2iφ and average over φ having in mind
Eqs. (A10)–(A12). Next, we make a replacement n → n − 1
and n → n − 2 in the second and third of the obtained
equations, respectively. As a result, we obtain a system of
closed equations for C

(m)
0 , C

(m−1)
−1 , and C

(m−2)
−2 , the solution of

which can be written in a matrix form⎡
⎢⎢⎣

C
(m)
0

C
(m−1)
−1

C
(m−2)
−2

⎤
⎥⎥⎦

= e−ikx0

∞∑
s=0

eiφ0(m−s)

2π lB
M̂−1

m−1

⎡
⎢⎣

Pm,s

Pm−1,s

Pm−2,s

⎤
⎥⎦�s

(
ξ 0
x

)
, (A22)

where matrix M̂m is given by Eq. (52) of the main text and
we took into account that Pnm = Pmn. To find the Cooperon
propagator, we need to substitute Eq. (A22) into (A21) and
then into (A20). Before doing so, we notice that one can
extend summation in Eq. (A21) over negative m because
by definition Pnm = 0 for m < 0. Neglecting also ballistic
contribution described by the term with delta function, we can
rewrite Eq. (A21) as

C(n)(k,φ) =
∞∑

m=−∞
eiφ(n−m)

[
PnmC

(m)
0 (k)

+Pn,m−1C
(m−1)
−1 (k) + Pn,m−2C

(m−2)
−2 (k)

]
. (A23)

Substituting now Eq. (A22) into (A23) and using Eqs. (A8)
and (A20), we finally obtain the equation for the Cooperon
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propagator in the magnetic field

C(r,r0,φ,φ0) =
∞∑

m=−∞

∞∑
s=−∞

∞∑
n=−∞

(A24)

×
∫

dk

2π
eik(x−x0) e

iφ(n−m)e−iφ0(s−m)

2π lB

×

⎡
⎢⎣

Pnm

Pn,m−1

Pn,m−1

⎤
⎥⎦

T(
M̂−1

m−1 − M̂−1
m=∞

)⎡⎢⎣
Pm,s

Pm−1,s

Pm−2,s

⎤
⎥⎦

×�s

(
ξ 0
x

)
�n(ξx). (A25)

Similar to Eq. (A7), we excluded contribution coming from
the processes with a single scattering act. The expression for
return probability turns out to be less complicated because for
r = r0 the integration over k yields∫

dk �s (ξx) �n(ξx)

=
∫

dk �s (klB + y/lB ) �n (klB + y/lB ) = δn,s l
−1
B ,

(A26)

so that we obtain Eq. (40) where wn are now given by Eq. (51)
of the main text.

APPENDIX B: LIMITING CASES

In this Appendix, we derive Eqs. (69), (70), (72), and (78)
directly from Eqs. (41) and (51).

1. Limiting cases for B = 0

As we mentioned at the end of Sec. III A for η = 0 and
1, one of the modes becomes singular. Keeping the singular
modes only, one can easily obtain the return probability and
the conductivity in vicinities of the points η = 0 and 1. For
η → 0, we find from Eq. (41)

W (φ) ≈ w1

2πl2
, w1 ≈

∫
d2Q

(2π )2

P 3
0

1 + η2 − P0
. (B1)

Substituting this equation to Eq. (68), we restore with
logarithmic precision Eq. (69) of the main text.

For η → 1, we find from Eq. (41)

W (φ) ≈ w0e
−iφ

2πl2
,

(B2)

w0 ≈
∫

d2Q
(2π )2

P 3
0

1 + (1 − η)2/2η − P0 − 2P 2
1

.

Again, with logarithmic precision we restore Eq. (70).

2. Limiting cases for B �= 0

Let us calculate magnetoresistance assuming that � �
1, lB � l, and η � 1 or 1 − η � 1, respectively. We will
start from exact equation (51) valid for b > 0 [for b < 0
calculations are analogous but one should start from Eq. (82)].
First, we notice that expression for Pnm simplifies for lB � l.

Expanding Eq. (A19) in series over l/ lB and � we easily find

Pmm ≈ 1 − � − b(2m + 1),
(B3)

Pm+1,m ≈ −i
√

b(m + 1) for m ≥ 0,

and Pmm = Pm+1,m = 0 for m < 0. Having in mind to invert
matrix Mm [see Eq. (52)] we kept linear-in-b terms in Pmm

which enters diagonal elements of M̂m and neglected terms
higher than

√
b in the Pm+1,m which enters off-diagonal

elements. In this approximation, one can neglect Pm+2,m which
are proportional to b. The ballistic contribution coming from
M̂−1

m=∞ can be also disregarded.
Next, we find eigenvalues and eigenvectors of M̂m that

allows us diagonalize matrix M̂−1
m . Just as in the case

B = 0, we only keep contributions of the singular modes. One
should keep terms of the linear order with respect to b in the
eigenvalues, while the eigenvectors can be taken at b = � = 0
and η = 0 (or 1 − η = 0). Results of calculations are presented
below separately for η → 0 and 1 − η → 0.

(a) η → 0. For this case, the singular contribution comes
from w1 that corresponds to zero moment: M = 0. Singular
eigenvalue of the matrix M̂m is given by λm ≈ M11

m −
(M12

m )2/M22
m − (M13

m )2/M33
m . The last two terms in this equa-

tion describe mixing of the regular modes with M = −1
and −2, respectively, to the singular mode. With the needed
precision we get

λm ≈ � + η2 + 2b[m(1 + η) + 3/2 + η]. (B4)

In the diffusion approximation, we only keep the singular
contribution to the M̂−1

m :

M̂−1
m ≈ 1

λm

⎡
⎢⎣

1 0 0

0 0 0

0 0 0

⎤
⎥⎦ . (B5)

From Eq. (68) we find that for η → 0 the conductivity
correction reads as δσ = −(e2/π�)[w1 + w0/2 + w2/2].
The main contribution comes from w1 which is given by
w1 ≈ (b/π )

∑∞
m=−∞ P 2

m+1,m+1/λm ≈ (b/π )
∑∞

n=0 1/λn−1 =
(b/π )

∑∞
n=0 1/{� + η2 + 2b[n(1 + η) + 1/2]} (here we

took into account that Pm+1,m+1 = 0 for m < −1 and put
Pm+1,m+1 ≈ 1 for m � 1). Multiplying both numerator and
denominator of the latter equation by (1 + η)−1 ≈ 1 − η,
and neglecting terms on the order of η3, bη2, and �η in the
denominator and terms on the order of bη in the numerator,
we obtain Eq. (72) of the main text.

(b) η → 1. For this case, the singular contribution comes
from w0 that corresponds to M = −1. Singular eigenvalue
of the matrix M̂m is given by λm ≈ M22

m − (M21
m )2/M11

m −
(M23

m )2/M33
m . The last two terms in this equation describe

mixing of the regular modes with M = 0 and −2, respectively,
to the singular mode. With the needed precision we get

λm ≈ � + (1 − η)2/2 + 4b[m + 1/2 + (1 − η)/2]. (B6)

In the diffusion approximation, we only keep the singular
contribution to the M̂−1

m :

M̂−1
m ≈ 1

λm

⎡
⎢⎣

0 0 0

0 −1 0

0 0 0

⎤
⎥⎦ . (B7)
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From these equations we find

w0 = b

π

∞∑
m=−∞

P 2
m,m

� + (1 − η)2/2 + 4b[m + 1/2 + (1 − η)/2]

≈ b

π

N∑
m=0

1

� + (1 − η)2/2 + 4b[m + 1/2 + (1 − η)/2]
.

(B8)

One can see that for b > 0, Eq. (B8) coincides with Eq. (78)
of the main text.

APPENDIX C: KINETIC EQUATION FOR THE
COOPERON IN THE PRESENCE OF THE BLOCK MIXING

1. Derivation of the kinetic equation

In the basis (102) matrix elements of the random potential
are given by

〈1k|V̂ |1k′ 〉 = Vkk′
1 + ei(φ′−φ)

1 + η

(
1 + η

2
+ �

√
η

)
,

〈2k|V̂ |2k′ 〉 = Vkk′
1 + ei(φ′−φ)

1 + η

(
1 + η

2
− �

√
η

)
,

(C1)
〈1k|V̂ |2k′ 〉 = 〈2k|V̂ |1k′ 〉

= Vkk′
1 − ei(φ′−φ)

1 + η

(
1 − η

2

)
.

The single-particle Green’s functions are diagonal in this
representation and the diagonal elements G1 and G2 read as

G1
R,A(E,k) = 1

E − Ek ± iγ1/2
,

(C2)

G2
R,A(E,k) = 1

E − Ek ± iγ2/2
,

where

γ1 = 2π

�

∑
α=1,2

∫
|〈1k|V̂ |αk′ 〉|2δ(Ek − Ek′)

d2k′

(2π )2

= γ0
1 + η2 + 2η�2 + 2�

√
η(1 + η)

(1 + η)2
, (C3)

FIG. 20. (Color online) Process corresponding to ingoing term in
the collision integral.

γ2 = 2π

�

∑
α=1,2

∫
|〈2k|V̂ |αk′ 〉|2δ(Ek − Ek′)

d2k′

(2π )2

= γ0
1 + η2 + 2η�2 − 2�

√
η(1 + η)

(1 + η)2
. (C4)

The Cooperon propagator obeys now the equation which is
similar to Eq. (34) but has the matrix form

[1/τφ + iqvF )]Cαβ,α0β0
q (φ,φ0)

=
∫

dφ′

2π
γ

αβ,α′β ′
C (φ − φ′)Cα′β ′,α0β0

q (φ′,φ0)

− γα + γβ

2
Cαβ,α0β0

q (φ,φ0) + γ δαα0δββ0δ(φ − φ0). (C5)

Here, we took into account in the outgoing term that the
elements of the Cooperon ladder with α 
= β decays with
the averaged rate (γ1 + γ2)/2. The ingoing scattering term
describes the process shown in Fig. 20. The scattering rate
γ

αβ,α′β ′
C (φ − φ′) is given by Eq. (26) with the replacement

〈|Ṽkk′ |2〉 with 〈αk|V̂ |α′
k′ 〉〈β−k|V̂ |β ′−k′ 〉 where matrix ele-

ments are given by Eq. (C1). The expression for conductivity
is given by Eq. (66) with the replacement of W (φ)γC(π − φ)
with

∑
αβα′β ′ Wαβ,α′β ′

(φ)γ α′β ′,βα

C (π − φ), where Wαβ,α′β ′
(φ)

is found from Eqs. (38) and (39) with the replacement of C

with Cαβ,α′β ′
(we note that indices α and β enter in different

order in Wαβ,α′β ′
and γ

α′β ′,βα

C ).
Equation (C5) can be rewritten in a more compact way by

expanding both Cooperon and scattering rate matrices over
the Pauli matrices σ̂(n) (n = 0,1,2,3 and σ̂0 is the unit 2 × 2
matrix):

γ
αβ,α′β ′
C (φ − φ′) = σ

αβ

(n) γ
nm
C (φ − φ′)σβ ′α′

(m) /2, (C6)

Cαβ,α′β ′
q (φ,φ0) = σ

αβ

(n) C
nm
q (φ,φ0)σβ ′α′

(m) /2. (C7)

Here, Cnm
q , γ nm

C are elements of 4 × 4 matrices. After simple
calculations, we arrive to Eqs. (103) and (104) of the main text
where

γ̂0 = γ0

(1 + η)2

⎡
⎢⎢⎢⎢⎣

(1 + η2 + 2η�2)/2 (1 − η2)/2 0 �
√

η(1 + η)

(1 − η2)/2 (1 + η2 − 2η�2)/2 0 �
√

η(1 − η)

0 0 η(1 − �2) 0

�
√

η(1 + η) �
√

η(1 − η) 0 η(1 + �2)

⎤
⎥⎥⎥⎥⎦ , (C8)
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γ̂−1 = γ0

(1 + η)2

⎡
⎢⎢⎢⎢⎣

2η(1 + �2) 0 0 2�
√

η(1 + η)

0 2η(1 − �2) 0 0

0 0 1 + η2 − 2η�2 0

2�
√

η(1 + η) 0 0 1 + η2 + 2η�2

⎤
⎥⎥⎥⎥⎦ , (C9)

γ̂−2 = γ0

(1 + η)2

⎡
⎢⎢⎢⎢⎣

(1 + η2 + 2η�2)/2 −(1 − η2)/2 0 �
√

η(1 + η)

−(1 − η2)/2 (1 + η2 − 2η�2)/2 0 −�
√

η(1 − η)

0 0 η(1 − �2) 0

�
√

η(1 + η) −�
√

η(1 − η) 0 η(1 + �2)

⎤
⎥⎥⎥⎥⎦ , (C10)

γ̂D =

⎡
⎢⎢⎢⎣

(γ1 + γ2)/2 0 0 (γ1 − γ2)/2

0 (γ1 + γ2)/2 0 0

0 0 (γ1 + γ2)/2 0

(γ1 − γ2)/2 0 0 (γ1 + γ2)/2

⎤
⎥⎥⎥⎦ (C11)

= γ0

(1 + η)2

⎡
⎢⎢⎢⎢⎣

1 + η2 + 2η�2 0 0 2�
√

η(1 + η)

0 1 + η2 + 2η�2 0 0

0 0 1 + η2 + 2η�2 0

�
√

η(1 + η) 0 0 1 + η2 + 2η�2

⎤
⎥⎥⎥⎥⎦ . (C12)

2. Matrices entering expression for the conductivity corrections

From Eqs. (C8), (C10), (C9), and (107), we find matrices entering Eq. (109). For our purposes, it is sufficient to know these
matrices for � = 0:

γ̂−2ξ̂

2
= γ0

(1 + η)2

⎡
⎢⎢⎢⎢⎣

1+η2

4 − 1−η2

4 0 0

− 1−η2

4
1+η2

4 0 0

0 0 − η

2 0

0 0 0 η

2

⎤
⎥⎥⎥⎥⎦ , (C13)

γ̂0ξ̂

2
= γ0

(1 + η)2

⎡
⎢⎢⎢⎢⎣

1+η2

4
1−η2

4 0 0
1−η2

4
1+η2

4 0 0

0 0 − η

2 0

0 0 0 η

2

⎤
⎥⎥⎥⎥⎦ , (C14)

(
γ̂−2 − γ̂−1

2

)
ξ̂ = γ0

(1 + η)2

⎡
⎢⎢⎢⎢⎢⎣

(1−η)2

2 − 1−η2

2 0 0

− 1−η2

2
(1−η)2

2 0 0

0 0 (1−η)2

2 0

0 0 0 − (1−η)2

2

⎤
⎥⎥⎥⎥⎥⎦ , (C15)

(
γ̂0 − γ̂−1

2

)
ξ̂ = γ0

(1 + η)2

⎡
⎢⎢⎢⎢⎢⎣

(1−η)2

2
1−η2

2 0 0
1−η2

2
(1−η)2

2 0 0

0 0 (1−η)2

2 0

0 0 0 − (1−η)2

2

⎤
⎥⎥⎥⎥⎥⎦ , (C16)

(
γ̂−1 − γ̂0 + γ̂−2

2

)
ξ̂ = γ0

(1 + η)2

⎡
⎢⎢⎢⎢⎣

2η − 1+η2

2 0 0 0

0 2η − 1+η2

2 0 0

0 0 η − 1 − η2 0

0 0 0 1 + η2 − η

⎤
⎥⎥⎥⎥⎦ . (C17)
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3. Matrices determining gaps of the diffusive modes

From Eqs. (C8), (C10), (C9), and (C11), we found matrices whose eigenvalues yield gaps of the diffusive Cooperon modes:

γ̂D − γ̂0 = γ0

(1 + η)2

⎡
⎢⎢⎢⎢⎣

1+η2+2η�2

2 − 1−η2

2 0 �
√

η(1 + η)

− 1−η2

2
1+η2+6η�2

2 0 −�
√

η(1 − η)

0 0 1 + η2 − η + 3η�2 0

�
√

η(1 + η) −�
√

η(1 − η) 0 1 + η2 − η + η�2

⎤
⎥⎥⎥⎥⎦ , (C18)

γ̂D − γ̂−2 = γ0

(1 + η)2

⎡
⎢⎢⎢⎢⎣

1+η2+2η�2

2
1−η2

2 0 �
√

η(1 + η)
1−η2

2
1+η2+6η�2

2 0 �
√

η(1 − η)

0 0 1 + η2 − η + 3η�2 0

�
√

η(1 + η) �
√

η(1 − η) 0 1 + η2 − η + η�2

⎤
⎥⎥⎥⎥⎦ , (C19)

γ̂D − γ̂−1 = γ0

(1 + η)2

⎡
⎢⎢⎢⎣

(1 − η)2 0 0 0

0 (1 − η)2 + 4η�2 0 0

0 0 4η�2 0

0 0 0 0

⎤
⎥⎥⎥⎦ . (C20)

We see that matrix γ̂D − γ̂−1 has two eigenvalues which turn
to zero at � = 0. As shown in the main text, two corresponding
diffusive modes cancel each other in the limit � → 0.

4. Generalization of the diffusion approximation
for the case of block mixing

In this Appendix, we generalize the diffusion approxima-
tion for the case of the block mixing. This approximation is
valid for ql � 1, when the coupling of different harmonics is
weak and the mode eiMφ is only effectively coupled with the
nearest modes ei(M±1)φ. In a full analogy with Sec. III C, we
find from Eqs. (103), (104), (106), and (108)

ŵM+1 =
∫

γ

γϕ + γ̂D − γ̂M + q2D̂M

l2d2q
(2π )2

. (C21)

Here, operator q2D̂M in the denominator of the integrand
appeared due to the coupling with M ± 1 modes:

q2D̂M = v2
F

〈
qn

1

γϕ − γ̂D − γ̂C

qn
〉
M

= q2v2
F

4
(τ̂M+1 + τ̂M−1), (C22)

where γ̂C is the operator with the matrix kernel given by
Eq. (104), 〈. . .〉M stands for projection on the mode exp(iMφ),

τ̂M = 1

γϕ + γ̂D − γ̂M

≈ 1

γ̂D − γ̂M

, (C23)

and γ̂M is given by Eqs. (C8)–(C10) for M = 0,−1,−2,

respectively (γM = 0 for other values of M). Hence,

D̂M = v2
F (τ̂M+1 + τ̂M−1)

4
. (C24)

For convenience, the matrices ŵn entering Eq. (109) are
presented as follows:

ŵ−2 =
∫

γ

γϕ + γ̂D + q2D̂−3

l2d2q
(2π )2

, (C25)

ŵ−1 =
∫

γ

γϕ + γ̂D − γ̂−2 + q2D̂−2

l2d2q
(2π )2

, (C26)

ŵ0 =
∫

γ

γϕ + γ̂D − γ̂−1 + q2D̂−1

l2d2q
(2π )2

, (C27)

ŵ1 =
∫

γ

γϕ + γ̂D − γ̂0 + q2D̂0

l2d2q
(2π )2

, (C28)

ŵ2 =
∫

γ

γϕ + γ̂D + q2D̂1

l2d2q
(2π )2

, (C29)

where

D̂−3 = v2
F (τ−2 + τ−4)

4
= v2

F

4

(
1

γ̂D − γ̂−2
+ 1

γ̂D

)
, (C30)

D̂−2 = v2
F (τ−1 + τ−3)

4
= v2

F

4

(
1

γ̂D − γ̂−1
+ 1

γ̂D

)
, (C31)

D̂−1 = v2
F (τ0 + τ−2)

4
= v2

F

4

(
1

γ̂D − γ̂0
+ 1

γ̂D − γ̂−2

)
,

(C32)

D̂0 = v2
F (τ1 + τ−1)

4
= v2

F

4

(
1

γ̂D

+ 1

γ̂D − γ̂−1

)
, (C33)

D̂1 = v2
F (τ2 + τ0)

4
= v2

F

4

(
1

γ̂D

+ 1

γ̂D − γ̂0

)
. (C34)

The results obtained above in this section can be easily
generalized for the case of weak magnetic field such that
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dimensionless field b is much smaller that unity. To this end,
one should slightly modify Eq. (C22) taking into account that
for b 
= 0 operators q̂x and q̂y no longer commute. Simple
calculation yields

v2
F

(
qn

1

γϕ − γ̂D − γ̂C

qn
)

M

=
(
q̂2

x + q̂2
y

)
v2

F

4
(τ̂M+1 + τ̂M−1)

+ i[q̂x,q̂y]v2
F

4
(τ̂M−1 − τ̂M+1). (C35)

Replacing operator q̂2
x + q̂2

y by its eigenvalue (4/l2)|b|(n +
1/2), we find that one should make the following replacement
in Eq. (C21):

q2D̂M → γ 2

[
|b|

(
n+ 1

2

)
(τ̂M+1 + τ̂M−1) − b

τ̂M−1 − τ̂M+1

2

]
(C36)

and also replace integral over l2d2q/(2π )2 with the
(|b|/π )

∑N∼1/|b|
n=0 .

While substituting τ̂M±1 into this equation one can set
� = 0. Corresponding sums can be calculated with the use
of Eq. (75).

APPENDIX D: CALCULATION OF CONDUCTIVITY
CORRECTION IN THE PRESENCE OF THE BLOCK

MIXING

In this Appendix, we present calculation of conductivity
correction in the presence of the block mixing.

1. B = 0

Let us start with calculation of the contributions of ISM.
These modes correspond to two eigenvalues (elements 33 and
44 of the diagonal matrix γ̂D − γ̂−1), one of which equals to
zero at any � and another one turns to zero at � → 0. These
modes give contribution to conductivity δσISM, which comes

from w0 :

δσISM ≈ e2

2π�

(
ltr

l

)2 1

γ
Tr

[(
γ̂−1 − γ̂0 + γ̂−2

2

)
ξ̂ ŵ0

]

= e2

2π�

∫
l2
trd

2q
(2π )2

Tr

[(
γ̂−1 − γ̂0 + γ̂−2

2

)

× ξ̂
1

γϕ + γ̂D − γ̂−1 + q2D̂−1

]
. (D1)

Further calculations will be performed within the diffusion
approximation, which was generalized for the case of the block
mixing in Appendix C 4. First, we project matrices γ̂D − γ̂−1,

[γ̂−1 − (γ̂0 + γ̂−2)/2]ξ̂ , and D̂−1 on the space formed by
eigenvectors corresponding to ISM (this means that we take
in these 4 × 4 matrices their bottom-right 2 × 2 blocks). From
Eqs. (C17), (C32), (C18), and (C19) we find projected matrices
(in all these matrices except γ̂D − γ̂−1 one can approximately
set � = 0)

γ̂D − γ̂−1 → γ0

(1 + η)2

[
4η�2 0

0 0

]
, (D2)

(
γ̂−1 − γ̂0 + γ̂−2

2

)
ξ̂ → γ0

1 + η2 − η

(1 + η)2

[−1 0
0 1

]
, (D3)

D̂−1 → v2
F

2γ0

(1 + η)2

1 + η2 − η

[
1 0
0 1

]
. (D4)

Substituting these projected matrices into Eq. (D1), neglecting
� everywhere except gap of one of the singular modes, after
simple calculations we find for contribution of ISM Eq. (110)
of the main text.

Next, we discuss special points η = 0 and 1. We start from
the case η ≈ 1. Above, we projected all matrices entering
Eq. (D1) on the basis formed by eigenvectors corresponding
to smallest eigenvalues of the matrix γ̂D − γ̂−1. Such an
approximation works well only far from the point η = 1.

Indeed, as seen from Eq. (C20) for η close to 1, two other
eigenvalues of the matrix γ̂D − γ̂−1 (matrix elements 11 and
22 of this diagonal matrix) become small and contribution
of two corresponding modes come into play. Let us now
project the matrices γ̂D − γ̂−1, [γ̂−1 − (γ̂0 + γ̂−2)/2]ξ̂ , and
D̂−1 on the space formed by these eigenvectors. From
Eqs. (C17), (C32), (C18), and (C19) we find

γ̂D − γ̂−1 → γ0

(1 + η)2

[
(1 − η)2 0

0 (1 − η)2 + 4�2η

]
≈ γ0

4

[
(1 − η)2 0

0 (1 − η)2 + 4�2

]
, (D5)

(
γ̂−1 − γ̂0 + γ̂−2

2

)
ξ̂ → γ0

(1 + η)2

(
2η − 1 + η2

2

)[
1 0

0 1

]
≈ γ0

4

[
1 0

0 1

]
, (D6)

D̂−1 → v2
F (1 + η)2(1 + η2)

4γ0η2

[
1 0

0 1

]
≈ 2v2

F

γ0

[
1 0

0 1

]
. (D7)

Substituting these projected matrices into Eq. (D1), neglecting � everywhere except gap of one of the diffusive modes, after
simple calculations we find contribution δσ1−η given by Eq. (123) of the main text.
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Now, we turn to the case η → 0. Analyzing Eqs. (C25)–(C29), one can see that for η � 1 contributions to conductivity
coming from matrices ŵ−1 and ŵ1 should be taken into account because matrices γ̂D − γ̂0 and γ̂D − γ̂−2 have zero eigenvalues
in the limit η → 0 and � → 0. Let us consider the corresponding contribution to the conductivity:

δση ≈ e2

2π�

(
ltr

l

)2 1

γ
Tr

[(
γ̂−2 − γ̂−1

2

)
ξ̂ ŵ−1 +

(
γ̂0 − γ̂−1

2

)
ξ̂ ŵ1

]

= e2

2π�

∫
l2
trd

2q
(2π )2

Tr

[(
γ̂−2 − γ̂−1

2

)
ξ̂

1

γϕ + γ̂D − γ̂−2 + q2D̂−2
+

(
γ̂0 − γ̂−1

2

)
ξ̂

1

γϕ + γ̂D − γ̂0 + q2D̂0

]
. (D8)

The two terms in the square brackets represent contributions
of two blocks, respectively.

From Eqs. (C18) and (C19), we see that after neglecting
terms proportional to � in the off-diagonal elements of
matrices γ̂D − γ̂0 and γ̂D − γ̂−2 these matrices become block
matrices consisting of left-upper and right-bottom 2 × 2
blocks. For both matrices, small eigenvalues (for small η and
�) correspond to the left-upper block. Projecting all matrices
entering Eq. (D8) on this block, we then transform projected
matrices by unitary transformation

Û = 1√
2

[
1 −1

1 1

]
. (D9)

After this transformation, off-diagonal elements of all pro-
jected matrices become small and can be neglected. One can
also neglect η and � in diagonal elements which remain finite
at η → 0 and � → 0. Then, we obtain

Û (γ̂D − γ̂0)Û−1 → γ0

[
1 0

0 η2 + 2η�2

]
, (D10)

Û (γ̂D − γ̂−2)Û−1 → γ0

[
η2 + 2η�2 0

0 1

]
, (D11)

Û

(
γ̂−2 − γ̂−1

2

)
ξ̂ Û−1 → γ0

[
1 0

0 0

]
, (D12)

Û

(
γ̂0 − γ̂−1

2

)
ξ̂ Û−1 → γ0

[
0 0

0 1

]
, (D13)

D̂−2 = D̂0 → v2
F

2γ0

[
1 0

0 1

]
. (D14)

After some simple algebra, we arrive to Eq. (118) of the main
text.

2. B �= 0

The results obtained in Appendix C 4 can be also used for
calculation of the conductivity correction in weak magnetic
field (b � 1). First, we calculate δσISM(b) − δσISM(0). In
this case, M = −1 and projection of the matrix τ̂−2 − τ̂0 at
the block corresponding to ISM goes to zero for � → 0.

Hence, the only effect of the magnetic field is the replacement
everywhere of the integration over d2q with the summation
over n. Simple calculations yield Eq. (112) of the main text.

Calculation of �σ1−η = δσ1−η(b) − δσ1−η(0) is more
tricky. In this case, projection of τ̂−2 − τ̂0 to the upper-left

block is approximately given by

τ̂−2 − τ̂0 → −8(1 − η)

γ0

[
0 1

1 0

]

and does not commute with the projection of the matrix γ̂D −
γ̂−1 on the upper-left block which is approximately given by

γ̂D − γ̂−1 → γ0

4

[
(1 − η)2 0

0 (1 − η)2 + 4η�2

]

(this matrix determines the diffusive gaps in this channel).
Calculations can be performed by using simple generalization
of Eq. (75) to the matrix case:

Tr

[
n=N∑
n=0

b

b(n + 1/2) + Â

]
(D15)

= 2 ln N − ψ(A1/b + 1/2) − ψ(A2/b + 1/2)

≈
{

2 ln
(

1
b

)
, b � A1,A2

ln
(

1
detÂ

) − b2

24

(
1
A2

1
+ 1

A2
2

)
, b � A1,A2

(D16)

where A1,2 are eigenvalues of matrix Â. Using Eq. (D15), after
some algebra we find Eq. (126) of the main text.

Finally, we calculate �ση = δση(b) − δση(0). In this case,
additional matrices arising in the denominators of Eqs. (C26)
and (C28) due to noncommutativity of q̂x and q̂y are propor-
tional to unit matrix, so that calculations are quite analogous
to the calculations of �σISM. The result is given by Eq. (121)
of the main text.

APPENDIX E: STRONG-FIELD ASYMPTOTIC

For strong B, such that lB/ l � 1, the expression for the
conductivity correction simplifies. First of all, from Eq. (A19)
we find in this limit

Pnm = lB

l

∫ ∞

−∞
dξ

�∗
n (ξ )�m(ξ )

(1 + �)(lB/ l) + iξ

≈ − ilB

l

∫ ∞

−∞
dξ

�∗
n (ξ )�m(ξ )

ξ − i0
. (E1)

Hence, Pnm decreases as a square root of the field Pnm ∝ 1/
√

b

and becomes small Pnm � 1 at sufficiently large b. Therefore,
one can expand matrices M̂−1

m − M̂−1
m=∞ entering Eqs. (51)

and (82) in the series over Pnm and keep the terms of the
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lowest order only. Doing so, we find

wn(b → ∞)

= l2

2πl2
B

1

(1 + η2)2

m=∞∑
m=−∞

[
P 2

n+m,m+1Pm+1,m+1

+ 4ηPn+m,m+1Pm+1,mPn+m,m

+ 2η2(Pn+m,m−1Pm+1,m−1Pn+m,m+1 + 2P 2
n+m,mPm,m

)
+ 4η3Pn+m,mPm,m−1Pn+m,m−1 + η4P 2

n+m,m−1Pm−1,m−1
]
,

(E2)

wn(b → −∞)

= l2

2πl2
B

1

(1 + η2)2

m=∞∑
m=−∞

[
P 2

m−n,m−1Pm−1,m−1

+ 4ηPm−n,m−1Pm−1,mPm−n,m

+ 2η2
(
Pm−n,m+1Pm+1,m−1Pm−n,m−1 + 2P 2

m−n,mPm,m

)
+ 4η3Pm−n,mPm,m+1Pm−n,m+1 + η4P 2

m−n,m+1Pm+1,m+1
]
.

(E3)

For calculation of the conductivity, we need to know wn for
n = −2,−1,0,1,2. Therefore, for our purposes it is sufficient
to find Pn,m with |n − m| ≤ 3. From Eq. (E2) one can find

P2k,2k = lB

l

√
π

22k

(2k)!

(k!)2
θ (k),

P2k+1,2k = P2k,2k+1 = − ilB

l

√
2√

2k + 1
θ (k),

P2k+2,2k = P2k,2k+2 = − lB

l

√
π

22k+1

√
(2k)!(2k + 2)!

k!(k + 1)!
θ (k), (E4)

P2k+3,2k = P2k,2k+3

= ilB

l

√
8(k + 1)√

(2k + 1)(2k + 2)(2k + 3)
θ (k),

where θ (k) is the step function defined such that θ (k) = 1 for
k � 0 and θ (k) = 0 for negative k.

Using Eqs. (E2)–(E4), after cumbersome but straight-
forward calculations we find Eq. (127) of the main text,
where the coefficient AII(η) is different for the positive and
negative b:

AII,b→∞(η) =
√

π

4

1

(1 + η2)(1 − η + η2)2

[
1 + 4η − 7η2 − 2η3 − 25η4

4
+ 4η5 + η6

− π (2 − 3η + 9η2 − 20η3 + 9η4 − 3η5 + 2η6)

�4(3/4)
+ 4η(−1 + η − η3 + η4)�4(3/4)

π3

]
, (E5)

AII,b→−∞(η) =
√

π

4

1

(1 + η2)(1 − η + η2)2

[
1 + 4η − 25η2

4
− 2η3 − 7η4 + 4η5 + η6

− π (2 − 3η + 9η2 − 20η3 + 9η4 − 3η5 + 2η6)

�4(3/4)
− 4η(−1 + η − η3 + η4)�4(3/4)

π3

]
. (E6)

Here, �(x) is the gamma function.
The strong-field asymptotics of the magnetoconductivity calculated in this appendix reflects the statistics of areas and Berry

phases for minimal (triangular) trajectories contributing to the conductivity correction. The analytical expression for η = 0,

AII,b→∞(0) = AII,b→−∞(0) =
√

π

4

[
1 − 2π

�4(3/4)

]
, (E7)

reproduces the numerical prefactor found for the weak localization in a parabolic band in the absence of the Berry phase in
Refs. [59,60]:

AI,b→∞(0) + AII,b→∞(0) = 2AII,b→∞(0) 	 −4.974

π
.
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