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Charge- and spin-polarized currents in mesoscopic rings with Rashba spin-orbit interactions
coupled to an electron reservoir
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The electronic states of a mesoscopic ring are assessed in the presence of Rashba spin-orbit (SO) coupling
and a U(1) gauge field. Spin-symmetric coupling to an ideal lead is implemented following Büttiker’s voltage
probe. The exact density of states is derived using the reservoir uncoupled eigenstates as basis functions mixed
by the reservoir coupling. The decay time of uncoupled electron eigenstates is derived by fitting the broadening
profiles. Spin and charge persistent currents are computed in the presence of the SO interaction and the reservoir
coupling for two distinct scenarios of the electron filling fraction. The degradation of the persistent currents
depends uniformly on the reservoir coupling but nonuniformly in temperature, the latter due to the fact that
currents emerge from different depths of the Fermi sea, and thus for some regimes of flux, they are provided with
a protective gap. Such flux regimes can be tailored by the SO coupling for both charge and spin currents.
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I. INTRODUCTION

Recently, there has been a growing interest in the spin-
orbit (SO) interaction, partly due to its omnipresence in
noncentrosymmetric semiconductors with high technological
value such as GaAs, InSb, and CdTe, all with a zinc-blende
structure [1]. It is of special interest that the Rashba spin-orbit
interaction (RSOI) may be used to implement control of the
spin degree of freedom through electrical means [2] since
spin more weakly couples to decoherence effects as compared
to the charge [3]. In particular, spin-asymmetric mesoscopic
rings combine well-known charge interference effects with
spin-orbit interactions, that cause spin splitting and spin
interference [4,5] even in the absence of a magnetic field,
while preserving time-reversal symmetry. Such a combination
of interactions plus the existence of edges, give rise to the
spin quantum Hall effect and topological insulators [6]. These
novel states of matter have many new potential applications
radiating from the fact that conduction states are protected
against impurity scattering.

Recent proposals, based on spin-orbit controlled spin pre-
cession in mesoscopic rings or interferometric devices, cover
many mechanisms for generating spin-polarized electrons
by electric and magnetic flux control [7–11] and charge
and spin currents driven by electromagnetic pulses [12].
Graphene-based materials for rings are also promising, due
to the possibility of substrate interactions [13] or intercalating
atoms [14] that have been devised to enhance an otherwise
weak Rashba spin-orbit coupling.

In this work, we study the effects of a voltage probe coupling
and temperature effects on the coherence of spin-split bands
in a Rashba coupled ring. The experimental realization of the
ring is generally understood to be within a two-dimensional
(2D) electron gas, where the Rashba coupling is induced by
the structural inversion asymmetry through a gate voltage.

*Corresponding author: ernestomed@gmail.com

Nevertheless, this same gate can be a source of dephasing
as electrons couple to it as a voltage probe. The robustness
of any proposed device must measure up to the effects of
the environment. A particularly simple model, for analytical
treatment, is the Büttiker probe model [15], extensively
used in the literature [16–19]. An emblematic phase-coherent
phenomenon used as a testing ground is that of persistent
charge and spin currents, the latter made possible by the RSO
coupling. We determine the persistent charge and spin currents
in a 2D electron gas built into a mesoscopic ring with narrow
confinement [8,20]. RSO interaction is contemplated as arising
from structural inversion asymmetry built into the electron
potential controlled by a gate. The solution to this problem
in the completely coherent limit has been addressed before
both in the continuum Hamiltonian [5,8,11,20,21] and the
tight-binding version [22]. We briefly revisit the problem in the
continuum, to derive the basis functions, in order to address the
exact solution to the voltage-probe model [15] including SO
active media. While the uncoupled ring is diagonalizable as a
Hamiltonian problem, the reservoir coupling is formulated in
the scattering formalism. The coupling of these two problems,
generalizing Büttiker’s treatment, allows us to obtain analytical
expressions for the densities of states and equilibrium currents
from the quantum mechanical definitions.

We compute the decay of persistent currents with the
coupling to the electron reservoir and also with temperature,
determined solely by effect of the Fermi distribution. For low
enough temperatures, we find that charge and spin persistent
currents exhibit robust oscillations, following the uncoupled
spectrum of the ring and their magnitude can be controlled by
the external magnetic flux (up to 0.5h/e through the ring). The
spin current can be made to switch signs and stay constant at
constant magnitude quite robustly. While strong cancellation
of the contributions to charge and spin currents is still generic
in the presence of RSO coupling, we find that there are ranges
in flux where currents are thermally protected by a gap. These
ranges can be tuned by the SO coupling.
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II. STATES OF THE DECOUPLED SO ACTIVE RING

The two-dimensional quantum Hamiltonian for electrons
of effective mass m∗ is given by [4,23]

H = �2

2m∗ + α (σ × �) + U (r), (1)

were σi are the Pauli matrices, � = ( p − eA), and U (r)
defines the confinement potential of a ring geometry. α is
the coupling strength of the Rashba spin-orbit interaction ṼR ,
tunable by an external electric field, and Ai are the components
of the vector potential associated with an external magnetic
field in the ẑ direction. It is assumed that only the ground-state
radial mode of the potential U (r) is involved. The treatment
and role of higher-order radial model has been addressed in
Ref. [20].

A straightforward “classical” coordinate change of this
Hamiltonian (x,y) → (ρ,φ) results in a non-Hermitian form
that must be symmetrized appropriately. The correct Hermitian
RSO potential in polar coordinates is given by the usual coor-
dinate transformation plus a basis rotation of the spinor [24]

VR = eiσz
ϕ

2 ṼRe−iσz
ϕ

2 = −�ωSOσρ

(
i∂ϕ + 	

	0

)
− i�

ωSO

2
σϕ,

(2)

where ωSO = α
r0

, r0 is the ring radius, and 	0 = 2π�/e is
the quantum of flux. The rotated Pauli matrices are defined
as σϕ = −σx sin ϕ + σy cos ϕ and σρ = σx cos ϕ + σy sin ϕ.
Adding the kinetic energy operator reads the Hamiltonian

H = ��

(
i

∂

∂ϕ
+ 	

	0

)2

− �ωSOσρ

(
i

∂

∂ϕ
+ 	

	0

)
− i

�ωSO

2
σϕ, (3)

with � = �/2mr2
0 . Completing squares taking into account

operator ordering and the angular dependencies of σϕ and σρ ,
one arrives at the compact form

H = ��

(
−i

∂

∂ϕ
− 	

	0
+ ωSO

2�
σρ

)2

− �ω2
SO

4�
. (4)

In order to obtain the eigenvalues, we can focus only on the
quadratic term, and restore the additive scalar term to the
resulting eigenvalue. We can then solve the simpler eigenvalue
equation (

−i
∂

∂ϕ
− 	

	0
+ ωSO

2�
σρ

)
ψ =

√
E

��
ψ. (5)

Clearly ψ , a spinor, is also an eigenfunction of the square of
the previous operator with the square of the eigenvalue. The
proposed form for the eigenspinor is

ψ
μ

j (ϕ) = ein
μ

j ϕχμ(ϕ) = ein
μ

j ϕ

(
Aμ

eiϕBμ

)
, (6)

where j labels right and left propagating plane waves (j = 1
clockwise and j = 2 counterclockwise), μ is the spin label,
and n

μ

j ∈ Z (μ = 1 spin up and μ = 2 spin down). Solving

the matrix equation, the eigenvalues are found to be [25]

E
μ

n,j = ��

(
(−1)j n − 	

	0
+ 1

2π
	

(μ)
AC

)2

− �ω2
SO

4�
, (7)

where 	AC = π (1 + (−1)μ
√

1 + (ωSO/�)2) (AC for
Aharonov-Casher phase). The eigenfunction coefficients
satisfy the relation

�

ωSO

(
1 + (−1)μ

1

cos θ

)
Aμ = Bμ, (8)

with cos θ = 1/
√

1 + (ωSO/�)2. One can then choose A(1) =
B(2) = cos θ

2 and −A(2) = B(1) = sin θ
2 . We thus arrive at the

eigenfunctions

ψ1
j (ϕ) = ein1

j ϕ

(
cos θ

2

eiϕ sin θ
2

)
,

(9)

ψ2
j (ϕ) = ein2

j ϕ

(
sin θ

2

−eiϕ cos θ
2

)
,

where θ
2 = tan−1[�/ωSO −

√
(�/ωSO)2 + 1)]. Figure 1 shows

the spectrum for ωSO/� = 0.75. The spin-orbit interaction
preserves time-reversal symmetry, so in the absence of a
magnetic field E

↑
n,+ = E

↓
n,−, i.e., twofold degeneracies. On

applying a magnetic flux, this degeneracy is broken, but it is
restored at half integer flux quanta. For zero SO coupling
and in the absence of a Zeeman term, there is a peculiar
twofold degeneracy for each level due to the closing of the
wave function for half-integer spin [26]. Thus, E↑

n,− = E
↓
n+1,−

and E
↓
n,+ = E

↑
n+1,+ for all fluxes. At zero and half-integer

flux quanta, we have fourfold degeneracy in the absence
of SO coupling. Such degeneracies are important when
computing the corresponding charge and spin currents. The
wave functions in Eqs. (9) form a complete four-function basis
we will use to represent the voltage-probe coupled system.

III. DECOHERENCE WITH SPIN-ORBIT COUPLING

In Ref. [15], Büttiker introduced an ingenious way to couple
a simple quantum system (a ring) to a reservoir that behaved
like a voltage probe (zero current condition to reservoir).
This model leads to a variety of generalizations [27]. The
approach here is similar; as the coupling to the reservoir is
not defined in Hamiltonian terms and leads to dephasing, we
have a Hamiltonian solution to the uncoupled problem and
a scattering approach for the coupling to the reservoir. The
two problems meet by writing the new wave functions as
a superposition of the uncoupled ring basis functions with
coefficients determined by matching boundary conditions.
Coupling to the reservoir is introduced in a ring through an
ideal lead that acts as a voltage probe (no net current threads the
lead). The reservoir emits electrons with a Fermi distribution.

The coupling between the lead and the ring is described
by the scattering matrix S, which relates the incoming
and outgoing amplitudes �α′ = S �α. The current conservation
implies that S is unitary. The matrix is 3 × 3 for each spin
label μ as the coupling to the reservoir is spin symmetric. In
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general, the matrix S will have five independent parameters.
Considering S to be symmetric with respect to the two branches
of the ring, the number of independent parameters reduces to
three:

S =

⎛
⎜⎝

r33 t32 t31

t23 r22 t21

t13 t12 r11

⎞
⎟⎠ =

⎛
⎜⎝

−(a + b)
√

ε
√

ε√
ε a b√
ε b a

⎞
⎟⎠ , (10)

where a = (
√

1 − 2ε − 1)/2, b = (
√

1 − 2ε + 1)/2, and ε

is the coupling parameter with the reservoir, which varies
between 0 and 1

2 corresponding to going from the uncoupled to
the maximally coupled limits [28]. We have also written the S

matrix in terms of ti,j , the transmission amplitude between the
ith and j th leads (see Fig. 2) and ri,i the reflection amplitude
back into the same lead i, with i = 1,2,3, where 3 refers to
the reservoir lead and 1,2 to the ring, either left or the right
to the reservoir lead. The symmetry of the terms in the S

matrix, referred to this formulation, depends on which fields
are present, as we will see in the following.
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FIG. 1. Energy states of the decoupled ring for ωSO/� = 0 (top)
and ωSO/� = 0.75 (bottom). The two dashed lines represent Fermi
levels considered to compute the charge and spin currents. The
breaking of spin degeneracy, on applying SO coupling, allows for
equilibrium spin currents.
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FIG. 2. (Color online) Modeled ring configuration threaded by a
magnetic flux depicting reservoir lead 3 and ring leads 1 and 2. The
greek labels encode the wave-function amplitudes, as explained in
the text.

The lead coupling the ring to the reservoir needs two
equivalent spin channels and can thus be expanded as

ψlead(x) = ∑
μ=1,2

φlead(x)χ (μ)(0), x ∈ (−∞,0] (11)

where x is the coordinate along the lead and x = 0 is defined
as the coordinate at which the lead connects to the ring, while
the reservoir is at x = −∞, and χμ is a two-component spinor
eigenstate of σz. As the reservoir lead is not spin-orbit active, its
energies are E = �

2k2/2m. The coefficients of the expansion
in Eq. (11) are given by

φlead(x) =
√
N (eikx + C3e

−ikx). (12)

The normalization prefactor is determined following Büttiker’s
argument: in an energy interval E,E + dE, the differential of
current injected into the lead is dI = ev(dN/dE)f (E)dE,
where f (E) is the Fermi distribution, dN/dE = 1/2π�v is
the density of states of a perfect lead, and v = �k/m. The
wave function for the lead contemplates the correct current if
N = f (E)dE/2π�v.

The ring wave function is now a mixture of the four basis
functions of the uncoupled case, so that we may accommodate
for the new boundary conditions. We define

�(ϕ) = C1
1ψ

1
1 (ϕ) + C2

1ψ
2
1 (ϕ) + C1

2ψ
1
2 (ϕ) + C2

2ψ
2
2 (ϕ),

(13)
where coefficients are to be fixed by imposing equality of the
wave functions at x = 0 for ϕ = 0 and 2π . The scattering
problem is written as �α′(μ) = S �α(μ), the coefficients �α(μ) =
(α(μ),β(μ),γ (μ)) and �α′(μ) = (α′(μ),β ′(μ),γ ′(μ)) are found eval-
uating (12) at the junction at x = 0 (see Fig. 2) for α(μ) and
α′(μ), and evaluating ψ

μ

2 at ϕ = 0,2π for the β ′(μ) and γ (μ),
respectively. Finally, the coefficients β(μ) and γ ′(μ) are found
evaluating ψ

μ

1 at ϕ = 0,2π , respectively. The set of equations
can be cast, for each spin subspace, as⎛

⎜⎝
√
NC

μ

3

C
μ

1

C
μ

2

⎞
⎟⎠

=

⎛
⎜⎝

−(a + b)
√

ε
√

εe2πin
μ

1

√
ε a be2πin

μ

1

√
εe−2πin

μ

2 be−2πin
μ

2 ae−2πi(nμ

1 −n
μ

2 )

⎞
⎟⎠

⎛
⎜⎝

√
N

C
μ

2

C
μ

1

⎞
⎟⎠ ,

(14)
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where we have absorbed the phase factors into a redefined S

matrix that manifestly displays the symmetry of the system.
Note that we can invert for the quantum number as a function
of the energy and fields

n
μ

j = (−1)j
√

E

��
+ 	

	0
− 1

2

(
1 + (−1)μ

√
1 +

(ωSO

�

)2
)

.

(15)
Referring to Eq. (10), one can readily check that, in the absence
of magnetic or SO fields, tjk = tkj = √

εe2πin
μ

1 = √
εe−2πin

μ

2 ,
i.e., S is an orthogonal (symmetric) matrix, time-reversal
invariant. When the magnetic field is on but there is no
SO coupling, then tjk �= tkj so n

μ

1 �= n
μ

2 and time-reversal
symmetry is broken. When the magnetic field is turned off and
the SO coupling is present, time-reversal symmetry is restored,
and there is the additional symmetry for changing j and μ

labels simultaneously. Thus, the larger 6 × 6 matrix S ⊗ 1s

matrix is symplectic and embodies Kramers degeneracy.
Solving the system of equations, one can obtain each of the
amplitudes

C
μ

1 =
√

εN
(
1 − e2πin

μ

2
)

(
1 − be2πin

μ

1
)(

b − be2πin
μ

2
) + a2

(
1 − be2πin

μ

1
) ,

C
μ

2 =
√

εN
(
e2πin

μ

1 − 1
)

(
1 − be2πin

μ

1
)(

b − be2πin
μ

2
) + a2

(
1 − be2πin

μ

1
) ,

C
μ

3 = ε
[
e2πin

μ

1 − 1 + (
1 − e2πin

μ

2
)
e2πin

μ

1
]

(
1 − be2πin

μ

1
)(

b − be2πin
μ

2
) + a2

(
1 − be2πin

μ

1
)

− (a + b). (16)

For the charge density, the modulus squared of the coefficients
acquires a particularly simple form in terms of the coupling
parameters, ∣∣Cμ

1

∣∣2 = 2εN
g(μ)

[
1 − cos

(
2πn

μ

2

)]
, (17)

∣∣Cμ

2

∣∣2 = 2εN
g(μ)

[
1 − cos

(
2πn

μ

1

)]
, (18)

|Cμ

3 |2 = 1, (19)

where

g(μ) = 3 + √
1 − 2ε − 3ε − 2(1 + √

1 − 2ε − ε)

× cos
(
2πn

μ

1

) + 2
√

1 − 2ε cos
(
2π

(
n

μ

1 − n
μ

2

))
− 2 cos

(
2πn

μ

2

)+cos
[
2π

(
n

μ

1 + n
μ

2

)]+ (
√

1 − 2ε − ε)

× {−2 cos
(
2πn

μ

2

) + cos
[
2π

(
n

μ

1 + n
μ

2

)]}
.

(20)

Note the very important character of the model expressed
in Eq. (19); the lead amplitude has modulus one, thus two
opposite propagating waves superpose to give a constant
amplitude, which means there is no net current (voltage-probe
condition) to or from the reservoir.

For the density of states (DOS) we know that the number
of electrons in the energy interval dE is given by dN =
|C1

1 |2 + |C2
1 |2 + |C1

2 |2 + |C2
2 |2. As each amplitude modulus is
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FIG. 3. Density of states on the ring as a function of the energy
for two values of the coupling parameter of the reservoir and T = 0.
(ωSO/� = 0, 	/	0 = 0.) The energy is expressed in units E0 = ��.

proportional to the energy interval dE and using the chain rule
dN/dk = (dN/dE)(dE/dk) = (dN/dE)�2k/m, the number
of electrons per unit energy range is given by

dN

dE
=

∑
i,μ

εf (E)

π�v

(
1 − cos 2πn

μ

i

)
g(μ)

, (21)

so, expanding the sum in Eq. (21) and using the chain rule, the
DOS can be written as

dN

dk
= 2ε

π

(
sin2

(
2πn1

1

) + sin2
(
2πn1

2

)
g(1)

+ sin2
(
2πn2

1

) + sin2
(
2πn2

2

)
g(2)

)
. (22)

The explicit relation between DOS and energy comes from
substituting here the expressions for n

μ

j in Eq. (15) for the
uncoupled problem. Equation (15) now defines this quantum
number which becomes a continuous function of the energy,
flux, and SO coupling, and is no longer restricted to be integer
or half-integer as the problem is now coupled, through the
wave-function amplitudes, to the reservoir.

The limit of zero fields (neither SO nor magnetic field) with
coupling to the reservoir recovers Büttiker’s result [15]

dN

dk
=

4ε cos2
(
2π

√
E

��

)
π

[−1 + ε + √
1 − 2ε cos

(
2π

√
E

��

)] . (23)

Figure 3 shows the DOS for ε �= 0. The levels increasingly
broaden around the quantized energies of the decoupled
ring (ε = 0) as ε increases. The uncoupled quantized values
correspond to the poles of the density of states at zero coupling,
which obey the relation E = n2

��, with n an integer (values
n2 = 0,1,4, . . . in the figure). When the coupling is turned
on, one expects that the levels are shifted to lower energies
as they broaden from self-energy corrections due to the
reservoir [29]. Deeper levels appear less coupled (broaden
less) to the reservoir than the shallower counterparts.
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FIG. 4. Lifetime of the electrons in the ring as a function of the
coupling to the reservoir ε. The energies correspond to the quantized
values of the decoupled states. The time is given in atomic units
1 a.u. ≈ 2.4 × 10−17 s.

A simple analysis of the poles reveals some of the
aforementioned features to lowest order in ε. For the case
without SO and zero magnetic field, the pole of Eq. (23) is at

En

��
= n2 − ε2

4π2
+ i

n

π
ε(1 + ε) + O(ε3), (24)

where the n dependence comes from the condition n =
(1/2π ) cos−1(1). Note the downshift of the real part of the
energy proportional to ε2 as expected, and an energy broaden-
ing (imaginary part) with linear and quadratic contributions
in the reservoir coupling. Additionally, the broadening is
proportional to the principal quantum number n, so that the
peaks broaden more as the energy increases.

Making a correspondence between level broadening and
electron lifetime, by fitting the resonance to a Lorentzian form,
leads to Fig. 4. From Eq. (24) one obtains �t = π/[2�nε(1 +
ε)] = π/(2�nε) − π/(2�n) + πε/(2�n) + . . . . The power
law coming from the dominant term is ∝ε−1 independent of the
n. This reproduces the behavior of Fig. 4 for small couplings
to the reservoir. Only the regime where the broadening is
reasonably Lorentzian is taken into account. As can be seen
from the figure, the broadening function becomes nontrivial
for ε > 0.1, where the power-law decay changes. One subtle
fact about the resonance position is that it does not depend on
the reservoir coupling, the resonances are always positioned
according to En/�� = n2. This is due to the behavior of the
numerator of the density of states close to the polar values. In
this sense, this resonance is not conventional.

In spite of the smearing of the energy levels, which one
generally associates with increased uncertainty of the energies,
we recall that even in the reservoir coupled case, we always
know the full wave function. So, the treatment is always fully
coherent, and no information is lost. Uncertainty of the states
derives from accounting only for part of the wave function
(see expression for the number of states dN) which lives on
the ring and forgetting about the amplitude leaking into the
cable towards the reservoir.

In order to see that the values of ε are reasonable
for a real experimental ring attached to a reservoir (see

TABLE I. Typical values for parameters and physical quantities
used in this work.

Range of parameters Normalization

Effective mass of electrons
m∗ = 0.042m

Ring radius
r0 = 100 to 300 nm
Fermi energies
EF1 = 2.25�� to 4�� � = �/2mr2

0

Magnetic field flux
	 = 0 to 0.5	0 	0 = h/|e|
SO coupling
ωSO = 0 to 1.25� � = �/2mr2

0

Coupling to reservoir
ε = 0 to 0.5 Dimensionless
Temperature scale
T = 0 to 0.5T0 T0 = �

2/2mkBr2
0

Charge current
Jq = 0 to 4J0 J0 = �

2/2mr2
0 	0

Spin current
Js = 0 to 3J0 J0 = �

2/2mr2
0

Table I for a summary of parameters considered), we propose
a simple potential barrier coupling generated by a gate
voltage. Taking the WKB approximation for the transmis-
sion probability T we can estimate ε ∼ √

T = 4(E/V0)(1 −
E/V0) exp [−(2m∗/�

2)1/2(V0 − E)1/2L]. Reasonable values
for the parameters are V0 = 0.1 eV for the barrier height,
L = 5 nm for the barrier length, semiconductor effective mass
of m∗ = 0.042m (m the bare electron mass) with a ring radius
r0 = 50 nm (to estimate the ring Fermi energy). For the two
Fermi energies considered EF1 ∼0.54 meV and EF2 ∼1 meV,
we get values of ε ∼ 0.06–0.08 for a weakly coupled ring. To
increase ε, one adjusts the barrier height or length.

The magnetic field shifts the states and the SO coupling
breaks the twofold degeneracy as was discussed. Figure 5
shows the effect of the magnetic field and the SO coupling,
respectively, on the DOS. In the top panel, each peak is
doubly degenerate, while this degeneracy is broken with SO as
depicted in the bottom panel. The values assumed for the RSO,
e.g., ωSO/� = 0.75 corresponds to �α ∼ 3.02 × 10−12 eV m,
a realistic value for GaAs [30]. This degeneracy can appear
to exist when the coupling to the reservoir is sufficiently large
[see Fig. 5(b)] for ε = 0.5, as the DOS broadens into a single
peak containing both levels.

IV. PERSISTENT CHARGE CURRENTS

For a decoupled ring at zero temperature, the charge
persistent currents can be calculated by the linear-response
relation [24,31] Jq = −∑

i
dEi

d	
where i encompasses the

occupied states. The leading contributions to the current,
due to cancellation of current contributions from state with
opposite slopes, are the states close to the Fermi level. The
linear-response relation is not useful when the ring is coupled
to the reservoir since the energies broaden into a continuum
of levels. On the other hand, we have derived the exact wave
functions from which the current may be determined by the
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FIG. 5. Density of states of the ring as a function of the energy
for three values of ε and T = 0. The values of the parameters
are ωSO/� = 0 (top panel) and 	/	0 = 0.5 and ωSO/� = 0.75,
	/	0 = 0 for the bottom panel.

expectation value of the charge current operator �†evϕ�

where

vϕ = r0ϕ̇ = (r0/i�)[ϕ,H ]

= −2r0�

(
−i

∂

∂ϕ
− 	

	0
+ ωSO

2�
σρ

)
. (25)

Integrating over all occupied states up to the Fermi level
including the electron occupation numbers, one obtains

Jq = −2ε��

	0

∑
m,μ

∫
dE

��

f (E)√
E

��
gμ

sin2
(
πnμ

m

)

×
[
n

μ

m − 	

	0
+ δμ

]
, (26)

with

δ1 = sin2 θ

2
+ ωSO

2�
sin θ ; δ2 = cos2 θ

2
− ωSO

2�
sin θ, (27)

where m is the complement value of m. The natural current
scale is identified as J0 = ��/	0. Note that ε = 0 does not
imply zero current [15] (in fact it is largest at zero coupling)
as gμ also depends on the coupling with a nontrivial limit
behavior. We will separate the discussion into two cases:
(i) The Fermi level fixes N = 6 electrons (see Fig. 6 top
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FIG. 6. Charge persistent current as a function of the magnetic
flux for three values of the reservoir coupling parameter. The number
of electrons is 6 (top) and 8 (bottom) corresponding to a Fermi energy
of EF1 and EF2 , respectively (see Fig. 1). The RSO interaction is off
and the persistent current is given in units J0 = ��/	0.

panel), corresponding to EF1 in Fig. 1, and (ii) N = 8 (see
Fig. 6 bottom panel) corresponding to EF2 in Fig. 1. In the
absence of RSO interaction for the first case, there are two
electrons, one with spin up and the other with spin down, at
each energy. At the Fermi level, two bands which describe
electrons with different propagation numbers j cross each
other at half-integer steps in 	0 (see Fig. 1). This results in a
jump in the sign of the current at these values. In the second
case, the levels cross at zero or integer flux quanta, and the sign
jump occurs at those points. These are the behaviors expected
also for small couplings to the reservoir. Figure 6 shows the
charge currents without the SO coupling as a function of the
magnetic field. The reduction in amplitude of the current as
a function of the reservoir coupling strength is evident. For
Fermi level Ef1 , the persistent current is minimal for the
smallest fluxes and gradually grows, while for Ef2 the current
is maximal at the smallest fluxes and decreases thereof.

After including RSO, the crossing between bands
at the Fermi level shifts to 	/	0 = m/2 + [1 ±√

1 + (ωSO/�)2]/2, with m ∈ Z for the case (i) and
	/	0 = m/2 ±

√
1 + (ωSO/�)2/2 for case (ii) displacing

the current jumps and introducing two more for each of the
Fermi-level scenarios [32] (see Fig. 7). The current jumps
from |	/	0| < 0.5 have a smaller amplitude at finite RSO
because the levels in the latter case are nondegenerate,
and cause only half of the full current jump amplitude at
|	/	0| = 0.5.
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FIG. 7. Charge persistent current as a function of the magnetic
flux for different RSO values. The reservoir coupling is ε = 0.1. The
number of electrons is 6 (top) and 8 (bottom) corresponding to a
Fermi energy of EF1 and EF2 according to Fig. 1.

The degradation of current with temperature has a distinc-
tive character as compared to the coupling to the reservoir, as
can be seen in Fig. 8. The temperature effect will be small when
the current emanates from a level appreciably below the Fermi
level, so that few electrons are actually promoted to counter
current states. On the other hand, for fluxes where the currents
arise from levels close to the Fermi level, the currents quickly
degrade. For the case where currents originate from within the
Fermi sea, there is a gap protecting persistent currents that is
energy dispersion dependent. See Refs. [26,33] where currents
are protected from thermal effects by a linear dispersion.

Figure 9 shows the dependence of charge current on
temperature, for different ring-reservoir couplings. For certain
selected ranges of the magnetic flux, the persistent current
can be degraded completely. Otherwise, there is always a
remanent charge current. We estimate the magnitude of the
thermal effects by using the temperature scale T0 = ��/kB .
As � depends on the size of the ring, T/T0 = 0.5 in the
figures correspond to temperatures between 526 and 59 mK
for ring sizes between 100 and 300 nm and an effective mass of
m∗ = 0.042m. This implies that the gap for persistent current
degradation is of the order of 40 μeV for the smallest of the
rings. Improving this gap with either effective mass or ring
radius and flux point of operation, should improve the thermal
robustness of high-sensitivity cantilevers [34] for noise and
electron thermometry.
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FIG. 8. Charge persistent current as a function of the magnetic
flux and no SO coupling, for different temperatures, for a fixed
ε = 0.1 and referred to the scale T0 = ��/kB . The number of
electrons is 6 (top) and 8 (bottom). Note the low sensitivity of the
current to thermal effects when current arises from below the Fermi
levels.

V. PERSISTENT SPIN CURRENTS

In order to compute the spin currents, we use the standard
definition through the anticommutator between the velocity
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FIG. 9. Temperature dependence of the charge current for the
scenario of EF1 and no SO coupling. Depending on the magnetic flux
chosen (here chosen 	/	0 = −0.46 but the scenario is valid in a
vicinity of this flux), the current can be degraded completely.
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M. ELLNER, N. BOLÍVAR, B. BERCHE, AND E. MEDINA PHYSICAL REVIEW B 90, 085305 (2014)

0.1

0.3

0.5

EF1 2.25

0.6 0.4 0.2 0.0 0.2 0.4 0.6
0.2
0.1
0.0
0.1
0.2
0.3
0.4
0.5

0

Js J0

0.1

0.3

0.5 EF2 4

0.6 0.4 0.2 0.0 0.2 0.4 0.6
0.2

0.0

0.2

0.4

0.6

0

Js J0

FIG. 10. Spin persistent current as a function of the magnetic flux
for three values of ε and T = 0. The number of electrons is 6 (top)
and 8 (bottom). The RSO is ωSO/� = 0.75. The current is given in
units of J0 = ��/	0.

and the spin operator [24,31,35]

J z
s = �

4
�†{σz,vϕ}�.

Invoking the full wave function derived above for the coupled
ring and the velocity operator in Eq. (25), one can derive the
spin current as

J z
s = −ε��

∑
m,μ

∫
dE

��

f (E)

π

√
E

��
gμ

sin2
(
πnμ

m

)

×
[(

n
μ

m − 	

	0

)
βμ + γ μ

]
, (28)

with

γ 1 = sin2 θ

2
; γ 2 = − cos2 θ

2
,

β1 = cos θ ; β2 = 1.

Figure 10 depicts the spin persistent current as a function
of the magnetic flux for the two Fermi levels considered
in Fig. 1. Spin currents are only possible in the presence
of SO coupling since spin degeneracy matches up identical
contributions in charge current from opposite spins (see
Fig. 1 top panel). In the presence of the SO coupling there
is a breaking of spin degeneracy with preservation of the
time-reversal symmetry, the necessary ingredients for their
presence. As for charge currents, spin currents from deep
levels in the Fermi sea also tend to cancel but in a more

+ spin current - spin current

 E< EF1
 E~ EF1

Φ Φ� �

FIG. 11. The figure depicts, qualitatively, the contributions to the
spin current as the flux changes until the Fermi level is reached. On
the left, the currents in each direction are highly compensated in spin
(each current direction contains both spin directions). On the right,
the flux is such that the energy is close to the Fermi level EF1 , and
the spin current is large and switches direction.

complicated fashion. Figure 11 shows the combinations of
charge currents with their corresponding spin orientations for
the first Fermi-level scenario: Deep in the Fermi sea, charge
currents are also paired up in spin but with small differences
in electron velocities due to the broken degeneracy. So, we can
see a small spin current accrued coming from these levels. As
one goes higher in magnetic field, the positive current levels
slow down, making less of a contribution, while the levels
with negative charge currents speed up, making the bulk of
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FIG. 12. Spin persistent current as a function of the magnetic flux
for three values of ωSO/� with finite temperature, T/T0 = 0.1, and
ε = 0.1. The number of electrons is 6 (top) and 8 (bottom).
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the current. The dispersion being quadratic makes for precise
compensation, so that the full spin current is constant.

When the flux is large enough for the levels to cross the
Fermi level, there is an abrupt disappearance of the negative
spin-up current and a new contribution from a positive spin-up
charge current, as shown in Fig. 11 right panel. These two
contributions make for a pure spin current, more than three
times the magnitude of the previous regime, very close to the
Fermi level EF1 . The range of fluxes in which this happens is as
wide as it takes for the second level to emerge from the Fermi
sea, i.e., �(	/	0) =

√
1 + (ωSO/�)2 − 1, at which point we

restart with the scenario on the left panel and repeat the whole
periodic oscillation.

For the second Fermi level, the scenario is similar but it
occurs for small fluxes in the center of the spectrum (Fig. 10
bottom panel). Figure 12 shows how the spin currents, coming
from different parts of the spectrum explored by the magnetic
flux, can be tuned by the spin-orbit interaction at fixed coupling
to the reservoir. One can see how positive and negative spin
currents can be enhanced and change the range of fluxes for
which they arise. It is interesting to note that the smaller
spin current coming from levels deeper in the Fermi sea is
more robust to decoherence (affected less by coupling to the
reservoir) than the contributions coming from close to the
Fermi level, resembling thermal effects previously discussed.
On the other hand, as discussed for the charge currents, the
Büttiker model is unable to completely degrade spin currents.

VI. SUMMARY AND CONCLUSIONS

The robustness of devices involving spin manipulation
through the SO coupling against decoherence and thermal
effects is crucial for their feasibility since these effects are un-
avoidable in practical applications. The latter, with the current
lithographic techniques, always involve voltage gates, contacts
with external reservoirs, and temperature points of operation
which should not compromise the spin-sensitive physics of
the device. With this concern in mind, we have solved for a
generalization of the Büttiker voltage-probe model in SO ac-
tive rings threaded by a magnetic flux. The procedure involves
the determination of a complete set of basis functions for
the uncoupled, phase-coherent, problem and then relaxing the
quantization conditions on the closing of the wave functions
when the scattering conditions are met at the reservoir junction.
The coupling to the reservoir is spin insensitive and the thermal
effects only determine the electron filling of the ring and did
not induce additional broadening of the energy levels.

Complete analytical expressions for the density of states
are obtained as a function of energy, magnetic flux, and SO
coupling. As expected, the isolated ring levels broaden, and
they do so in an energy-dependent fashion as the reservoir
couples optimally at its own Fermi energy. We note that
broadening effects are only Lorentzian for weak coupling to
the reservoir, thus, our results contemplate strong reservoir
coupling regime.

The equilibrium charge currents and spin currents were
computed as sensitive probes for the action of both reservoir
coupling and thermal effects. The linear-response formula to
derive such currents is not directly useful in this case since
the energy levels broaden into a continuum, so the quantum
mechanical definitions were used with the full knowledge of
the wave functions derived from the analytical procedure. Note
that the full knowledge of the wave function for all reservoir
couplings implies that, with the model reservoir, there is no
loss of information that would entail a density-matrix descrip-
tion. Instead, the dephasing resulting in level broadening is
derived from separating the ring and the reservoir lead wave
functions (a kind of post-selection), where the DOS only
involves the ring amplitudes containing part of the full wave
function.

We computed the equilibrium charge and spin currents
in the SO active ring coupled to the reservoir and assessed
their coupling dependence to the electron reservoir and the
effect of thermal occupation. Two representative Fermi-level
scenarios were considered that involved where the spin-split
structure of the spectrum is critical, i.e., close to multiples of
	0/2. At those points, the sawtooth oscillating equilibrium
current can be best modulated by the SO coupling strength.
Experimentally feasible values for the SO strength were used
in the computations.

While the coupling to the reservoir uniformly degraded
the coherent currents, the thermal effects [36] revealed the
interesting feature that there exist certain flux ranges that are
protected by an energy-dispersion-dependent gap to the Fermi
energy. This gap can be tailored by fixing the Fermi level and
or the field flux. The magnitude of these protected currents
is spectrum dependent but promises tailoring by considering
more detailed models accounting for ring thickness and edge
effects [37]. Equilibrium spin currents are obtained in steplike
ranges in flux only for Rashba spin-orbit active material. The
currents’ steps are also rounded by coupling to the reservoir
and temperature effects. Nevertheless, as these currents are
built from charge currents distinguished in spin, so they are
endowed with the same protective gaps. Therefore, there is a
range of fluxes where spin currents are thermally protected. We
expect the phenomena borne out from our model to be readily
checked and exploited experimentally using recent techniques
such as cantilever torsional magnetometry [38].
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165341 (2003).
[8] D. Frustaglia and K. Richter, Phys. Rev. B 69, 235310 (2004).
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