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Quantum theory of multimode polariton condensation
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We develop a theory for the dynamics of the density matrix describing a multimode polariton condensate.
In such a condensate several single-particle orbitals become highly occupied, due to stimulated scattering from
reservoirs of high-energy excitons. A generic few-parameter model for the system leads to a Lindblad equation
which includes saturable pumping, decay, and condensate interactions. We show how this theory can be used to
obtain the population distributions, and the time-dependent first- and second-order coherence functions, in such
a multimode condensate. As a specific application, we consider a polaritonic Josephson junction, formed from
a double-well potential. We obtain the population distributions, emission line shapes, and widths (first-order
coherence functions), and predict the dephasing time of the Josephson oscillations.
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I. INTRODUCTION

The strong coupling of quantum well excitons and mi-
crocavity photons gives rise to part-light and part-matter
quasiparticles known as cavity polaritons [1,2]. Polaritons
inherit the bosonic nature of their constituents, allowing them
to undergo Bose-Einstein condensation [3–6]. The conden-
sation is characterized by the appearance of macroscopically
occupied single-particle states in a pumped microcavity. It
differs from Bose-Einstein condensation in atomic gases [7],
because the polaritons have a very light effective mass, and can
therefore condense at a much higher background temperature.
Another key distinction between polariton condensates and
their atomic counterparts is the fact that polaritons decay
into external photons, typically in a few picoseconds. Thus,
the polariton condensate is a nonequilibrium steady state,
maintained by a balance between the radiative decay and the
external pumping. The external pumping generally creates
a population of excitons or polaritons at high energy, and
condensation occurs in lower energy states due to stimulated
scattering from the high-energy reservoir.

One consequence of this nonequilibrium nature is that,
whereas in equilibrium only the lowest energy single-particle
state can be macroscopically occupied, for polaritons large
occupations can build up in other orbitals. Furthermore, the
condensation can occur in several orbitals simultaneously,
enabling the study of interacting macroscopic quantum states.
The presence of several highly occupied states of a trapping
potential can be seen directly in the emission spectra [8,9] and
inferred from the presence of Josephson oscillations [10,11].
Such multimode condensation can also occur in spatially
extended states, in particular in the Bloch states of one [12]
and two [13] dimensional lattices. The in-plane potentials
that control these condensates can arise from growth-induced
disorder in the Bragg mirrors [5,10,14], metal-film patterning
of the mirror surfaces [12,13], and interaction effects [8],
as well as from the use of nonplanar structures such as
micropillars and photonic molecules [9].

The theoretical modeling of these nonequilibrium quantum
objects has been performed quite extensively within the mean-
field approximation, using an augmented Gross-Pitaevskii
description [15–18] to treat the dynamics of the highly occu-

pied orbitals, and to obtain the excitation spectra. Mean-field
solutions of microscopic models using the nonequilibrium
Green’s function formalism [19] have also been developed.
The Langevin [20–22], Fokker-Planck [23,24], and density
matrix [25–29] frameworks have been used to derive the
quantum statistics of the condensate, and hence the first- and
second-order coherence functions of the optical emission. The
density matrix approach allows the treatment of fluctuations in
the condensate as well as the direct incorporation of incoherent
phenomena such the interaction with phonon baths [26,29].
While mean-field theories are already able to treat several
highly occupied orbitals [17,18,30], full quantum treatments
of this regime have yet to be formulated.

The aim of this work is to develop a density matrix
approach for multimode polariton condensation, in which
several single-particle orbitals are driven by several reservoirs.
It treats both quantum and nonequilibrium fluctuations, and
allows photon statistics and emission spectra to be calculated.
We first derive a Lindblad equation for two condensate modes
(highly occupied orbitals) pumped by a single reservoir of
higher energy particles, using a treatment similar to that of a
two-mode laser [31], and then extend the result to treat several
reservoirs pumping several condensates. This gives a generic
model for the quantum dynamics of a nonequilibrium polariton
condensate, with the complexity of the reservoirs captured in
a few known parameters. We show how the theory can be used
to obtain the population distribution of the condensate orbitals,
both numerically and analytically. We also show how it may be
used to calculate both first-order and second-order coherence
functions. The first-order coherence function, 〈a†

1(τ )a1〉, is
the Fourier transform of the emission spectrum from one
condensate orbital. We obtain it in three different ways: (i)
direct numerical solution of the Lindblad form, (ii) making a
continuum approximation to obtain a soluble partial differen-
tial equation, related to the Fokker-Planck equation [23,32],
and (iii) a cruder static limit approximation, which neglects
the dynamics of the populations, but is generally valid near
threshold [23]. Among higher order correlation functions we
consider those of the form 〈a†

1(τ )a2(τ )a†
2a1〉, which relate to

the dephasing in the intensity oscillations caused by beating
between the emission from different condensate modes. Such
oscillations are a form of Josephson oscillations, which
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have been observed experimentally [10]. We analyze their
dephasing both numerically and in the static limit.

As a specific application of our theory, we study fluctuations
in a polariton Josephson junction, formed in a double-well
potential [10], using a tight-binding model in which each well
is pumped by a corresponding reservoir. Diagonalizing the
Hamiltonian leads to symmetric and antisymmetric orbitals
when the wells are degenerate. We obtain the population
distribution in these orbitals, calculate the emission line shapes
and widths, and predict the dephasing time of the Josephson
oscillations in the quasilinear regime, where interactions have
a negligible effect on the mean-field dynamics. We predict
large fluctuations in the populations when the wells are tuned
to resonance, due to the presence of a soft density mode,
and show how the emission is broadened by intermode and
intramode interactions.

The remainder of this paper is structured as follows. In
Sec. II, we give the Lindblad form for the pumping of two
condensate orbitals by one reservoir [Eq. (10)], and obtain
the generalization to many condensate orbitals pumped by
many reservoirs [Eq. (15)]. We also provide expressions
for the population distributions. In Sec. III we introduce
an approximate form for the Hamiltonian dynamics of the
condensates, and show how coherence functions can be
obtained. Section IV addresses the specific problem of the
double-well potential, giving results for the population distri-
butions (Fig. 3), the decay of first-order-coherence (Fig. 4),
the variation in coherence time (Fig. 5), and the dephasing of
intensity (Josephson) oscillations (Fig. 6). Finally, in Secs. V
and VI we discuss wider applications of our results, summarize
our conclusions, and outline some suggestions for future work.

II. THE PUMPING MODEL

In this section, we develop a model for the pumping
of low-energy polariton orbitals by scattering from a high-
energy reservoir of excitons or polaritons. We consider first
two condensates being pumped by a single reservoir, and
then generalize the result to many condensates pumped by
many reservoirs. Our final aim is an equation of motion for
the reduced density matrix describing the highly occupied
polariton states (� = 1),

ρ̇ = Lpρ + Ldρ − i[H,ρ], (1)

where Lp and Ld are the superoperators corresponding
to pumping and decay respectively, while H encodes the
Hamiltonian dynamics of the condensates. For the decay
we will use a sum of terms, each of the standard Lindblad
form [33], to implement losses from each condensate mode.
Note this assumes that each condensate mode emits into an
independent reservoir, i.e., neglects the possibility [34] of
interference between the emission from different modes.

A. One reservoir pumping two modes

The one reservoir, two modes problem [31,33] is a simpli-
fied version of the problem addressed in this paper. We use it to
establish the core formulas that we will then expand upon. We
consider a reservoir of higher energy, incoherent polaritons
above the bottleneck region of the dispersion relationship.
As illustrated in Fig. 1, we suppose that these high-energy

FIG. 1. (Color online) Schematic showing the ideal polariton
dispersion relation, and the stimulated scattering of polaritons from
reservoir states, |a〉, into low-energy condensate states, |n〉,|p〉, and
by-product states, |b1〉,|b2〉. The states can be localized in real space,
and hence are indicated here as involving a range of wave vectors.

polaritons drive condensation in two low-energy orbitals
through stimulated scattering [35]. The scattering processes
will also generate particles in two, generally different, by-
product states (|b1〉,|b2〉), which carry away the excess energy
and momentum. These by-products can be excitons, if the
condensate is being populated by exciton-exciton scattering in
the reservoir, or outgoing phonons, if it is being populated by
phonon emission. Within our approach these processes lead
to the same form for Lp. Having two by-products allows
a closed form for the dissipator Lp to be obtained, by the
standard procedure of adiabatically eliminating the reservoir
states [33].

Labeling the states of the reservoir with an index i, and
associating each such state with a corresponding by-product
state, gives the Hamiltonian

Hp =
∑

i

g1a
†
1

(
c
†
b1

(ca)2

√
2

)
i

+ g2a
†
2

(
c
†
b2

(ca)2

√
2

)
i

+ H.c.,

(2)
where (ca)i annihilates a reservoir exciton, (cb1 )i and (cb2 )i
annihilate the by-products, and a1 and a2 annihilate polaritons
in the condensate orbitals. g1 and g2 are the matrix elements
for scattering into the two condensate orbitals, which at this
stage we take to be independent of i. For phonon emission
(ca)2/

√
2 should be replaced with ca , but reservoir levels will

be traced over in the final results, and the form of the theory is
unaffected.

An important feature of the polariton dispersion is that
the effective mass, (d2E/dk2)−1, of the reservoir polaritons
or excitons is several orders of magnitude larger than that
of the condensate polaritons. Thus, the reservoir excitons are
effectively immobile on the long length scales relevant to the
condensate. This is consistent with experiments, in which the
energy shifts of the polariton states, due to the repulsion with
the reservoir excitons, appear in the region that is directly
pumped [8,36,37]. As in the mean-field theories [15–17],
we may neglect any motion of the reservoir excitons, and
obtain a theory with local gain. We take the reservoir states
to be localized orbitals at the position ri , and note that the
interactions responsible for the scattering have a short range
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(e.g., the Bohr radius for the exciton-exciton interaction). The
scattering matrix element g1, for example, is then

g1 =
∫

drdr ′V (r − r ′)φ∗
1 (r)φ∗

b1,i(r
′)φa,i(r)φa,i(r

′)

≈
∫

drV0φ
∗
1 (r)φ∗

b1,i(r)φa,i(r)φa,i(r) ∝ φ∗
1 (ri). (3)

The spatial structure of the condensate and reservoir appears
through these matrix elements, which are proportional to the
amplitude of the condensate orbitals at the position of the
reservoir.

The level structure involved in Fig. 1 and Eq. (2) is that
of a two-mode laser with a common level, |a〉, shared by the
two modes. We outline the derivation of the dissipator Lp

for this level scheme here; similar treatments can be found in
Refs. [31,33].

We begin by introducing the reduced density operator
describing the condensates and one set of high-energy levels,
ρi = Trj 	=i ρ, and its matrix elements in Fock states

ρi =
∑

ραiβi

nmpq |n〉〈m| ⊗ |p〉〈q| ⊗ |αi〉〈βi |, (4)

where n,m (p,q) denote the occupations of the first (second)
condensate mode, and αi,βi ∈ {a,b1,b2} the occupations of
the reservoir and by-product levels. These states, for exciton-
exciton scattering, have either two excitons in the reservoir
orbital i (the state indicated by a) or one in a by-product
orbital (the states indicated by b1 and b2). For exciton-phonon
processes, they have either one exciton in the reservoir orbital
(indicated by a) or a phonon in a by-product state (indicated
by b1 and b2). We also introduce a composite object which is
the sum over these reduced density operator matrix elements,
ρ

αβ
nmpq = ∑

i ρ
αiβi
nmpq . The reduced Hamiltonian which carries

the evolution of this density matrix is

Hp =
∑
i=1,2

gi(a
†
i c

†
bi
ca + c†acbi

ai), (5)

where we based ourselves on the phonon form of Eq. (2) for
notational simplicity.

The manipulations [33] we now present revolve around
solving the following schematic relation, in the interaction
picture,

ρ̇ = −i[Hp,ρ] + λaρ[φ→a] − γrρ[a,bi→φ] + (Ldρ). (6)

The λa term represents the replenishing of the upper level |a〉
from a vacuum state |φ〉. This corresponds to the relaxation of
laser-generated higher energy polaritons into the reservoir. The
γr term is for the decay from the |a〉,|bi〉 levels via channels
other than the condensates, e.g., spontaneous emission into
outside cavity modes. Linking the replenishing and relaxation

processes to a common vacuum level, |φ〉, allows us to
manipulate these λa, γr terms in rate equations, assuming
that the population of that level is time-independent. The rate
equations themselves correspond to the diagonal elements
of the standard Lindblad forms for the transitions shown
schematically in Eq. (6). In this adiabatic limit, the levels are
eliminated, turning the replenishing into a term λaρ

aa
nmpq →

rρnmpq , with the effective pumping rate, r , given by

r = λaγr

λa + γr

(7)

(see Appendix A for derivation).
Second, we exploit the two different time scales associated

with the processes in Eq. (6). We assume that the relaxation,
proportional to γr , is much faster than the dynamics of the
modes due to the action of the pumping Hamiltonian Eq. (5)
and Lindblad decay, Ld . This allows us to solve for the slowly
varying processes, ρ̇ 
 −i[Hp,ρ], on a time scale for which
they appear stationary, with respect to the γr dynamics. The
matrix elements of the commutator of the composite object,
−i[Hp,ρ], are given by

ρ̇αβ
nmpq = −i

[
g1δαb1

√
nρ

aβ

n−1mpq + g2δαb2

√
pρ

aβ

nmp−1q

− g1δβa

√
m + 1ρ

αb1
nm+1pq − g2δβa

√
q + 1ρ

αb2
nmpq+1

+ g1δαa

√
n + 1ρ

b1β

n+1mpq + g2δαa

√
p + 1ρ

b2β

nmp+1q

− g1δβb1

√
mραa

nm−1pq − g2δβb2

√
qραa

nmpq−1

]
. (8)

To obtain the desired equation of motion we take the trace
of Eq. (8),

∑
α,β=a,a;b1,b1;b2,b2 ρ̇

αβ
nmpq = ρ̇nmpq , giving a form

depending on the eight components of the density operator
appearing on the right-hand side. The equations-of-motion for
these components are obtained by using Eq. (8) once again.
This second time, we introduce the loss terms, −γr ρ

αβ
nmpq , and

the effective pumping, rρnmpqδαaδβa , in the right-hand side.
The full set of equations of motion for the eight matrix

elements of the traced density operator ρ̇nmpq can thus be con-
structed, and assembled into three matrix equations of the form

Ṙ = −MR + A. (9)

Here the M are 9×9 matrices, the R are vectors formed from
elements of the density matrix, in which two quanta are being
passed between the reservoirs and the condensate modes, in
closed form, and the A vectors are the driving terms (see
Appendix B for explicit forms). The only nonzero element,
in each of the A vectors, is rρnmpq, rρn−1m−1pq, rρnmp−1q−1.
Solving for the three forms adiabatically, Ṙ = 0 ⇒ R =
M−1A, and substituting the proper elements back into the
traced version of Eq. (8), gives the dissipator describing the
pumping:

Lpρnmpq = −r

[
g2

1(n − m) + g2
2(p − q)

]2 + [
g2

1(n + m + 2) + g2
2(p + q + 2)

]
γ 2

r[
g2

1(n − m) + g2
2(p − q)

]2 + 2γ 2
r

[
g2

1(n + m + 2) + g2
2(p + q + 2)

]+ γ 4
r

ρnmpq

+ 2rγ 2
r g2

1

√
nm[

g2
1(n − m) + g2

2(p − q)
]2 + 2γ 2

r

[
g2

1(n + m) + g2
2(p + q + 2)

]+ γ 4
r

ρn−1m−1pq

+ 2rγ 2
r g2

2
√

pq[
g2

1(n − m) + g2
2(p − q)

]2 + 2γ 2
r

[
g2

1(n + m + 2) + g2
2(p + q)

]+ γ 4
r

ρnmp−1q−1. (10)
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Note that g1,2 are squared in our result; the scattering rates into the condensates depend on the probability densities of the
condensate wave functions at the reservoir, |φ1,2(ro)|2, via Eq. (3). Setting n = m,p = q in Eq. (10) gives the equation-of-motion
for the population distribution,

Ṗnp = γ nc

[
α1n

α1n + α2(p + 1) + ns

Pn−1p + α2p

α1(n + 1) + α2p + ns

Pnp−1 − α1(n + 1) + α2(p + 1)

α1(n + 1) + α2(p + 1) + ns

Pnp

]
+ γ [(n + 1)Pn+1p + (p + 1)Pnp+1 − (n + p)Pnp], (11)

where we have added the standard Lindblad damping
terms [33] for radiation from the condensate modes,
assumed to decay at equal rates γ to simplify the notation.
Here we have also introduced a dimensionless pumping
parameter, nc = r/2γ , a pump saturation parameter,
ns = γ 2

r /[4(g2
1 + g2

2)], and the ratios α1(2) = g2
1(2)/(g2

1 + g2
2).

This is the generalization, to the two-mode case, of the pump
parametrization used in Ref. [23]. Note that the pumping in
Eq. (11) is saturable: the gain is reduced as the occupation
increases, due to the occupation numbers in the denominators.
Furthermore it includes a gain competition effect, with the
growth rate of one mode reduced by the occupation of the
other. This arises from the common level, |a〉.

We can find a steady-state solution by requiring that the
growth of an occupation probability due to pumping matches
its decay due to loss. The first two terms on the first line of
Eq. (11) correspond to transitions into the state of n,p particles
caused by the pumping, while the final term on the second line
corresponds to transitions out of this state caused by the loss.
Similarly, the final term on the first line of Eq. (11) corresponds
to transitions out of the state n,p caused by the pumping,
while the first two terms on the second line correspond to
transitions into this state caused by the loss. We can find
a steady-state solution by requiring that either one of these
sets of rates balances. Such a detailed balance condition [38]
ensures that the other set also balances, and that there is no
net flow of probability to higher or lower occupation numbers.
Specifically, in Eq. (11), it corresponds to the steady-state
equation splitting in two identical conditions

Pnp = nc

n + p

(
α1nPn−1p

α1n + α2(p + 1) + ns

+ α2pPnp−1

α1(n + 1) + α2p + ns

)
. (12)

Note that in this single-reservoir model the gain competition
leads to single-mode behavior: except for the point α1 = α2

the population distribution obtained from Eq. (12) peaks when
either n = 0 or p = 0 [39]. Multimode behavior will become
possible when more than one reservoir is introduced, reducing
the impact of the gain competition.

We note that in the single-mode case, the population
dynamics, Eq. (11), and distribution, Eq. (12) correspond to a
standard laser-like saturable pumping. In particular, Eq. (12)
reduces to

Pn = nc

n + ns

Pn−1, (13)

which is Eq. (11.2.14) in Ref. [33]; see also Eq. (4) in Ref. [23].
A similar recurrence relation has been obtained by Laussy
et al. [26] for a model of a single condensate mode coupled to

a bosonic reservoir. Note that their Eq. (4) can be put in the
form of Eq. (13) by expanding their denominator to first order
in the occupation number.

We can obtain an approximate solution to the recurrence
relation, Eq. (12), by dropping the +1s in the denominators,
replacing the occupation numbers with continuous vari-
ables, and approximating Pn−1p → P(n,p) − 1 · ∂nP(n,p) and
Pnp−1 → P(n,p) − 1 · ∂pP(n,p). The solution of the differential
equation thereby obtained is the multivariate Gaussian

P(n,p) ∝ exp

(
− (n + p)2

2nc

+ α1nc − ns

α1nc

n + α2nc − ns

α2nc

p

)
.

(14)

B. Many reservoirs pumping many modes

We now generalize the above results to allow many different
reservoirs to pump many different condensate modes. The
Hamiltonian for scattering from each of these reservoirs is
Eq. (2), generalized to many condensate modes. We now use
gij to denote the matrix element for a transition from one of the
initial (|a〉)i levels in reservoir i into a by-product state (|bj 〉)i
in that reservoir, and a polariton in a condensate mode j . Note
that each reservoir generally involves many high-energy states,
as in Eq. (2), whose matrix elements for scattering into a par-
ticular condensate mode are all supposed to be approximately
equal. We further assume that the different reservoirs are inde-
pendent, except for their coupling via the condensates. From
the forms of the matrix elements, Eq. (3), we see that the first
assumption is valid when the reservoirs are regions of space
that are small enough for the variation in the condensate wave
functions across each to be ignored. The second condition
requires that the reservoirs are large compared with the mean-
free path of the high-momentum excitons above the bottleneck.

As an aperçu [40], the generalization to many reservoirs
means that the full high-energy subspace is subdivided
into blocks. The reservoir and by-product density matrix
elements, defined after Eq. (4), now carry indices for
each reservoir, ρα1β1α2β2..αiβi ..

.. , and the matrices M become
Kronecker sums, M = ∑

i I ⊗ .. ⊗ Mi ⊗ .. ⊗ I . But the
assumed independence of the different reservoirs means that
the pumping terms (A vectors) appear in each subspace, and
the result is that the dissipator for pumping by many reservoirs
is the sum of dissipators for individual reservoirs.

The generalization to many condensates means that each Mi

associating the ith reservoir with v condensates is an (1 + v)2×
(1 + v)2 matrix. The forms of these matrices, however, allow
the relevant elements of their inverses to be obtained [most
of the terms in the cofactors and the determinants which
form (Mi)

−1
i1 = (Ci )i1

|Mi | cancel], and the final result is a direct
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generalization of Eq. (10):

Lpρm1m2..
n1 n2 .. =

∑
i

ri

⎡
⎣∑

j

2γ 2
r g2

ij

√
njmjρ

m1m2..mj −1..

n1 n2 ...nj −1..[∑
k g2

ik(nk − mk)
]2 + 2γ 2

r

∑
k g2

ik(nk + mk + 2) − 4γ 2
r g2

ij + γ 4
r

−
[∑

j g2
ij (nj − mj )

]2 + γ 2
r

∑
j g2

ij (nj + mj + 2)[∑
j g2

ij (nj − mj )
]2 + 2γ 2

r

∑
j g2

ij (nj + mj + 2) + γ 4
r

ρm1m2..
n1 n2 ..

⎤
⎦ (15)

(ρm1m2 ..
n1 n2 .. ≡ 〈n1,n2,..|ρ|m1,m2,..〉, with nj and mj occupation

numbers of the condensate modes). Note that the growth of
condensate j due to reservoir i depends on the (squared)
magnitude of the condensate orbital at the position of that
reservoir, via the matrix element gij , as well as the pump rate
for that reservoir, ri . Since the reservoir i is now feeding many
condensate modes, the gain is reduced according to all their
occupations, giving rise to the sums over condensate modes in
the second terms of the denominators.

The generalization of the dimensionless pumping parameter
for reservoir i, introduced above, is nc

i = ri/2γ , while the
pump saturation parameter becomes ns

i = γ 2
r /(4

∑
j g2

ij ), and
the normalized transition strengths become

αij = g2
ij

/∑
k

g2
ik. (16)

Finally, the population dynamics equation (11) now reads

Ṗn1n2.. = γ
∑

i

nc
i

∑
j

[
αijnjPn1n2..nj −1..∑

k αik(nk + 1) − αij + ns
i

− αij (nj + 1)Pn1n2..∑
k αik(nk + 1) + ns

i

]

+ γ
∑

j

[
(nj + 1)Pn1n2..nj +1.. − njPn1n2..

]
. (17)

We have found an approximate steady-state solution of this
equation, for the special case where the coupling ratios
among the u reservoirs and v condensates obey αii+j =
βj ,i = 1,2..u,j = 0,1,2,..,v − 1, with the index i + j treated
circularly around v, and where all the ns

i ,n
c
i are the same.

The solution, valid to the extent that Eq. (21) holds, is the
multivariate Gaussian

P(n1,n2,..) ∝ exp

⎡
⎣−1

2
(n1 n2 ..) · S ·

⎛
⎝n1

n2

..

⎞
⎠ +Z ·

⎛
⎝n1

n2

..

⎞
⎠
⎤
⎦

(18)

with

S =

⎛
⎜⎝

∑
i β2

i

nc

∑
i,j 	=i βiβj

nc
..∑

i,j 	=i βiβj

nc

∑
i β2

i

nc
..

.. .. ..

⎞
⎟⎠ (19)

and

Z =
(

nc − ns

nc

nc − ns

nc

..

)
. (20)

The validity of Eq. (18) can be seen by substituting it into the
continuous version of Eq. (17). For the case of two condensates
and two reservoirs this gives

0 ≈ βoβ1

(
(β1−βo)(n−p)

βon+β1p+ns

+ (βo−β1)(n−p)

β1n+βop+ns

)
. (21)

III. COHERENCE FUNCTIONS

A. Low-energy Hamiltonian

We now consider how the dissipative dynamical model,
described above, may be further developed, and used to
calculate the dynamical characteristics of a multimode polari-
ton condensate. In particular, we consider the calculation of
time-dependent first- and second-order coherence functions.
To keep the notation manageable we consider explicitly
a two-mode condensate; the formulation is such that the
generalization is reasonably straightforward.

The first step is to introduce the Hamiltonian dynamics of
the condensate modes. In particular, we include the polariton-
polariton interactions. The underlying interaction [41] is
predominantly due to the exchange terms in the Coulomb
and radiative couplings (phase-space filling), so that its range
is on the order of the Bohr radius. It should thus, in the
present low-energy theory, be understood to be a contact
interaction, V (r) = V0δ

d (r), with matrix element μijkl =
V0
∫

ddrψ∗
i (r)ψj (r)ψ∗

k (r)ψl(r). The low-energy Hamiltonian
is then

H =
∑
i=1,2

ωia
†
i ai + 1

2

∑
ijkl

μijkla
†
i aj a

†
kal, (22)

where ωi are the single-particle energies. This form is obtained
by diagonalizing the single-particle Hamiltonian, so that ai is
the annihilation operator in a single orbital. An example of
this procedure, diagonalizing the Hamiltonian for a double-
well system by eliminating the hopping term, is described
in Sec. IV.

In order to render the general interacting bosonic Hamil-
tonian, Eq. (22), tractable, we consider the case in which
there is some trapping potential creating localized single-
particle orbitals for the polaritons. We furthermore assume the
strong-trapping limit, where the energy separation between
the orbitals ωi − ωj is large compared with the interaction
energy (of order V0n for an overall condensate density n). We
will therefore neglect the parts of the interaction which transfer
particles between different orbitals, i.e., nonresonant scattering
processes between condensates in different modes. This makes
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the problem tractable since the equation of motion becomes
diagonal in Fock space. It is consistent with the semiclassical
limit of the equations of motion, in which such processes give
rise to rapidly oscillating terms [17]. However, the nonlinear
terms which conserve the number of particles in each orbital
must be retained, since their effects are not suppressed by
the differences in single-particle energies. For the two-mode
problem we will thus take for the interaction Hamiltonian the
form

H(NL) = κ(a†
1a1)2 + κ(a†

2a2)2 + ηa
†
1a1a

†
2a2, (23)

including the Fock space diagonal interactions within each
mode (strength κ) and between the modes (strength η).
However, the Bogoliubov or parametric scattering terms, such
as a

†
1a

†
1a2a2, are neglected. Since the single-particle energies

are just energy shifts in the following they will often be
dropped. The form of the equation of motion, (1), we consider
is thus

ρ̇ = Lpρ − γ

2
[(a†

1a1 + a
†
2a2)ρ + ρ(a†

1a1 + a
†
2a2)

− 2a1ρa
†
1 − 2a2ρa

†
2] − i[H(NL),ρ]. (24)

We note that the form of the interactions in Eq. (23)
do not enter into the equation for the population dynamics,
Eqs. (11), (17), since H(NL) commutes with the diagonal
elements of ρ. Their role will be primary however in the
calculation of coherence functions below.

B. First-order coherence functions

A key application of the equation of motion, (1), is to
calculate the linewidths of the emission from the individual
condensate modes [23]. Equivalently, one can consider the
first-order coherence function of the emission from mode 1,
for example, g(1)(τ ) ∝ 〈a†

1(τ )a1(0)〉. By the Wiener-Khinchin
theorem, the Fourier transform of this correlation function
gives the power spectrum of the electromagnetic field, i.e.,
the emission spectrum [42]. Such spectra have been studied
experimentally [5]. The linewidth has been shown to be gen-
erated by the interplay between interactions and the polariton
number fluctuations, discussed above, which together imply
energy fluctuations.

The first-order coherence function may be calculated from
the equation of motion for the reduced density matrix, by
exploiting a form of the quantum regression theorem [33,43].
Thus, the two-time correlation function 〈a†

1(τ )a1(0)〉 is the
expectation value 〈a†

1〉 = Tr a
†
1ρ

′, with a density operator
ρ ′(τ ) = eLτ ρ ′(0) obtained by evolving ρ ′(0) = aρ(0) accord-
ing to Eq. (1). In this form the regression theorem holds
provided the system-reservoir coupling is weak, so that the
full density operator factorizes. This is already implicit in
our model for pumping and decay. We note that there is also
a stronger version of the quantum regression theorem, which
relates the equations of motion for n-time correlation functions
to those for m-time ones [33,44]. This is not useful here,
because the nonlinearities mean that 〈a1(t)〉, for example, does
not obey a closed set of linear equations of motion.

To implement this quantum regression approach, we in-
troduce the distribution [23] unp(τ ) = √

nρ ′
n−1npp(τ ), so that

g(1)(τ ) ∝ 〈a†
1〉 =

∑
n,p

unp(τ ). (25)

The initial condition for the evolution is

unp(0) = 〈n,p|a†
1a1ρ(0)|n,p〉 = nP ss

np, (26)

where the steady-state population distribution P ss
np is obtained

from Eq. (18) [or more generally Eq. (17)]. From Eq. (1) we
find the equation of motion for unp,

u̇np = γ
∑
i=1,2

nc
i

[
αi1n

αi1
(
n − 1

2

)+ αi2(p + 1) + ns
i

un−1p

+ αi2p

αi1
(
n + 1

2

)+ αi2p + ns
i

unp−1

− αi1
(
n + 1

2

)+ αi2(p + 1)

αi1
(
n + 1

2

)+ αi2(p + 1) + ns
i

unp

]

+ γ

{
nun+1p + (p + 1)unp+1 −

[(
n − 1

2

)
+ p

]
unp

}
+ i[κ(2n − 1) + ηp]unp. (27)

We have neglected terms O( n
ns

· n), since ns � 〈n〉 for our
system. The solution to Eq. (27), with the appropriate initial
condition, Eq. (26), gives the first-order coherence function
via Eq. (25). For up to several hundreds of particles, u̇np can
be integrated numerically to obtain g(1)(τ ).

In the single-mode case, an expansion based on the
one-mode equivalent of Eq. (27) was solved analytically
in Ref. [23]. A Kubo form [45,46] was reached which
incorporates the interaction and the slower Schawlow-Townes
broadening. Within each term both a Lorentzian and a
Gaussian line shape can be obtained depending on which
limit is applied, i.e., motional broadening and static limit.
For multimode condensation, we could not reach a simple
analytic formula for the first-order correlation function and
we therefore resort to the semianalytic approaches presented
below.

C. First-order coherence: Fokker-Planck approach

To make Eq. (27) tractable more widely, we recast it in the
form of a soluble partial differential equation. This process
follows the derivation of the Fokker-Planck equation for a
one-step Markov process [32]. It involves approximating the
occupation numbers by continuous variables, and expand-
ing the finite-difference operators in terms of differentials
(Kramers-Moyal expansion).

We first introduce step operators En,p, whose action, for
example, is Ennunp = (n + 1)un+1p. This allows us to rewrite
Eq. (27) as

u̇np = (
E−1

n − 1,E−1
p − 1

) · [(qn,qp)unp]

+ (En − 1,Ep − 1) · [(rn,rp)unp] + (h + s)unp, (28)
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where

qn,p = γ nc

(
βo,1

Do

+ β1,o

D1

)
(n,p + 1), (29)

rn = γ (n − 1), rp = γ p. (30)

The first two lines in Eq. (28) correspond to the master equation
for a one-step stochastic process, such as nearest-neighbor
transitions in two dimensions, with unp interpreted as a
probability, and qn,p,rn,p transition rates. These contributions
conserve the sum of u, and alone would lead to the Fokker-
Planck (i.e., continuity) equation in the continuous limit. A
nonconserving term proportional to

h = γ nc

2

(
βo

Do

+ β1

D1

)
− γ

2
(31)

remains when the gain and loss terms in Eq. (27) are recast in
this way. Here βo = α11,α22 and β1 = α12,α21, and

Do,1 = βo,1
(
n + 1

2

)+ β1,o(p + 1) + ns. (32)

The interactions, also, lead to a nonconserving term, propor-
tional to

s = i[κ(2n − 1) + ηp]. (33)

We then Taylor-expand the step operators E±1
n,p → 1 ± ∂n,p +

1
2∂2

n,p, and obtain the continuous approximation

u̇(n,p) = (h + s)u(n,p) + ∇ · [(r − q)u(n,p)]

+ 1
2∇2 · [(r + q)u(n,p)]

= (h + s)u(n,p) + ∇ · {[r − q + 1
2∇ � (r + q)

]
u(n,p)

+ 1
2 (r + q) � ∇u(n,p)

}
, (34)

where r = (rn,rp),q = (qn,qp),∇ = (∂n,∂p), ∇2 = (∂2
n,∂2

p),
and � denotes elementwise multiplication. We notice that
the conserving part of Eq. (34) is a convection equation in
the occupation number space, with a position-dependent drift
velocity, given by the prefactor of u inside the divergence,
and a diffusion coefficient, given by the prefactor of ∇u.
The remaining terms, proportional to h + s, cause the integral
of u̇ to be nonzero. They induce the decay in magnitude of
u, and hence are responsible for decoherence and the finite
linewidth, according to Eq. (25). The standard Schawlow-
Townes linewidth arises from the term proportional to h, while
the interaction broadening arises from that proportional to s.

Equation (34), like the Fokker-Planck equation, is soluble
when h, s, and the drift coefficients are at most linear functions
of the occupation numbers, and the diffusion coefficients are
constants. We therefore expand these coefficients appropri-
ately in Taylor series around the mean of the initial conditions,
nl = 〈nuo〉

〈uo〉 , pl = 〈puo〉
〈uo〉 . For simplicity we also neglect the

quadratic terms in the expansion of r + q, which would
contribute a small linear term to the drift coefficient.

We define n′ = n − nl , and introduce the reciprocal rep-
resentation g = ∫∫

e−i(k1,k2)·(n′,p′)u(n′,p′)dn′dp′. The appropri-
ately linearized form of Eq. (34) is then

ġ +
∑

j

(
aj +

∑
i

bij ki

)
∂kj

g

= cg +
∑

i

dikig +
∑

i

eik
2
i g, (35)

with coefficients

A = −i∇(h + s)|nl ,pl
, (36)

B =
(∇(rn − qn)

∇(rp − qp)

)∣∣∣∣
nl ,pl

, (37)

c = h|nl ,pl
, (38)

D = i
(
rn − qn + 1

2∂n(rn + qn),

rp − qp + 1
2∂p(rp + qp)

)∣∣
nl,pl

, (39)

E = −1

2

(
rn + qn 0

0 rp + qp

)∣∣∣∣
nl ,pl

, (40)

where D = (d1,d2), etc. The origins of the various terms
in Eqs. (36)–(39) can be seen in Eq. (34); note there are
contributions from both r − q and r + q to the lowest-order
drift matrix D, from the two terms on the second-to-last line
of Eq. (34). At k1,2 = 0, the solution of Eq. (35) shall give
g(1)(τ ).

We solve Eq. (35) using the method of characteristics [32]
to reduce it to a set of coupled ordinary differential equations.
The characteristic equation is K̇ = A + KB, which may be
solved in the eigenbasis of B, B = P −1BP , where P is
the eigenvector matrix of B, before transforming back to the
original basis. This gives

Ko = −AB−1 + (AB−1 + K)e−Bτ , (41)

where K0 = K(τ = 0). Note that the origin τ = 0 is signif-
icant and the constant −AB−1 cannot be dropped. We then
obtain

g = go(Ko) exp

[
cτ + D

∫ τ

0
Kdt ′ +

∫ τ

0
KEK̃dt ′

]
, (42)

using K̃ to denote the transpose of K . The first integral inside
the exponential is

∫ τ

0
Kdt ′ = −AB−1τ + (Ko + AB−1)B−1(eBτ −I )

= −AB−1τ + (AB−1 + K)B−1(I −e−Bτ ), (43)

which at K = 0 gives

ζ (τ ) = −DAB−1τ + DAB−1B−1(I −e−Bτ ). (44)
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The second integral is solved in a similar fashion, only in
this case the result depends explicitly on the eigenvalues and
eigenvectors of B. We define Ep = P −1EP̃ −1 and obtain

ξ (τ ) = AB−1EB̃−1Ãτ

− [AB−1B−1(I −e−Bτ )EB̃−1Ã + T.c.] + AB−1P

×
⎡
⎣∑

ij

ı̂ ⊗ ĵ
Ep ij

Bii +Bjj

(
I −e−(Bii+Bjj )τ

)⎤⎦ P̃ B̃−1Ã.

(45)

The tensor product ı̂ ⊗ ĵ with unit vectors ı̂,ĵ generates a
matrix with all zeros except at position ij . We finally obtain
the solution

g(1)(τ ) = go(τ ) exp[cτ + ζ (τ ) + ξ (τ )]. (46)

The function go(τ ) is related to the transform of unp(0), given
by Eq. (26),

go(τ ) =
(∫

e−iK ′
o·(n,p)nP(n,p)dn dp

)
exp[iK ′

o · (nl,pl)],

(47)
where K ′

o = −AB−1(I − e−Bτ ) is Ko at K(τ ) = 0. We also
shifted the transform by the linearization points, n′ = n − nl ,
p′ = p − pl , such that it is consistent with the rest of the
solution. The coefficients, Eqs. (36)–(40), can be obtained
analytically, while the diagonalization of B and integral in g0

are performed numerically.

D. First-order coherence: Static limit

For sufficiently short time scales the gain and loss processes
will not change the occupation numbers of the condensate
orbitals. We can therefore calculate g(1)(τ ) allowing only for
the effects of the nonlinear Hamiltonian, Eq. (23). This is
the static-limit calculation previously discussed for the single-
mode case [23]. The time scale over which it is valid is the
time scale for intensity fluctuations, given by the decay of
g(2)(t); due to critical slowing down this time scale becomes
long close to threshold, and most of the decay of g(1)(τ ) is
captured correctly. For the two-mode case we find

∣∣g(1)
s (τ )

∣∣ =
∣∣∣∣Tr

∑
np

a
†
1e

−iH(NL)τ (Pnp a1|n,p〉〈n,p|)eiH(NL)τ

∣∣∣∣
∝
∣∣∣∣
∫∫

P(n,p)e
i(2κn+ηp)τ dn dp

∣∣∣∣, (48)

where in the second line we have approximated a factor of n

inside the integral as a constant and treated the occupation
numbers as continuous. Due to the cutoff in P(n,p) the
integral will be performed numerically. Notice that the kernel
in the integral indeed corresponds to the interaction term
proportional to s in Eq. (27); all the other dynamics is
neglected.

E. Coherence of Josephson oscillations

The approaches described above for the first-order coher-
ence function can be generalized to calculate higher-order
correlation functions. An interesting example is the second-

order cross-correlation function gJ (τ ) ∝ 〈a†
1(τ )a2(τ )a†

2a1〉.
This function characterizes the coherence of the intensity
oscillations, caused by the beating between the different
emission frequencies in a multimode condensate. They can
be interpreted as a form of Josephson oscillation [47].

To motivate the consideration of the correlation function
gJ (τ ) we consider the mean-field limit where the creation and
annihilation operators can be treated as classical oscillating
variables, a1,2(t) → √

n1,2e
i(ω1,2t+φ1,2), in other words the

eigenvalues of coherent states, |α1,2〉 [33,47]. For two orbitals
with amplitudes c1,c2 at a point r , the density or intensity is
n = (c1a

†
1 + c2a

†
2)(c1a1 + c2a2). Thus, in that theory, there is

an oscillating contribution to the intensity, proportional to

cos[(ω1 − ω2)t + φ1 − φ2]. (49)

The intensity oscillations are not zero in the mean-field
theory because it assumes a well-defined phase for the conden-
sates, and hence a well-defined phase difference between them.
However, in the strong-trapping limit considered here there are
no terms in the Hamiltonian which fix this relative phase, and
the averaged intensity does not oscillate, 〈a†

1(τ )a2(0)〉 = 0.
Even in the absence of phase-fixing terms in the Hamiltonian,
however, a phase would arise in each member of an ensemble,
i.e., a single run of an experiment, due to spontaneous
symmetry breaking. The fluctuations of the phases between
members of the ensemble account for the vanishing of
the oscillations on average. We can nonetheless study how
the oscillations in each member behave, by considering
the correlation function of the intensity,

〈n(τ )n(0)〉 = 〈[a†
1(τ ) + a

†
2(τ )][a1(τ ) + a2(τ )]

× (a†
1 + a

†
2)(a1 + a2)〉, (50)

and in particular the component at the beat frequency
〈a†

1(τ )a2(τ )a†
2a1〉. (We omit the amplitudes c1,2 above for

notational simplicity.)
The calculation of gJ (τ ) closely parallels that of the

first-order coherence. We again use the quantum regression
theorem, so that gJ (τ ) is the average 〈a†

1a2〉, with the density
operator obtained by evolving a

†
2a1ρ(0) over the time τ . We

introduce the distribution

uJ
np = √

n
√

p + 1 ρ ′
n−1np+1p(τ ), (51)

such that gJ (τ ) = ∑
n,p uJ

np. The initial condition is uJ
np(0) =

n(p + 1) P ss
np , and the evolution obeys

u̇J
np = γ

∑
i

nc
i

[
αi1n

αi1
(
n − 1

2

)+ αi2
(
p + 3

2

)+ ns
i

uJ
n−1p

+ αi2(p + 1)

αi1
(
n + 1

2

)+ αi2
(
p + 1

2

)+ ns
i

uJ
np−1

− αi1
(
n + 1

2

)+ αi2
(
p + 3

2

)
αi1
(
n + 1

2

)+ αi2
(
p + 3

2

)+ ns
i

uJ
np

]

+γ
[
nuJ

n+1p + (p + 1)uJ
np+1 − (n + p)uJ

np

]
+ i[κ(2n − 1) − κ(2p + 1) + η(−n + p + 1)]uJ

np.

(52)
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FIG. 2. (Color online) Model for condensation in a double-well
potential, in which two orbitals, extended across the well due to
tunneling, are pumped by independent reservoirs localized on the left
and right. The occupations of the two delocalized orbitals are denoted
n and p.

The static limit can be calculated in the same fashion as above
and gives the expression

∣∣gJ
s (τ )

∣∣ ∝
∣∣∣∣
∫∫

P(n,p)e
i(2κ−η)(n−p)τ dn dp

∣∣∣∣. (53)

IV. CONDENSATION IN A DOUBLE-WELL POTENTIAL

We now apply the general theory developed above to the
specific problem of polariton condensation in a double-well
potential, with incoherent pumping provided by a high-energy
reservoir. This system, illustrated in Fig. 2, is a form of
Josephson junction. Oscillations of the density of polaritons
in each well, analogous to the ac Josephson effect, have
recently been observed experimentally [10]. They are due to
the presence of two highly occupied states of different energies,
as predicted by Wouters [30] and by Eastham [17]. The theory
developed above will allow us to obtain the quantum statistical
properties of the light emitted from this type of double-well
system, including the linewidths and the dephasing time of the
density oscillations.

We note that, in addition to their observation in a system
with continuous incoherent pumping [10], where losses are
compensated by gain, Josephson oscillations have also been
observed in transient condensates [11,48]. Such condensates
are created by an initial excitation pulse, and the Josephson
effects are observed following the pulse, but before the con-
densate decays. Abbarchi et al. [11] studied the dynamics of
polaritons created by ultrafast resonant excitation in a double-
well potential, and observed linear and nonlinear oscillations
as well as macroscopic quantum self-trapping (MQST). The
condensates in this case are generated directly by a pump
laser, rather than by scattering from an incoherent reservoir.
Raftery et al. [48] studied the dynamics of interacting photons
in coupled superconducting resonators; they observed linear
and nonlinear oscillations, collapses, and revivals reflecting
quantum effects, and a dynamical transition to MQST as
the population decays. Josephson effects for polaritons with
continuous coherent pumping have also been considered
theoretically [49], as have some Josephson phenomena for
polaritons with incoherent gain and loss [50,51].

As shown in Fig. 2, we consider a situation in which the two
lowest orbitals of a double-well potential are being pumped by
two reservoirs, one for each of the wells. We begin with a tight-
binding model for the low-energy orbitals, with Hamiltonian

HLR = �ε(a†
RaR − a

†
LaL) − t(a†

RaL + a
†
LaR) + HLR(NL),

(54)

where aL and aR are the annihilation operators for polaritons
in orbitals localized on the left and right. �ε is the detuning,
i.e., the energy difference between these orbitals, and t is the
tunneling matrix element. We use

HLR(NL) = g[(a†
LaL)2 + (a†

RaR)2], (55)

to model the repulsive interactions within the condensates.
Note that we have assumed, for simplicity, that the direct
overlap of the localized orbitals is small, and hence neglected
any off-diagonal interaction terms in the localized basis. We
have also assumed that the localized orbitals are the same size,
so that the interaction strength is the same for each.

The first step is to diagonalize the quadratic part of the
Hamiltonian, and transform to the basis of single-particle
eigenstates. This is accomplished by the standard transfor-
mation (

aL

aR

)
=
(

cos(θ ) − sin(θ )
sin(θ ) cos(θ )

)(
a1

a2

)
, (56)

with tan(2θ ) = t/�ε, which gives

H = �E(a†
2a2 − a

†
1a1) + H(NL), (57)

where �E = √
�ε2 + t2. At zero detuning, a1 and a2 annihi-

late particles in symmetric or antisymmetric orbitals extended
over the double well.

The normalized transition strengths between the conden-
sates and the reservoirs αij , defined in Eq. (16), follow from
Eq. (56). Since the two reservoirs are equivalent, these ratios
are just the fraction of the density in each orbital that lies over
each reservoir, i.e., on the left or the right of the junction:

α11 = α22 = cos2(θ ) = 1

2
+ �ε

2
√

�ε2 + t2
,

α12 = α21 = sin2(θ ) = 1

2
− �ε

2
√

�ε2 + t2
. (58)

Finally, we need the coefficients in the interaction Hamilto-
nian, Eq. (23). Writing Eq. (55) in the a1,2 basis, and comparing
with Eq. (23), gives

κ = g[sin4(θ ) + cos4(θ )] = g

2

(
1 + �ε2

�ε2 + t2

)
,

η = 8g sin2(θ ) cos2(θ ) = 2g t2

�ε2 + t2
. (59)

The transformation of Eq. (55) to the single-particle eigenbasis
also generates the interaction terms
g

2
[sin2(2θ )a†

1a
†
1a2a2+ sin(4θ )(a†

2a
†
2a2a1−a

†
1a

†
1a1a2)] + H.c.,

(60)

which describe the scattering of particles between different
orbitals. As discussed in Sec. III A, we treat the quasilinear
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FIG. 3. (Color online) Probability distribution of the populations n,p of the two orbitals of a double-well potential, pumped by independent
reservoirs for each well. Panels (a)–(c): Results above the mean-field threshold, with nc = 5200, ns = 5000, and the reservoir to mode couplings
varying as α11 = α22 = 1 (a), 0.66 (b), 0.5 (c), and α12 = α21 = 0 (a), 0.33 (b), 0.5 (c). This corresponds to decreasing the detuning or increasing
the tunneling, so that the eigenstates evolve from localized orbitals of each well to delocalized, symmetric-antisymmetric superpositions. A soft
mode develops along the n + p direction as the tunneling is increased and the modes become pumped indiscriminately by the two reservoirs.
Panel (d): Distribution at the mean-field threshold, nc = ns = 5000, for α11 = α22 = 1, α12 = α21 = 0.

regime, where the strength of these terms is smaller than
the level spacing of the noninteracting Hamiltonian, so that
they are a small perturbation. For the two-well problem the
condition for this approximation to be valid is parametrically

�E =
√

�ε2 + t2 � gn. (61)

Here we neglect numerical factors, which are of order 1 in
typical geometries, including the trigonometric functions in
Eq. (60). When Eq. (60) is satisfied the density generically
undergoes sinusoidal oscillations, while the relative phase
between the condensates can either oscillate or wind (linear
“Rabi” oscillations and linear “Josephson” oscillations, re-
spectively [11]). For the special case �ε = 0 Eq. (60) is the
criterion defining the Rabi regime as given by Leggett [47].
It excludes any situation in which the density imbalance is
determined by interactions, rather than by the pumping alone.
We discuss this further in Appendix C.

A. Population distribution

In Fig. 3 we show the population distribution among
the orbitals of the double well, obtained by using Eq. (58)
in Eq. (18). We take ns = 5000, which is physically
reasonable [23] while also in a regime which is convenient
to contrast the approaches presented in Sec. III. We show
results when the pump parameter nc is both at the mean-field
threshold [nc = ns ; panel (d)], and above threshold [nc = 5200;

panels (a)–(c)]. Above threshold we show how the distribution
varies with tunneling or detuning, giving results for three
steps from vanishing tunneling [t/�ε = 0; panel (a)] to
vanishing detuning [t/�ε → ∞; panel (c)]. For vanishing
tunneling the orbitals are localized in the left and right
well, and the double-well system comprises two independent
condensates. The population distribution above threshold is
then a symmetrical two-dimensional Gaussian (Pnp = PnPp).
However, as we increase the tunneling, or decrease the
detuning, the orbitals become more delocalized between the
left and right, and hence receive pumping from both reservoirs.
The distribution broadens along the direction n = p, until at
resonance the distribution is a flat ridge along this direction
(Pnp = P[n+p]|n,p�0). This is because the pumping is related to
the density profile of the condensate orbitals, which is identical
for the two modes at resonance. Thus, the pumping does
not distinguish between the two orbitals, fixing only the total
density n + p, and leaving the difference n − p undetermined,
within n,p � 0. In other words, there is a soft mode describing
density fluctuations between the two condensate orbitals.
The effects of the soft mode are limited by the cutoff at
n = p = 0, so that the population distribution in this case
is not a Gaussian. Furthermore, there are large fluctuations
in the populations, which persist even far above threshold,
nc � ns . We note that �ε = 0 corresponds to a nonequilibrium
phase boundary at the mean-field (rate-equation) level [17],
separating the single-mode and two-mode steady states. The
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FIG. 4. (Color online) First-order coherence functions for the
emission from one mode of a double-well potential, with g =
4 ×10−5γ and ns = 5000. Solid curves show results for vanishing
interwell tunneling (t/�ε = 0), and dotted curves for vanishing
detuning (t�ε → ∞). Left panel (a): Numerical results with nc =
5000 (thin line) and 5200 (thick lines). Right panel (b): Static limit
approximation (light blue) and Fokker-Planck approximation (dark
blue), for nc = 5200. The insets give the corresponding coherence
times in units of 1/γ .

large fluctuations found here correspond to critical fluctuations
near this phase transition, associated with the finite size of the
condensate [52].

B. First-order coherence functions

In Fig. 4 we show the first-order coherence functions for the
light emitted from one mode of a double well. The left panel
(a) shows the results obtained by direct numerical solution
of Eq. (27), while the right panel (b) shows those of the
Fokker-Planck and static-limit approaches. We again show
results at the mean-field threshold, and slightly above it, and
for both vanishing tunneling and vanishing detuning. For all
parameters shown, the numerical solution gives an exponential
decay of the first-order coherence, i.e., a Lorentzian emission
line. This is the same form found previously for a single
mode [23] and corresponds to interaction broadening in
the motional narrowing regime [45,46]. That the result is
due to interaction effects is shown by the observation that
the computed coherence times are similar to those obtained
from the static limit calculation. The static limit, however, is
deprived of the motional narrowing effect [23,46] and shows
its hallmark Gaussian decay for the first-order coherence.
For larger polariton-polariton interaction strengths or broader
population distributions, the static regime dominates, and the
numerical solution and the static limit result coincide.

The full dependence of the coherence time, as predicted
by the static limit and Fokker-Planck approaches, is shown
in Fig. 5. The coherence time decreases, so the linewidth
broadens, as we go from localized independent condensates
(zero tunneling) to delocalized coupled condensates (zero
detuning). This is because the broadening reflects the pop-
ulation fluctuations, which cause energetic fluctuations via the
interaction, and the population fluctuations are largest for the
delocalized case (see Fig. 3). This effect is counterbalanced
by the changes in interaction strengths, κ,η, with detuning
Eqs. (59). Even though in the distributed case the condensates
overlap with one another and the average interaction strength
is stronger than in the independent case ( κ

g
,
η

g
= 0.5,2 vs 1,0),

the populations are anticorrelated between the modes. The
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FIG. 5. (Color online) Dependence of the coherence time (in
units of 1/γ ) on the ratio of tunneling to detuning, t/�ε, for nc =
5200 and ns = 5000. Left panel (a): Static limit approximation, with
κ,η given by Eq. (59) (dark blue), and with κ,η = g,0 (light blue).
Right panel (b): Fokker-Planck approximation and full numerical
solution.

resulting energy fluctuations, therefore, to some extent cancel.
To separate this effect we show the coherence time obtained in
the static limit taking κ = g and η = 0 [panel (a), light blue].
This produces a basic steplike form of the coherence time.

When the dependence of the interaction strengths on
detuning is included two additional features are noticeable
in the static limit [panel (a), dark blue]: a nonmonotonic
dependence of the coherence time, and an overall increase
of the coherence time at t/�ε ≈ 1. The intercondensate
interaction is responsible for these effects. The fluctuations
in the populations of the modes are anticorrelated at strong
tunneling, because the total occupation, n + p, is fixed by the
pumping. Since an increase in the occupation of one mode
tends to be accompanied by a decrease in the occupation of
the other, the energy shifts generated by the interaction within
the modes are partially canceled by those between the modes.
In this way the inter- and intracondensate interactions act in
conjunction to preserve and even increase coherence. In the
motional narrowing regime, as shown in the Fokker-Planck
and full numerical solutions [panel (b)], fluctuations acquire a
more isotropic nature and this effect vanishes.

Finally, we see from Figs. 4 and 5 that the Fokker-Planck
approximation is in good agreement with the full numerical
calculation. We note that, for strong tunneling, the Fokker-
Planck approximation indicates a Gaussian behavior for the
first-order coherence function, similar to that seen in the
static limit. We suggest this is an effect of the soft density
mode. In the Fokker-Planck approach the drift coefficients are
approximated as linear functions of the populations, giving a
divergent relaxation time for fluctuations of n − p. Thus, the
soft mode has no dynamics at the level of the linearized theory,
and we obtain behavior similar to that of the static limit. In
the full theory, nonlinear effects are in place and this slow
dynamics is suppressed.

C. Coherence of Josephson oscillations

In Fig. 6 we show the decay of the second-order correlation
function gJ (τ ), describing the dephasing of the intensity
oscillations, obtained from both the numerical solution of
Eq. (52), and from the static limit result, Eq. (53). Comparing
with Fig. 4 we see that, when the interwell tunneling vanishes,
the decay time for gJ (τ ) is half that of the first-order coherence
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FIG. 6. (Color online) Decay of the second-order cross-
correlation function gJ (τ ), describing the dephasing of intensity
(Josephson) oscillations in the strong-trapping (Rabi) regime of
a double-well potential. Corresponding results for the first-order
coherence function are shown in Fig. 4. Solid curves: Vanishing
interwell tunneling. Dotted curves: Vanishing detuning. Left panel
(a): Numerical results with nc = 5000 (thin line), 5200 (thick lines).
Right panel (b): Static limit approximation for nc = 5200.

function g(1)(τ ), for the exponential decays obtained from
the numerical solution. For the Gaussian decays, obtained
in the static limit, the corresponding factor is 1/

√
2. This

is as expected, since for independent emitters gJ factorizes,
〈a†

1(τ )a2(τ )a†
2a1〉 = 〈a†

1(τ )a1〉〈a2(τ )a†
2〉. Such a factorization

does not, in general, apply in the case where the modes interact,
and indeed we see that for the numerical solution shown
the decay of gJ occurs faster than would be expected from
independent emitters. This reflects the correlations between
the modes, which can be caused both by the Hamiltonian and
the dissipative interactions through the common reservoirs.

We make two additional comments regarding the relation
between gJ and g(1). First, for all the parameters shown the
ratio of the coherence times in the static limit appears to
be 1/

√
2, even when the intermode interactions are present.

One can readily check, however, that gJ does not factorize in
this case, although this is not apparent from these coherence
times. Second, we note that for independent emitters gJ strictly
factorizes into a product of g(1)(τ ) and an antinormal ordered
correlation function 〈a(τ )a†〉; the latter corresponds to an
absorption spectrum. The decay times for these two types of
correlators can, in principle, differ in an interacting system,
where the dynamics after adding a particle is not equivalent
to that after removing one. This difference is negligible
here, however, since the range of occupation numbers in the
steady-state density matrix is much larger than 1.

V. DISCUSSION

Although we have focused on the specific example of
condensation in a double-well potential, our theory can be
applied to a range of many-condensate systems now being
considered [8–10,13], once they have been decomposed into
the appropriate single-particle orbitals. Each such orbital
comprises a possible condensate mode in our theory, with
gain and loss characterized by a few phenomenological
parameters. In general the decoherence of the condensate
depends on the structure of the single-particle orbitals, so our
theory allows for the study and optimization of coherence
properties of polariton condensates across the geometries
now being developed, including wires, photonic molecules,

and photonic crystals. More speculatively, it could provide
a basis for studying glasslike states [53,54] and spontaneous
vortex lattices [16], beyond the mean-field level, and also for
treatments of polariton dynamics in the quantum correlated
regime [55].

One notable feature in experiments is the presence of a
large repulsive interaction with the reservoir excitons [8,56].
We have omitted this from our discussion, because it can be
included on average as an effective potential, and hence a redef-
inition of the orbitals. Fluctuations in the reservoir occupation
can broaden the emission line, i.e., lead to decoherence of the
condensate, but this is negligible compared with the intrinsic
linewidth provided pump laser noise is small and fast [5,57].
Schwendimann, Quattropani, and Sarchi have recently dis-
cussed an additional decoherence mechanism for polariton
condensates, involving parametric scattering processes, and
predicted its effects for a single-mode condensate [24]. It
would be interesting to extend our theory to include this
process, and hence assess its impact in multimode condensates.

We have presented the theory without explicit consideration
of the polarization of the polaritons [58]. In incoherently
pumped systems, the effects of this additional degree of
freedom have been explored in both experiment and theory; the
key result is that the condensate shows a high degree of linear
polarization, in a direction pinned to the crystal axes [59–62].
In principle our theory allows the treatment of polarization,
beyond the mean-field (Gross-Pitaevskii) level, in two regimes.

Polarization can be included relatively straightforwardly
within our theory, when the polarization splitting of the single-
particle orbitals is negligible. In CdTe microcavities extrinsic
effects, probably strain, do induce such splittings, but they
are typically small, �ph ∼ μeV [63]. Neglecting this scale we
may take each spatial orbital in our theory to comprise two
degenerate circularly polarized orbitals, for polaritons with
Jz = ±1. Within each such orbital the interaction Hamiltonian
is [58]

c1(n2
+ + n2

−) + c2n+n−, (62)

where n+(−) are the numbers of polaritons of each circular
polarization. Since this is of the same form as Eq. (23), i.e.,
diagonal in Fock space, in the circular basis, the form of our
theory is unaffected, although the number of modes is, in
general, doubled. (However, |c1| � |c2| ≈ 0 [50], so that if
the polarizations have independent reservoirs they completely
decouple to a good approximation, and the number of modes
is effectively unchanged.)

Although a full analysis of this case is beyond the scope of
this paper, we can anticipate some results and ramifications.
Each spatial mode will give rise to two coherent circularly
polarized emitters, each with a linewidth determined by the
co-polarized interactions (the broadening due to the cross-
polarized interactions will be smaller, because |c2| � |c1|).
The relative occupation of the two circular polarizations will
depend on the scattering processes. In incoherently pumped
systems, a reasonable assumption [58,64] is that relaxation
processes provide for the gain and nonlinear gain to be
equivalent for the two circular polarizations, so that the
resulting occupations are identical, and the emission for each
spatial mode is then linearly polarized on average. This
argument is very similar to those previously used to explain
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the linear polarization of polariton condensates [61,62]: the
choice of the circular basis arises because this diagonalizes
the interaction Hamiltonian, and the reasonable assumption
of an equal population of such eigenstates (which gives the
minimum energy in equilibrium) is then a linear polarization.
If the two circular polarizations are truly degenerate, �ph = 0,
then the direction of linear polarization would fluctuate from
shot to shot, but it can be locked by a nonzero �ph [51]. For
a single spatial mode Laussy et al. [62] have gone beyond
mean-field theory to predict the decay time of the polarization,
considering the Hamiltonian evolution alone, i.e., in the static
limit (cf. Sec. III D); we expect motional narrowing to extend
this decay time in general.

The approach in terms of circularly polarized basis states
breaks down when, sufficiently far above threshold, the
linewidths become smaller than �ph, which is no longer
a small energy scale. In this regime one should take the
(typically) linearly polarized eigenstates of the single-particle
Hamiltonian as the starting point. However, transforming the
interaction, Eq. (62), to this basis leads to polarization-flip
scattering terms, such as a

†
xa

†
xayay . This is of the form

of Eq. (24), but unfortunately since �ph is usually small
compared with the interaction energy it cannot be similarly
neglected. Thus this regime cannot be fully treated within
the framework of our theory, unless it is extended to include
nonconserving scattering processes, i.e., spin-flip terms. An
exception is when only one of the two orthogonal polarizations
is populated, which can indeed occur [63], so that the
unoccupied orthogonally polarized mode may be omitted
completely from the description.

VI. CONCLUSION

In summary, we have developed a model for the nonequi-
librium dynamics of polaritons in an incoherently pumped
microcavity, incorporating gain due to scattering from multiple
reservoirs, and resonant polariton-polariton interactions. In
contrast to previous works addressing condensates formed
with a single macroscopically occupied orbital, our theory
applies when several such states coexist, i.e., to multimode
polariton condensates. We have used it to predict the quantum
statistics, revealed for example via the linewidths, and shown
how these quantities are affected by interactions between the
condensates. We predict that the populations of the modes can
be anticorrelated due to their coupling to a common reservoir,
leading to a narrowing of the emission lines and a prolongation
of the coherence time. We have also demonstrated theoretically
a dephasing mechanism for intensity oscillations, and shown
that, for realistic parameters, their coherence decay provides a
useful probe of correlation effects.

An important theoretical extension of our work would
be to include the nonresonant interaction terms between the
modes, in particular terms such as a

†
1a

†
1a2a2, which become

significant beyond the strong-trapping regime. This would
also allow us to include spin-flip and polarization-dependent
mechanisms [50,65]. In Fock space, the Liouville evolution
of these terms generates a recursive dependence on all the
elements within density matrix. This contrasts with having
to solve for the diagonal elements in the case of steady-state
population distribution or the one of off-diagonal terms for

linewidth and Josephson coherence function. We suggest
that these interactions could be included by generalizing the
Fokker-Planck approach to apply to the full density operator,
rather than the distributions u or P , i.e., by assuming ρmnpq

is smooth, so that Eq. (1) becomes a partial differential
equation. Such an approach would be similar in spirit to
those based on the Wigner representation for ρ, as discussed
by Wouters and Savona [22] among others. It could also be
done without consideration of the classical limit of quantum
electrodynamics and make use of the Mellin transform in
relation to fractional calculus [66,67], in contrast to the
double-sided Laplace transform which led to Eq. (46). More
numerically driven, the cumulant expansion technique used in
Ref. [50] may also lead to a way to deal with these terms. The
nonresonant interaction terms lead to the Bogoliubov spectrum
for a homogeneous single-mode condensate, and hence are
implicated in superfluidity, while at the semiclassical level they
cause nonlinear mixing and synchronization in the multimode
case [17]. The suggested generalization of our theory would al-
low the impact of quantum and nonequilibrium fluctuations on
such phenomena to be explored, in complex geometries where
many condensates coexist. Josephson phenomena which occur
outside the strong-trapping regime are also accessible once
these terms are included.
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APPENDIX A: DERIVATION OF THE EFFECTIVE
PUMPING RATE

To derive an effective pumping rate, r , starting from the
replenishing rate, λa , of reservoir level |a〉, we combine the
system to a generic level, � = ρφφ|φ〉〈φ|, giving ρ ⊗ �. The
evolution of the coupled system, projected onto |φ〉, provides
the rate equation,

0 = −λaρ
φφ
nmpq + γr

(
ρaa

nmpq + ρb1b1
nmpq + ρb2b2

nmpq

)
, (A1)

which we use in conjunction with the trace over all levels,
Tra,bi ,φ[ρ ⊗ �],

ρnmpq = ρφφ
nmpq + ρaa

nmpq + ρb1b1
nmpq + ρb2b2

nmpq. (A2)

Substituting ρnmpq − ρ
φφ
nmpq for ρaa

nmpq + ρb1b1
nmpq + ρb2b2

nmpq , (A2),
into (A1) gives

ρφφ
nmpq = γr

λa + γr

ρnmpq. (A3)

Hence

λaρ
φφ
nmpq = λaγr

λa + γr

ρnmpq = rρnmpq, (A4)

and we have transformed the repopulation from level � into
an effective pumping, with rate r . Additional levels could be
included, but their steady-state nature allows us to recover this
simpler scheme [33].
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APPENDIX B: INTERMEDIATE VECTOR AND MATRIX FORMS
IN THE SIMPLIFIED PUMPING MODEL

To obtain the one reservoir, two modes dissipator (10), we generate three versions of these vector forms,

R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρaa
nmpq

ρ
ab1
nm+1pq

ρ
b1a
n+1mpq

ρ
ab2
nmpq+1

ρ
b2a
nmp+1q

ρ
b1b2
n+1mpq+1

ρ
b2b1
nm+1p+1q

ρ
b1b1
n+1m+1pq

ρ
b2b2
nmp+1q+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, A = r

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρnmpq

0
0
0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B1)

We also use three instances of the following matrix form,

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γr −ig1

√
m + 1 ig1

√
n + 1 −ig2

√
q + 1 ig2

√
p + 1 0 0 0 0

−ig1

√
m + 1 γr 0 0 0 0 ig2

√
p + 1 ig1

√
n + 1 0

ig1

√
n + 1 0 γr 0 0 −ig2

√
q + 1 0 −ig1

√
m + 1 0

−ig2
√

q + 1 0 0 γr 0 ig1

√
n + 1 0 0 ig2

√
p + 1

ig2
√

p + 1 0 0 0 γr 0 −ig1

√
m + 1 0 −ig2

√
q + 1

0 0 −ig2
√

q + 1 ig1

√
n + 1 0 γr 0 0 0

0 ig2
√

p + 1 0 0 −ig1

√
m + 1 0 γr 0 0

0 ig1

√
n + 1 −ig1

√
m + 1 0 0 0 0 γr 0

0 0 0 ig2
√

p + 1 −ig2
√

q + 1 0 0 0 γr

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(B2)

The vectors and matrices R′,A′,M ′ and R′′,A′′,M ′′ are
obtained by shifting the indices and occupation numbers
of R,A,M according to n,m → n −1,m −1 and p,q →
p−1,q−1, respectively. We use the elements M−1

21 ..M−1
51 ,

M ′−1
21 ,M ′−1

31 and M ′′−1
41 ,M ′′−1

51 in our substitution.

APPENDIX C: REGIMES OF JOSEPHSON JUNCTIONS

Within the mean-field (Gross-Pitaevskii) dynamics of a
Josephson junction one typically discusses several different
regimes, and a range of Josephson effects within each regime.
If Eq. (61) holds then the mean-field dynamics is that of two
coupled harmonic oscillators, leading to our description of this
regime as linear. In it one obtains sinusoidal oscillations in the
occupations from the beating between normal modes [68].
Since this is also the physics of Rabi oscillations of a two-
state system, the linear regime is sometimes also described
as the Rabi regime. In the literature the criterion for the
linear/Rabi regime [11,47,69] is usually stated for the case
where the detuning, �ε, is zero, or at least similar to the
tunneling, t , and so is t � gn. For �ε 	= 0 the behavior at
the mean-field level can remain linear (constant blueshifts,
of order gn, excepted) even for very small tunneling, so
long as Eq. (61) is satisfied. The opposite regime, where
the interactions dominate, is usually labeled as the Josephson

regime, and is where macroscopic quantum self-trapping is
studied.

The experiment involving continuous incoherent pump-
ing [10], as in our theory, is generally agreed to be in the
linear/Rabi regime [10,11], so that we expect our theory
to apply. We note, however, one potential complication. If
interactions like Eq. (60) are completely neglected then there
are no terms which fix the relative phase of the condensates in
the two modes. Thus the phase of the Josephson oscillations
would fluctuate from shot to shot of an experiment [see
Eq. (49)]. The data reported in Ref. [10] are, however, averaged
over many repetitions and still reveal oscillations, so that
a consistent phase is being established. Thus the terms in
Eq. (60) do have some effect, perhaps implying some small
corrections to our results.

As noted above, some other recent experiments involve co-
herent resonant excitation to create a transient condensate [11].
The linear regime discussed by these authors would correspond
to Eq. (61) being satisfied, while the nonlinear regime (where
macroscopic quantum self-trapping was observed) would be
where it is violated; the further distinction made within the
linear regime, between “Rabi” and “Josephson” oscillations,
would not be relevant in terms of the applicability of our theory.
It is, in any case, not directly relevant to these experiments,
as they have neither a condensed steady state nor incoherent
excitation.
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Deveaud-Plédran, Phys. Rev. Lett. 105, 120403 (2010).

[11] M. Abbarchi, A. Amo, V. G. Sala, D. D. Solnyshkov, H. Flayac,
L. Ferrier, I. Sagnes, E. Galopin, A. Lemaı̂tre, G. Malpuech, and
J. Bloch, Nat. Phys. 9, 275 (2013).

[12] C. W. Lai, N. Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng,
M. D. Fraser, T. Byrnes, P. Recher, N. Kumada, T. Fujisawa,
and Y. Yamamoto, Nature (London) 450, 529 (2007).

[13] N. Masumoto, N. Y. Kim, T. Byrnes, K. Kusudo, A. Löffler, S.
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