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Improvement of electron pump accuracy by a potential-shape-tunable quantum dot pump
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We have investigated the accuracy dependence of a single-electron pump on the confinement-potential shape
of a quantum dot (QD) pump. A uniquely designed QD, which employs multiple gates to control the shape of
the QD potential well, is utilized for electron pumping. It has been observed that the accuracy of the pump can
be dramatically enhanced by achieving smaller QD size and greater decoupling from the electrodes, which is
supported by the so-called decay-cascade model. The accuracy of the pump current is estimated, based on the
decay-cascade model, to be close to 0.1 ppm for 80-pA pump current when the confinement-potential shape
is optimally tuned. This is the highest reported accuracy, although it is a theoretically estimated value, among
QD-based pumps measured at 4.2 K in the absence of an external magnetic field. Our numerical calculations
show that the enhancement of the estimated accuracy is mainly due to the increase of the electron addition energy
in the QD as well as the increase of the height and thickness of the QD potential barrier.
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I. INTRODUCTION

Tunable-barrier electron pumps [1–7] have attracted con-
siderable attention recently because of their potential applica-
tion to the quantum current standard. Blumenthal et al. [1]
demonstrated quantized current pumping up to 1 GHz by
operating the gates of a quantum dot (QD) in a turnstile fashion.
Following their study, it was reported that quantized current
pumping could be achieved by modulating only a single gate
of a QD: this is known as a “single-parameter charge pump”
[3–5]. This technique is believed to be noteworthy progress
towards the quantum current standard because multiple charge
pumps can easily be parallelized for a scalable higher current
output [8]. It has also been found that the pump-current
accuracy can be significantly improved by modulating the
pump with properly tailored wave forms under a high magnetic
field [7,9,10]. The measured current accuracy was at least
better than 1.2 ppm with an output current of 100 pA [7],
which is very close to the requirement for fulfillment of the
quantum metrology triangle [11].

In this work, we have employed a uniquely designed QD
with a controllable confinement-potential shape, allowing it to
function as a pump device. The confinement-potential shape
of the QD is changed to study the effect on the pump-current
accuracy. The accuracy of the pump current is theoretically
estimated to be close to 0.1 ppm for a pumping frequency of
500 MHz when the confinement-potential shape is optimally
tuned. The results are analyzed within a decay cascade
model [7,12] to elucidate a possible mechanism responsible
for the improved accuracy of the pump.
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II. EXPERIMENTAL SETUP

Figure 1(a) shows a schematic diagram of our pump device.
The device is fabricated on the surface of a 62-nm-deep
two-dimensional electron gas (2DEG) wafer based on a
GaAs/AlGaAs heterostructure with an electron density of
2.9 × 1011 cm−2 and a mobility of 2.5 × 106 cm2 V−1 s−1 at
a temperature of 4.2 K. Devices with two different sizes (75-
and 50-nm-wide gate electrodes with a 75- and 50-nm gap
between the gates, respectively) are fabricated. The devices
show very similar characteristics. The devices are composed
of three sets of split gates (entrance Gent, plunger Gp, and exit
gate Gexit) and one “trench” gate GT placed in the gap of the
split gates, as shown in Fig. 1(a).

Schematic potential diagrams showing the pumping mech-
anism [6,7,12,13] are presented in Fig. 1(b). A QD is formed
by tuning the voltages Vent, Vp, Vexit, and VT on gates Gent, Gp,
Gexit, and GT, respectively. The potential of the QD is varied
periodically by modulating the entrance-gate voltage Vent with
rf biased. Electrons are loaded into the QD when the entrance
barrier is below the Fermi energy EF (red potential trace). As
the barrier is lifted above EF (blue potential trace), captured
electrons in the QD start to tunnel back and escape from the
QD. The accuracy of the pump current is mostly determined
during this back-tunneling stage [6,7]. If the back-tunneling
rate �n of the nth electron is unity and the back-tunneling
rates of the electrons below the nth states are zero, the pumped
current will be I = (n − 1)ef , where e is the electron charge
and f is the pumping frequency. Hence, the accuracy of the
pump current is mostly determined by the ratio between �n

and �n−1 [6,7,12,13]. The ratio is known to depend mainly on
two physical parameters, the thickness of the potential barrier
of the QD and the electron addition energy �E of the QD;
the latter is defined by �E = Ec + δE, where Ec and δE are
the charging energy e2/C and energy-level spacing of the QD,
respectively [6,10,12].

In our previous work, we reported that subband energy
spacing in the quantum point contact (QPC) could be increased
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FIG. 1. (Color) (a) Schematic diagram of the device and the
potential profile of the QD. Negative gate voltages Vent, VP, Vexit

are applied on the entrance Gent, plunger Gp and exit gates Gexit,
respectively, while a positive VT is applied on trench gate GT to make
the potential profile of the QD sharper and deeper. (b) Schematic
potential diagram showing the pumping mechanism. Vent is modulated
periodically while VP, Vexit, and VT are fixed. Schematic diagrams of
the potential profile of the QD with (c) zero voltage and (d) a positive
voltage on GT. The positive VT makes the potential profile of the QD
sharper and deeper. (e) Transconductance dI/dVexit as a function
of Vexit and Vent, measured for VP = 0.375 V, VT = 0.3 V, f =
100 MHz, and PRF = 2 dBm. The number on each plateau denotes
the number of electrons pumped through the QD. Inset: the pump
current Ipump measured along the dotted line (Vent = −1.01 V).

by applying a positive voltage on a trench gate GT placed
in the gap of QPC split gates [14]. The maximum subband
energy spacing was ∼7 meV, which is much larger than that
of a conventional QPC [15]. Taking a similar approach, the
energy level spacing δE of a QD can be controlled by the
trench-gate voltage VT, as illustrated in Fig. 1(c) for zero and
Fig. 1(d) for a positive VT. As VT increases, the shape of
the QD potential well will be sharper and deeper to increase
the energy-level spacing δE, which will eventually increase the
electron addition energy �E of the QD. This scheme allows
us to vary an important experimental parameter �E, which
has not been explored in previously reported works [1–7].

All measurements are performed at 4.2 K in liquid helium
without a magnetic field. Figure 1(e) shows a transconductance
dI/dVexit density plot obtained as a function of Vent and Vexit

for fixed values of VP and VT. The dark regions surrounded
by the red boundaries correspond to the quantized current
plateaus. The number on each plateau region denotes the
number of electrons pumped through the QD from the source
to the drain. The quantized currents as a function of Vexit [along
the vertical dotted line in Fig. 1(e) for a fixed value of Vent]
are shown in the inset. This shows the current plateaus around
integer multiples of 16 pA, which correspond to the expected
currents nef (n is an integer number) with f = 100 MHz. The
results are consistent with previously reported results [1–7].

FIG. 2. (Color online) (a) Quantized pump currents measured for
various values of VT at f = 100 MHz with PRF = 2 dBm, which
are shifted in y axis for clarity. Open circles are measured currents
normalized by ef as 〈n〉exp = Ipump/ef . The x axis is rescaled to
aVexit + b, where a and b are fitting parameters. Solid lines are
obtained by fitting the data to Eq. (1). (b) Each split gate is controlled
separately, with the upper and lower parts of each split gate tied
together as shown. A QD is expected to form symmetrically under
GT (marked as the red dashed line) since the gate voltages are applied
symmetrically to the upper and lower parts of the split gates. The red
dashed line is the schematic shape of the QD potential. (c) δ2 vs VT.

Note that our results are obtained at 4.2 K in the absence of an
external magnetic field.

III. ELECTRON PUMPING

Figure 2(a) shows the first quantized current plateaus
measured for various values of VT with the other gate voltages
tuned to form a QD as illustrated in Fig. 2(b), where the
red dashed line represents the QD. Figure 2(a) reveals that
the width of the first current plateau becomes wider as VT

increases. Since the pump-current accuracy is known to be
proportional to the width of the current plateau [5], we can
presume that the current accuracy can be improved by applying
higher positive gate voltage on the trench gate GT, which makes
�E larger.

In order to estimate the current accuracy quantitatively
from our data, we utilize a theoretical model, the so-called
decay-cascade model proposed by Kashcheyevs et al. [6,12].
According to the model, the accuracy of the pump current is
mostly determined at the back-tunneling stage, as illustrated
in Fig. 1(b). For example, the pump current will be perfectly
accurate when the back-tunneling rates �1 = 0 (for the ground
state) and �2 = ∞ (for the first excited state). Thus, the ratio
δ2 = ln(�2/�1) is considered an important figure of merit to
determine the accuracy of the pump current [6,7]. The ratio δ2

can be conveniently extracted by fitting the experimental data
to the decay-cascade model. The analytic expression for the
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pump current is given as follows:

〈n〉fit =
2∑

i=1

exp[−exp(−aVexit − b + ln�i)], (1)

where �i (i = 1,2) is the back-tunneling rate of the ith electron
in the QD and a and b are fitting parameters [7,12].

The ratio δ2 is obtained by fitting our experimental data
to Eq. (1). The extracted δ2 values for various trench-gate
voltages VT are shown in Fig. 2(c). δ2 shows a monotonic
increase as a function of VT [16], which is consistent with our
assumption that a positive VT makes the QD potential shape
narrower and deeper, hence increasing the electron addition
energy �E. Consider the back-tunneling rates �1 and �2 of
electrons at the back-tunneling stage of trace 2 in Fig. 1(b). The
potential barrier thickness experienced by an electron in the
excited energy level E2 becomes thinner compared to the case
of the ground energy level E1 when the addition energy �E =
E2 − E1 becomes larger. Consequently, δ2 = ln(�2/�1) is
expected to be proportional to �E. It has to be mentioned
that the entrance- and exit-gate voltages are retuned for new
values of the trench-gate voltage, which in turn changes the
barrier shapes of the entrance and exit potentials. However,
the countercompensation of gate voltages, the tendency that
the increase in the trench-gate voltage requires a decrease in the
entrance- and the exit-gate voltages, keeps the barrier shapes
rather unchanged for different values of the trench-gate volt-
age. Therefore, we believe that the enhancement of δ2 is mostly
due to the increase of the electron addition energy for the range
of VT varied in our experiment. The ratio δ2 ranges from 8.5
to 9.6 depending on VT. These values are slightly higher than
those of QD pumps without a trench gate measured under
similar conditions (zero external magnetic field, sinusoidal
gate modulation, and liquid-helium temperature) [7,12].

Thus far we have studied the accuracy of the pump current
when the QD is formed symmetrically (in shape) under the
trench gate GT, as shown in Fig. 2(b). However, it is found
that δ2 can be dramatically enhanced by forming the QD
asymmetrically, as shown in Fig. 3(b). The same negative gate
voltage (−0.66 V) is applied to all upper parts of the split gates
to deplete the 2DEG in the upper region. A slightly positive
voltage is applied to the lower part of the plunger gate GP so
that the QD is pushed towards the lower part of the plunger
gate GP, where the QD is represented as a red dashed line in
Fig. 3(b) [17].

Figure 3(a) shows the measured quantized current steps
when the QD is formed asymmetrically. Open circles are the
experimental data, and the red line is the fitted result using
Eq. (1) with δ2 ∼ 18. The pump is modulated at a frequency
of 500 MHz, which gives ∼80 pA of single-electron pumping.
The result is a dramatic enhancement over that measured for
the symmetric QD case, where δ2 is ∼9 at 100 MHz and was
reduced significantly at 500 MHz (not shown here).

The dependence of δ2 on the pumping frequency is shown in
Fig. 3(c). δ2 is ∼18 up to 500 MHz and linearly decreases above
this frequency. The corresponding pump error εP, defined as
1 − 〈n〉fit at the exit-gate voltage where d〈n〉fit/dVexit is locally
minimized [6], is also plotted. For δ2 = 18, the pump error εP

is close to 10−7. For the symmetrical QD case, the pump error
εP was ∼10−3 for measured δ2 = 9.

FIG. 3. (Color online) (a) Current normalized by ef measured
(open circles) for f = 500 MHz and PRF = 2 dBm when the QD is
tuned asymmetrically as illustrated in (b). The solid line is 〈n〉fit with
δ2 ∼ 18.1. (b) The gate-voltage configuration to form an asymmetric
QD (denoted as the red dashed line) for pumping. The rf signal is
applied to the lower part of Gent. The red dashed line is the schematic
shape of the QD potential. (c) δ2 (black circles) and εP (red triangles)
as a function of f .

IV. NUMERICAL CALCULATIONS

To understand the dramatic enhancement of the pump-
current accuracy for the asymmetric QD pump [18], δ2 =
ln(�2/�1) is calculated fully quantum mechanically for both
the symmetric and the asymmetric QDs, whose potential
profiles were calculated by solving Laplace’s equation ana-
lytically [19]. From the calculated QD confinement potential,
the back-tunneling rates �1 and �2 are obtained by using
the lattice Green’s function method [10,20,21] and taking the
imaginary part of the energy eigenvalues of the ground and
excited states; the imaginary part appears because the effect of
the semi-infinite leads is taken into account as the self-energy
to the QD. Figures 4(a) and 4(b) are the potential profiles of the
symmetric and asymmetric QDs, respectively, when the exit-
and entrance-gate voltages are set to be equal. Figures 4(c)
and 4(d) [4(e) and 4(f)] are the calculated local densities of
states of the ground and first excited states for the potential
profiles of Fig. 4(a) [Fig. 4(b)].

The calculated values of δ2 are ∼7.5 and ∼5.5 for
asymmetric and symmetric QDs, respectively, for various
values of Vent, as shown in Fig. 4(g). Even though the calculated
δ2 values are smaller than the experimental results and the
enhancement of δ2 for the asymmetric QD is not as significant
as observed in the experiment, the results show qualitative
agreement with the experimental results. The discrepancy
between our analysis and the experimental result is due to
the fact that our calculation has the following imperfections.
First, electron-electron interactions are not taken into account.
Our crude estimation of the charging energy Ec of the dot,
based on dot size, indicates that Ec is roughly five times
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FIG. 4. (Color) The calculated potential profiles of the (a) sym-
metric and (b) asymmetric QDs around the center of the device. The
energy levels E1, E2, and EF of the ground (green lines), first excited
(blue lines), and Fermi states (red lines), respectively, are calculated
using the lattice Green’s function method. The arrows indicate
1D tunneling trajectories with maximum tunneling probability. The
calculated local density of states is shown for (c) and (e) the ground
and (d) and (f) first excited states of the symmetric and asymmetric
QDs, respectively. (g) The calculated δ2 as a function of Vent for
the symmetric (open triangles) and asymmetric (open circles) QDs.
δ2 is calculated only for the case when both the ground and the
first excited states are captured in the QD above EF (i.e., during the
back-tunneling stage). The dashed red lines show the boundaries
between electron-loading, back-tunneling, and electron-unloading
stages.

larger than the single-particle level spacing of the dot. Because
of the interactions, more than the two lowest single-particle
levels, within the energy window of Ec, contribute to �2.
As a higher single-particle level has a larger back-tunneling
rate, �2 becomes larger as Ec increases. Therefore, the ratio

�2/�1 is underestimated in our calculation. As the charging
energy of the asymmetric QD is roughly estimated as 1.2 times
larger than that of the symmetric QD, the ratio �2/�1 is more
underestimated for the asymmetric QD. Second, in our work,
the QD potential is computed by solving Laplace’s equations,
following Ref. [19]. This approach is not accurate, however.
To get a more accurate QD potential, the redistribution of
two-dimensional electrons below the gates should be self-
consistently treated. However, the self-consistent calculation
of three-dimensional Poisson’s equations is out of the scope of
our study because it is extremely time-consuming. In addition,
we do not take the spin degree of freedom into account. When
a QD has two electrons, we need to consider the spin degree
of freedom, hence spin-singlet and spin-triplet states. Because
of the electron interaction (larger than single-particle level
spacing), the two-electron ground state may favor a spin triplet;
a spin-singlet state has a larger spatial overlap between the two
electrons than a spin triplet, according to the Pauli exclusion
principle; hence, it has a larger electron-electron interaction
energy. For this reason, the ground state of the two electrons has
a large probability that the two electrons have the same spin and
each of the two lowest single-particle states is occupied by one
electron [22]. Despite the imperfections, our analysis based on
the back-tunneling rate of the two lowest single-particle states
is qualitatively reasonable.

To determine the dominant physical parameters that
contribute to the enhancement of δ2 for the asymmet-
rical QD, we analyze the decay rate formula, �1(2) ∝
exp[−2d1(2)

√
2m∗(V0 − E1(2))/�], which is based on a one-

dimensional (1D) WKB approximation [10,23]. Here, m∗ is
the effective electron mass, � is Plank’s constant divided by
2π , V0 is the potential height, and d1(2) and E1(2) are the
thickness of the potential barrier and the electron energy
level corresponding to the ground state (1) and excited state
(2) of the QD, respectively [24]. Under the limit E2 −
E1 � V0, δ2 (= ln�2 − ln�1) is approximated as δ2,WKB ≈
δ�d + δ�E , where δ�d = 2

√
2m∗(V0 − E1)/�2(−�d), δ�E =

d1

√
2m∗/�2(V0 − E1)�E, �E = E2 − E1, and �d = d2 −

d1. The physical factors affecting δ2,WKB are therefore the
disparity of the potential barrier thickness �d, the addition
energy �E, the thickness of the potential barrier d1, and the
potential height V0 − E1. By analyzing each contribution of
parameters �E, �d, d1, and V0 − E1 to δ2,WKB we can evaluate
which physical factors are dominant. Our numerical analysis
shows (detailed calculations are not shown here) that �E, d1,
and V0 − E1 contribute almost equally to the enhancement of
δ2 in the asymmetric QD [in the pumping regime, for instance,
Vent = −1.6 to −1.55 V in Fig. 4(c)] [25].

One might expect that �d also contributes to the enhance-
ment of δ2 because the difference in the values of �d between
the symmetric and asymmetric QDs could be significant.
However, from our numerical results, the effect of �d is
estimated to be one order of magnitude smaller than the effects
of the other parameters, including d1. Thus, we find that the
increase of the addition energy by reducing the QD size and
the increase of the barrier thickness by separating the QD
from the electrodes are the origins of the enhancement of
δ2 in the asymmetric gate configuration. In other words, the
physical factors such as the addition energy and the barrier
thickness may not be directly related to the fact the QD shape
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is asymmetric. The enhancement of δ2 is merely the result of
the fact that by pushing the QD to one side, a smaller and
deeper dot with a thicker barrier can be created.

The ratio δ2 ∼ 18, measured for the asymmetric QD config-
uration, is noticeable considering that the result is obtained at
4.2 K with the conventional sinusoidal rf modulation technique
in the absence of a magnetic field. The result is comparable
to the result reported by Giblin et al. [7], measured under a
magnetic field of 14 T with a tailored rf wave-form modulation,
a technique that is known to increase δ2 significantly.

V. SUMMARY

We have demonstrated a type of single-electron pump that
can tune the confinement-potential shape of a QD. It has been
observed that the pump-current accuracy can be increased
moderately by increasing the electron addition energy of the
QD. A more dramatic enhancement of the current accuracy is

observed when the QD is formed asymmetrically in the pump.
The theoretically estimated pump error is close to 10−7 for
the asymmetric QD configuration, while the pump error for
the symmetrical QD configuration is ∼10−3. Our work shows
that the current accuracy of the single-electron pump can be
increased by making a smaller QD or making a thicker and
higher barrier between the QD and the electrodes.
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