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In this work, we identify a class of topological phases protected by nonsymmorphic crystalline symmetry
dubbed “topological nonsymmorphic crystalline insulators.” We construct a concrete tight-binding model for
a lattice with nonsymmorphic symmetry and confirm its topological nature by directly calculating topological
surface states. Analogous to “Kramers’ pairs” originating from time-reversal symmetry, we introduce “doublet
pairs” originating from nonsymmorphic symmetry to define the corresponding Z2 topological invariant for this
phase. Based on projective representation theory, we extend our discussion to other nonsymmorphic symmetry
groups that can host this topological phase which will provide guidance for the systematic search for new
topological materials.
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I. INTRODUCTION

The search for new states of matter, especially those with
nontrivial topological properties, is one of the main focuses of
condensed-matter physics. The recent experimental discovery
of time-reversal (TR) invariant topological insulators (TIs)
[1–4] has inspired lots of research interest and led to the rapid
development of this field. TR invariant TIs possess insulating
bulk states and metallic edge/surface states that are protected
by TR symmetry due to the double degeneracy guaranteed
by Kramers’ theorem [5]. In principle, degeneracies can also
come from other types of symmetries, such as crystalline
symmetry, etc. Therefore, it is natural to ask if one can find
new topological phases (TPs) protected by other symmetries.
Several recent theoretical works [6–17] are devoted to TPs pro-
tected by crystalline symmetry dubbed topological crystalline
insulators (TCIs). Recent experimental observations of surface
states in the SnTe family of materials confirm the theoretical
prediction of TCIs protected by mirror symmetry [18–20].

Nonsymmorphic symmetry groups possess operations
combining a point symmetry operation and a nonprimitive
translation operation which cannot be removed by changing
the origin [21,22]. It is known that nonsymmorphic symmetries
can “stick bands together” and yield extra degeneracies. Most
studies of TCIs have focused on point groups or symmor-
phic space groups and it is still unclear if nonsymmorphic
symmetries can yield new TCIs. In this paper, we give an
affirmative answer to this question by constructing a concrete
example and identifying a class of Z2 TPs as a direct physical
consequence of noncommutativity of symmetry operators
in nonsymmorphic groups. Consequently, we name them
topological nonsymmorphic crystalline insulators (TNCIs).
We construct a new Z2 topological invariant for this phase
which can be evaluated numerically by the Wilson loop
approach [23]. Our general discussion of nonsymmorphic
space groups will provide guidance to the search for realistic
materials with the TNCI phase.

II. TIGHT-BINDING MODEL

We start from a concrete tight-binding model of TNCIs.
The aim of this model is to demonstrate that gapless surface
states, as well as topological properties, are protected by

nonsymmorphic symmetry, instead of any other symmetry,
such as TR symmetry [1–4] or other antiunitary symme-
tries [24–26]. Therefore, we need to break ALL the antiunitary
symmetries in the model explicitly. As shown in Fig. 1(a), our
tight-binding model has a layered antiferromagnetic structure
stacked along the z direction, where each layer is a square
lattice with magnetic moments on each site perpendicular to
the xy plane. Magnetic moments in each layer are ordered
ferromagnetically. However, the magnetization directions be-
tween two adjacent layers are opposite, i.e., the whole system
has an antiferromagnetic structure with two atoms in one unit
cell, denoted as A and B. The lattice vectors are denoted as
�a1 = (a,0,0), �a2 = (0,b,0), and �a3 = (0,0,c). In a unit cell, the
A and B atoms are shifted in opposite directions along the x

axis. The position of the A atom is rA = (−a1,0,0) while that
of the B atom is rB = (a1,0, c

2 ) as shown in Fig. 1(a). This
configuration has Pma2-type space-group symmetry. Each
lattice site contains three orbitals, |s〉, |px〉, and |py〉. The
|px〉 and |py〉 orbitals carry the angular momentum 1 and
couple to magnetic moments through Zeeman-type coupling,
denoted as M1. The explicit form of our Hamiltonian is
shown in the Supplemental Material [27] and is written under
the basis |αη,�k〉 = 1√

N

∑
n ei�k·�rnηφα(�r − �rnη) where N is the

normalization factor, �rnη = �Rn + �rη with the lattice vector �Rn

and the position �rη of the atom η = A,B, and φα denotes the
basis wave function (α = s,px,py).

Our model is similar to that discussed previously by one of
the authors [26], where the antiunitary operation combining
TR with translation plays an essential role. However, in the
present model, the shift of the A and B atoms in opposite
directions breaks this antiunitary symmetry. Instead, it turns
out that two unitary operators are essential. One is the mirror
symmetry along the z direction, denoted as m̂z = {m̂z|�e} :
(x,y,z) → (x,y, − z) where �e = (0,0,0), and the other is the
glide symmetry, ĝx = {m̂x |�τ } : (x,y,z) → (−x,y,z + c

2 ) with
�τ = �a3

2 = (0,0, c
2 ). When restricted to the xz plane, these two

symmetry operations, together with translation in the xz plane,
give the two-dimensional (2D) nonsymmorphic space group
pmg. Direct calculation gives

m̂zĝx = {C2y | − �τ } �= ĝxm̂z = {C2y |�τ }, (1)
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FIG. 1. (Color online) (a) Lattice sites in the xz plane for our
tight-binding model. The lattice vectors �a1 and �a3 are shown in the
figure and �a2 is perpendicular to this plane (y direction). (b) The bulk
Brillouin zone (BZ) and the surface BZ for the xz plane.

where C2y is a twofold rotation around the y axis. The
noncommutativity between ĝx and m̂z is essential, as discussed
below.

Let us first analyze symmetry properties of our tight-
binding Hamiltonian. The symmetry operators m̂z and ĝx

act on the basis |αη,�k〉 such that m̂z|αη,�k〉 = |αη,m̂z
�k〉

and ĝx |αη,�k〉 = ∑
β e−ikzc/2mx,αβ |βη̄,m̂x

�k〉 where η̄ is the
interchange of the A and B indices and the 3 × 3 matrix
mx = Diag[1, − 1,1] in the basis |s〉,|px〉,|py〉. For a sym-
metry operation Û , the Hamiltonian should satisfy H (�k) =
U ∗(�k)H (Û �k)UT (�k). The details about how these symme-
tries constrain the form of Hamiltonian are shown in the
Supplemental Material [27] and we focus on the kz = π

c

plane here. Since |αη,�k + �G〉 = ei �G·�rη |αη,�k〉, the off-diagonal
part Hamiltonian HAB(�k) is not periodic, but satisfies the
relation HAB(�k + �G) = ei �G·�r0HAB(�k) where �r0 = �rB − �rA. At
kz = π/c, one has HAB(kx,ky,

π
c

) = −HAB(kx,ky, − π
c

). Due
to mirror symmetry m̂z, HAB(kx,ky,

π
c

) = HAB(kx,ky, − π
c

),
so HAB(kx,ky,

π
c

) = 0. There is no coupling between the A

and B layers and the Hamiltonian is block-diagonal in the
kz = π/c plane. We will denote the momentum in the kz = π/c

plane by �κ = (kx,ky,
π
c

) below. If |φA,�κ〉 is an eigenstate
of HA(�κ) with eigenenergy EA,�κ , then |φB,m̂x �κ〉 = ĝx |φA,�κ〉
is an eigenstate of HB(m̂x �κ) with the same eigenenergy
[i.e., HB(m̂x �κ)|φB,m̂x �κ〉 = EA,�κ |φB,m̂x �κ〉]. Therefore, |φA,�κ〉 is
degenerate with |φB,m̂x �κ〉 at the kz = π

c
plane. For two lines

�κ = (0,ky,
π
c

) and �κ = (π
a
,ky,

π
c

) that satisfy m̂x �κ = �κ , all the
electronic states are doubly degenerate.

To confirm the existence of TPs in our model, we perform
an electronic structure calculation for a slab configuration with
finite lattice sites along the y direction. Since the surface of
the slab is normal to the y direction, the symmetries m̂z and
ĝx are preserved. We find that when the coupling M1 between
magnetization and p orbitals is small, there are no surface
states [Fig. 2(a)]. But when M1 exceeds a critical value, the
Dirac type of surface states appear around Z̄, as shown in
Fig. 2(b). The degeneracy at the Z̄ Dirac point is due to two
unitary symmetry operators m̂z and ĝx , as shown above. It is
impossible to remove the surface states in Fig. 2(b) without
closing the bulk band gap if the pmg symmetry is preserved

FIG. 2. (Color online) Energy dispersion of a slab configuration
for our tight-binding model with the parameter (a) M1 = 3.1 and
(b) M1 = 4.5. The corresponding evolution of Wannier function
centers in a 3D bulk system is shown as a function of kx for
(c) M1 = 3.1 and (d) M1 = 4.5. The surface states in (b) and the
winding number of Wannier function centers in (d) indicate that the
system is in the TNCI phase for M1 = 4.5.

in the xz plane. We therefore expect that a topological phase
protected by the pmg symmetry exists in this system.

III. Z2 TOPOLOGICAL INVARIANT

To confirm the topological nature of two-dimensional
(2D) surface states, it is necessary to construct a topological
invariant for the three-dimensional (3D) bulk system. The Z2

topological invariant in TR invariant TIs is defined by the
Pfaffian of the antisymmetric matrix of the TR operator in
the occupied band subspace [5,28]. However, only unitary
symmetry operators are involved in our model, so there is
no antiunitary operator to replace the TR operator to define
topological invariants. Nevertheless, we can still separate all
the occupied states into two sets and introduce the concept
of “partial polarization” for each set [28]. The Z2 topological
invariant can be defined by tracking the evolution of partial
polarizations of doublets.

We start by identifying two sets of degenerate eigenstates
for a generic system with pmg symmetry. Since the Hamilto-
nian has m̂z symmetry, one can find the common eigenstates
of H (�k) and m̂z at the kz = 0 and kz = π/c plane. We consider
the kz = π/c plane and take one common eigenstate |φI

�κ 〉
given by H (�κ)|φI

�κ 〉 = EI,�κ |φI
�κ 〉 and m̂z|φI

�κ 〉 = mz|φI
�κ 〉. One

can define a state |φII
m̂x �κ〉 = eiχκ ĝx |φI

�κ 〉, which is an eigenstate
of H (m̂x �κ) with the same eigenenergy EI,�κ , but acquires a
phase shift χ�κ . Moreover, according to (1), direct calcula-
tion shows m̂zĝx |φα

�κ 〉 = iC2y |φα
�κ 〉 and ĝxm̂z|φα

�κ 〉 = −iC2y |φα
�κ 〉

(α = I,II ), so the representation matrices of m̂z and ĝx on
the basis |φα

�κ 〉 anticommute with each other at the kz = π/c

plane, which indicates that the mirror parity of |φII
m̂x �κ〉 is −mz,

opposite to that of |φI
�κ 〉. Therefore, one finds two distinct sets

of eigenstates, dubbed “doublet pairs” below.
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With doublet pairs, we can define the partial polarization
as Pα(kx) = 1

2π

∮
dky〈φα

�κ |i∂ky
|φα

�κ 〉 (α = I,II ). The partial
polarizations of doublet pairs can be related to each other
by

PII (−kx) = PI (kx) − 1

2π
(χπ/a − χ−π/a). (2)

Due to the single-valuedness of |φα
�κ 〉, the phase χ�κ can

only differ by 2π times an integer when kx is changed by
2π/a. Thus, Eq. (2) leads to two conclusions: (1) PII at
kx ∈ [−π/a,0] is determined by PI at kx ∈ [0,π/a]; (2) at
kx = 0 and π/a, PI is equivalent to PII up to an integer.

The constraint on the partial polarization from Eq. (2)
indicates the possibility of defining a Z2 topological invariant.
Based on the method introduced by Yu et al. [23], one
can obtain the Wannier function centers θ of the occupied
bands by calculating the eigenvalues of the non-Abelian Berry
connection along the “Wilson loop.” The polarization is related
to the sum of Wannier function centers over occupied bands by
P = 1

2π

∑
occupied θ . The Wannier function centers of doublet

pairs θ as a function of kx are shown in Figs. 2(c) and 2(d). One
can clearly see the different evolutions of Wannier function
centers between topologically trivial and nontrivial phases.
Wannier function centers are periodic and only well defined
by any integer times 2π . Thus, one can regard the regime
[−π,π ) as a ring and consider the evolution of Wannier
function centers on this ring. Similar to the case of TR
invariant TIs [23], the total winding number of the Wannier
function centers of all doublet pairs on this ring defines a
Z2 topological invariant. The pmg symmetry in the xz plane
guarantees that the Wannier function centers of doublet pairs
must be degenerate at kx = 0 and kx = π/a. If the Wannier
function centers of all doublet pairs enclose the ring an odd
number of times, it is topologically nontrivial. Otherwise, it is
topologically trivial. Alternatively, one can define “doublet
polarization” Pd = PI − PII , analogous to “time-reversal
polarization” as introduced by Fu and Kane [28], and the Z2

topological invariant can then be defined by the difference
� = Pd (π ) − Pd (0) mod 2.

IV. OTHER NONSYMMORPHIC GROUPS

We will generalize our discussion to other nonsymmorphic
symmetry groups. From the above model, we can see that the
degeneracies guaranteed by nonsymmorphic symmetry play
an essential role in protecting surface states. However, the
symmetry groups of different surfaces are different and not all
the 2D surfaces can possess nonsymmorphic symmetry even
for a crystal with 3D nonsymmorphic space-group symmetry.
Therefore, our strategy is to directly consider a semi-infinite
crystal with one specific surface, as shown in Fig. 3(a), of
which the symmetry group can be described by a 2D space
group. We consider an insulating material in this semi-infinite
configuration and assume that the states are doubly degenerate
at two high-symmetry momenta (HSM) K1 and K2 in
the surface Brillouin zone (BZ). As shown in Fig. 3(b), if
surface states switch their degenerate partners between K1 and
K2, such surface states cannot be adiabatically connected to
any trivial state in a 2D system with the same symmetry group.
Due to the boundary-bulk correspondence, we expect that TPs

(b)(a)

FIG. 3. (Color online) (a) Schematic plot of a semi-infinite crys-
tal with one surface. (b) Energy dispersion of nontrivial surface states.
Here �K1 and �K2 are two HSM.

exist in the corresponding 3D bulk systems. In two dimensions,
there are only 17 space groups, so a systematic study of TCIs
is possible. We focus on nonsymmorphic symmetry groups
here.

The above analysis has shown the importance of symmetry
induced degeneracy. The degeneracies of electronic states
in a system correspond to the dimensions of the irreducible
representations (IRs) of its symmetry group [21,22], i.e., the
group representation of the symmetry group on a set of n

degenerate eigenstates is a n-dimensional IR. In a space group,
symmetry operations at a fixed momentum form a subgroup of
the whole group, known as a wave-vector group. Consequently,
the degeneracies of electronic states at a certain momentum are
determined by the dimensions of the IRs of the wave-vector
group. For the 2D nonsymmorphic space groups considered
here, it turns out that only four HSM, ̄, X̄, Z̄, and Ū , in
Fig. 1(b) possess wave-vector groups of pmg symmetry.

The uniqueness of a nonsymmorphic group lies in the
structure of its representations [22]. Although the factor
group of a nonsymmorphic space group with respect to its
translational subgroup is isomorphic to a point group, its rep-
resentation is not identical to the conventional representation
of a point group. For an element {S| �R} in a space group, the
corresponding representation matrix at a momentum �k takes
the form D�k({S| �R}) = ei�k· �RD(S). The matrix D(S), that only
depends on the point-group operation (i.e., the linear part
of the space-group motion), satisfies the multiplication rule
D(S1)D(S2) = ω(S1,S2)D(S1S2) for two symmetry operators
{S1| �R1} and {S2| �R2} in the wave-vector group, where ω is
a phase given by ω(S1,S2) = ei(�k−S−1

1
�k)· �R2 and it defines a

so-called factor system [22]. The additional phase coefficient
appearing in the multiplication rules indicates that projective
representations of a point group, instead of conventional
representations, are required for a nonsymmorphic symmetry
group. The projective representations are usually classified
into different classes by their factor systems. To determine the
class for a wave-vector group, one can consider the parameter
α = ω(S1,S2)/ω(S2,S1), where S1 commutes with S2. For a
crystalline symmetry group, α can only take values of ±1. If
α = 1, the projective representation belongs to a class identical
to the conventional representation, denoted as K0. If α = −1,
the projective representation belongs to a nontrivial class,
usually denoted as K1.

We may consider our example of pmg group. The corre-
sponding factor group is isomorphic to the D2 group. The
K0 class is the same as the conventional representation,
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which only contains 1D IRs, while the K1 class of D2 group
has one 2D IRs, which indicates the double degeneracy at
HSM. In the surface BZ [Fig. 1(b)], only four momenta
�K = ̄,X̄,Z̄,Ū contain all the symmetry operations in pmg

group. For the operators m̂z and ĝx = {m̂x |�τ }, we have
α = ω(m̂z,m̂x)/ω(m̂x,m̂z) = ei �τ ·(m̂−1

x
�K−m̂−1

z
�K). Direct calcula-

tion shows α = 1 for �K = ̄,X̄ and α = −1 for �K = Z̄,Ū .
Therefore, all the states at Z̄ and Ū must be doubly degenerate,
consistent with the analysis of our concrete tight-binding
model.

The analysis based on projective representations can be
applied to surfaces with other 2D nonsymmorphic groups,
namely pg, pgg, and p4g. The surface BZs of these groups
are the same as that of the pmg group. Thus, we can use
the same notation, as shown in Fig. 1(b), for the BZ of these
groups. The classes of the projective representations for HSM
̄,X̄,Z̄,Ū are summarized in the tables in the Supplemental
Material for different nonsymmorphic groups [27]. One finds
no Z2 TPs in pg since all HSM belong to the K0 class. For both
pgg and p4g, X̄ and Z̄ belong to the K1 class, so topological
surface states can exist between X̄ and Z̄. For p4g, ̄ and Ū

belong to the K0 class of the D4 group, which contains four
1D IRs and one 2D IR. Therefore, both doublets and singlets
exist at these two momenta, similar to the case of p4m [29].
The complete study of TPs in p4g will be given elsewhere.
The generalization to spinful fermions is straightforward, as
shown in the Supplemental Material. One just needs to take
into account the additional phase factor induced by spin.

V. DISCUSSION AND CONCLUSION

The key idea to realize TIs is to find a material with inverted
band structure. From the model presented here, one can see
that a similar idea can also be applied to the search for realistic
materials of TNCIs. The band inversion in our model is induced
by the coupling M1 to magnetization, a mechanism which is
similar to that in the quantum anomalous Hall effect, which has
been experimentally realized [30]. However, we would like to
emphasize that band inversion in principle can also be induced
by other mechanisms, such as spin-orbit coupling, strain, etc.
For TR invariant TIs, one requires TR symmetry. In contrast,
for TNCIs, one needs to look for semiconducting materials
that possess surfaces with 2D symmetry groups pmg, pgg,
and p4g. This is the main motivation for the group theory
classification above. It is known that 157 of the 230 space
groups are nonsymmorphic and the surfaces with the required
symmetry exist in 58 of them [27]. The possible 3D space
groups are listed in Table III in the Supplemental Material [27]
and a systematic search for TNCIs can be carried out based on
this table. In one word, one can search for TNCIs in a system
with inverted band structure and with appropriate symmetry
groups.

We conclude our discussion with three comments. First, in
the TCI model proposed by Fu [6], the existence of singlets
weakens the stability of surface states. For nonsymmorphic
groups, only doublets can exist at certain HSM and we expect
that topological surface states of TNCIs are more robust.
Second, our discussion has shown that TNCIs exist in both the
single and double group cases. Therefore, unlike TR invariant
TIs, this TP is not limited to fermonic systems, but can also

occur in bosonic systems such as photonic crystals [31–33].
Third, we would like to emphasize the difference between our
work and previous works [24,26,34,35]. Unlike TPs discussed
in Refs. [24,26], which require antiunitary symmetry, TNCIs
only require unitary symmetry operators. TNCIs here are also
different from “topological orders” studied in Refs. [34,35].
In fact, TNCIs belong to the trivial class using the criterion
in Ref. [35], and they represent a new class of “symmetry
protected topological orders” [36].
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APPENDIX A: TIGHT-BINDING MODEL OF
TOPOLOGICAL NONSYMMORPHIC CRYSTALLINE

INSULATORS

The tight-binding Hamiltonian of our model is given by

H = HA + HB + HAB, (A1)

Hη =
∑

〈�n �m〉in,αβ

t
αβ

�n �mc
†
α�nη

cβ �mη +
∑
�n,α

εαc
†
α�nη

cα�nη

+
∑

�n
δηM1

( − ic
†
�npxη

c�npyη + H.c.
)
, (A2)

HAB =
∑

〈�n �m〉AB,αβ

(
r

αβ

�n �mc
†
α�nA

cβ �mB + H.c.
)
, (A3)

where η = A,B is for A,B layers, δη=A(B) = +(−), �n =
(nx,ny,nz), �m = (mx,my,mz) denote lattice sites, and α,β =
s,px,py denote orbitals. The term HA (HB) comes from
hopping terms within the layer consisting of only A (B) atoms
while HAB is due to hopping between A and B layers. 〈�n �m〉in
represents nearest neighbors in the xy plane with hopping
parameters t

αβ

�n �m while 〈�n �m〉AB represents nearest neighbors that

reside in two adjacent A and B layers with the parameters r
αβ

�n �m.
We take into account the σ bond for the s orbitals, the σ and
π bonds for the p orbitals, and the σ bonds between the s and
p orbitals. The intralayer hopping parameters are given by the
matrices

t�n,�n+êx
=

⎛
⎝ usσ uspσ 0

−uspσ upσ 0
0 0 upπ

⎞
⎠ ,

(A4)

t�n,�n+êy
=

⎛
⎝ usσ 0 uspσ

0 upπ 0
−uspσ 0 upσ

⎞
⎠ ,

in the basis |s〉, |px〉, and |py〉, where êx and êy denote
unit vectors to the nearest-neighbor site along the x and y

directions, respectively. For the hopping between two layers,
since �r0 = �rB − �rA is not along the z direction, we need to
decompose the p orbitals into components along the �r0 axis
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and perpendicular to �r0. Consequently, we obtain

r�n,�n+r̂0 =
⎛
⎝ vsσ vspσ λ1 0

−vspσ λ1 vpσ λ2
1 + vpσ (1 − λ2

1) 0
0 0 vpπ

⎞
⎠ , (A5)

where λ1 = 2a1
|�r0| is the cosine of the angle between �r0 and the x axis. The M1 term is the Zeeman type of coupling between the p

orbitals and the magnetic moments. In momentum space, the Hamiltonian is given by

Hη =
∑

k

�†
η

⎛
⎝ Es(�k) −2iuspσ sin(kxa) −2iuspσ sin(kya)

2iuspσ sin(kxa) Epx(�k) −iηM1

2iuspσ sin(kya) iηM1 Epy(�k)

⎞
⎠ �η, (A6)

HAB =
∑

k

�
†
+ei2kxa1

⎛
⎝ 2vsσ cos(kzc/2) −2vspσ λ1 cos(kzc/2) 0

2vspσ λ1 cos(kzc/2) 2 cos(kzc/2)(vpπ (1 − λ2
1) + vpσ λ2

1) 0
0 0 2vpπ cos(kzc/2)

⎞
⎠ ,�− (A7)

where

Es(�k) = 2usσ [cos(kxa) + cos(kya)] + εs,

Epx(�k) = 2[upσ cos(kxa) + upπ cos(kya)] + εp, (A8)

Epy(�k) = 2[upπ cos(kxa) + upσ cos(kya)] + εp.

Here �†
η = (c†sη(�k),c†pxη(�k),c†pyη(�k)), and �k = ∑

i=x,y,z ki �ei .
Next we would like to analyze the constraint on the form of

Hamiltonian due to symmetry. In the main text, we have shown
how the operations m̂z and ĝx act on the basis wave functions.
The corresponding transformation matrices are given by

U (m̂z) =
(

1 0
0 1

)
, (A9)

U (ĝx) =
(

0 e−i(m̂x
�k)·�τmx

e−i(m̂x
�k)·�τmx 0

)
, (A10)

where

mx =
⎛
⎝1 0 0

0 −1 0
0 0 1

⎞
⎠ (A11)

and �τ = �a3
2 = (0,0, c

2 ).

A symmetry of a Hamiltonian requires

H (�k) = U ∗(�k)H (Û �k)UT (�k). (A12)

In particular, the mirror symmetry m̂z yields

HA(B)(kx,ky,kz) = HA(B)(kx,ky, − kz), (A13)

HAB(kx,ky,kz) = HAB(kx,ky, − kz). (A14)

The glide symmetry results in

HA(kx,ky,kz) = mxHB(−kx,ky,kz)mx, (A15)

HAB(kx,ky,kz) = mxHBA(−kx,ky,kz)mx. (A16)

Moreover, since |αη,�k + �G〉 = ei �G·�rη |αη,�k〉, one find

HA(B)(�k + �G) = HA(B)(�k), (A17)

HAB(�k + �G) = ei �G·�r0HAB(�k) (A18)
with �r0 = (2a1,0, c

2 ). Equations (A13)–(A18) determine the
form of our tight-binding Hamiltonian that respects the pmg

symmetry group.
The coupling M1 between magnetic moments and p orbitals

plays an essential role in inducing topologically nontrivial
phases, as shown in Ref. [26]. To see this, we may consider
one layer with the effective Hamiltonian (A6) and change the
basis from |px〉 and |py〉 to |p+〉 = − 1√

2
(|px〉 + i|py〉) and

|p−〉 = 1√
2
(|px〉 − i|py〉). On the basis |s〉, |p+〉, and |p−〉,

the effective Hamiltonian (A6) is rewritten as

Hη =
⎛
⎝ Es(�k)

√
2iuspσ [sin(kxa) + i sin(kya)] −√

2iuspσ [sin(kxa) − i sin(kya)]
−√

2iuspσ [sin(kxa) − i sin(kya)] 1
2 [Epx(�k) + Epy(�k)] + ηM1 − 1

2 [Epx(�k) − Epy(�k)]√
2iuspσ [sin(kxa) + i sin(kya)] − 1

2 [Epx(�k) − Epy(�k)] 1
2 [Epx(�k) + Epy(�k)] − ηM1

⎞
⎠ .

(A19)

From the Hamiltonian (A19), it is easy to see that the M1

term serves as a Zeeman type of splitting for the states |p+〉
and |p−〉, which carry the angular momentum 1 and −1,
respectively. We may consider a simplified situation when

the parameters of this model satisfy the condition |Es(�k) −
Ep(�k) − M1| 
 2|M1| where Ep(�k) = 1

2 [Epx(�k) + Epy(�k)].
In this case, we can describe the low-energy physics with the
|s〉 orbital and |p+〉 (|p−〉) orbital for the A (B) layer, given
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FIG. 4. (Color online) Energy dispersion of a slab configuration
at different M1 values: (a) M1 = 3.1 < 3.4; the system is topolog-
ically trivial. (b) 3.4 < M1 = 4.5 < 5; the system is topologically
nontrivial with a single gapless surface state at Z̄. (c) 5 < M1 = 5.8 <

6.6; the system is topologically nontrivial with single gapless surface
state at Ū instead of Z̄. (d) M1 = 7 > 6.6; system is topologically
trivial.

by a two-band effective Hamiltonian

Heff,η = ε(�k) +
∑

i=x,y,z

diσi, (A20)

where σ is the Pauli matrix denoting the basis of s and
p orbitals. For the A (B) layer (η = ±1), ε(�k) =
1
2 [Es(�k) + Ep(�k) + M1], dx = −√

2uspσ sin(kya), dy =

FIG. 5. (Color online) Wannier center flows for our tight-binding
model characterizing three topological phase transitions (TPTs): First
TPT at M1 = 3.4: (a) M1 = 3.39 (winding number = 0); (b) M1 =
3.41 (winding number = 1). Second TPT at M1 = 5 (this TPT shows
no change in winding number because the band gap closes twice
at the same time): (c) M1 = 4.99 (winding number = 1); (d) M1 =
5.01 (winding number = 1). Third TPT at M1 = 6.6: (e) M1 = 6.59
(winding number = 1); (f) M1 = 6.61 (winding number = 0).

(b)(a)

FIG. 6. (Color online) (a) A structure with pgg symmetry in the
xz plane. Two lattice vectors are �a1 = (a,0,0) and �a2 = (0,0,c), and
the vector �τ = ( a

2 ,0, c

2 ). A and B atoms are denoted by red and
blue colors. Taking the point between two adjacent B atoms as the
origin, two generators of the pgg group are {m̂x |�τ } and {m̂z|�τ }. (b) A
structure with p4g symmetry in the xz plane. Two lattice vectors are
�a1 = (a,0,a) and �a2 = (−a,0,a), and the vector �τ = (a,0,0). Two
generators of the p4g group are {C4|�e} and {m̂x |�τ }.

∓√
2uspσ sin(kxa), and dz = 1

2 [Es(�k) − Ep(�k) − M1]. This
model is known as the quantum anomalous Hall model, which
has been well studied in Ref. [37]. It possesses a nonzero
quantized Hall conductance when the configuration of the
vector d̂ = 1

d
(dx,dy,dz) (where d =

√∑
i d

2
i ) in the whole

Brillouin zone has a nonzero winding number. By tuning
the Zeeman splitting M1, the transition between trivial and
nontrivial states can happen for each layer. This transition
exactly corresponds to the transition between Z2 trivial and
nontrivial phases in our model after taking into account the
coupling between A and B layers. In the following, we will
numerically calculate the energy dispersion in a slab geometry
with the open boundary condition along the y direction to
test for the existence of gapless surface states. We choose
the following set of parameters: usσ = −0.2, uspσ = 0.2,
upσ = 0.2, upπ = 0.2, vsσ = 0.05, vspσ = 0.3, vpσ = −0.1,
vpπ = 0.1, εs = 0, εp = −5, a = 1, a1 = 0.1, and c = 2.
Combining both slab calculations and bulk dispersions,
we find that band gaps close at three different M1 values:
(I) M1 = 3.4; the system changes from being topologically
trivial (no gapless surface state) to topologically nontrivial
(single gapless surface state at Z̄). (II) M1 = 5; the system
remains topologically nontrivial since the band gap closes at

TABLE I. The degeneracy of HSM in 2D nonsymmorphic groups
for the single group case (spinless fermion or boson). Here “Factor
group” is for the isomorphism class of the factor group of the 2D space
group with respect to its translational subgroup and “Degeneracy” is
for the degeneracy of electronic states at these momenta. “Z2” of the
last column means whether Z2 topological phases can exist in this
nonsymmorphic group.

2D space group HSM Class Factor group Degeneracy Z2

pg ̄,X̄,Z̄,Ū K0 D1 1 no

pmg
̄,X̄

Z̄,Ū

K0

K1

D2

D2

1
2

yes

pgg
̄,Ū

X̄,Z̄

K0

K1

D2

D2

1
2

yes

p4g
̄,Ū

X̄,Z̄

K0

K1

D4

D2

1 or 2
2

yes
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TABLE II. The degeneracy of HSM in 2D nonsymmorphic
groups for the double group case (spinful fermion).

2D space group HSM Class Factor group Degeneracy Z2

pg ̄,X̄,Z̄,Ū K0 D1 1 no

pmg
̄,X̄

Z̄,Ū

K1

K0

D2

D2

2
1

yes

pgg
̄,Ū

X̄,Z̄

K1

K0

D2

D2

2
1

yes

p4g
̄,Ū

X̄,Z̄

K1

K0

D4

D2

2
1

yes

both T and U at the same time, similar to the case discussed
in Ref. [8]. So the gapless surface states that appear at Z̄

previously moves to Ū . (III) M1 = 6.6; the system changes
from being topologically nontrivial to topologically trivial.

Besides direct calculations of surface states, we can also
extract the bulk topological invariant by tracking the evolution
of Wannier function centers in the kz = π/c plane for our tight-
binding model. For each fixed kx , Wannier function centers can
be obtained using a gauge-independent method introduced by
Yu et al. [23]. For a one-dimensional system with periodic
boundary conditions, the position operator is defined as

X̂ =
∑
i,α

e−i(2π/L)·Ri |α,i〉〈α,i|, (A21)

where L = Nya is the length of the system, α is the orbital
index, and i labels the lattice site. This position operator is
defined using the local basis |α,i〉, so its eigenvalues represent
Wannier function centers of this system. By projecting this
position operator into the occupied bands, it is easy to check
that the projected position operator is equivalent to a U (2N )
Wilson loop for fixed kx ,

D(kx) = S0,1S1,2S2,3 . . . SNy−2,Ny−1SNy−1,0, (A22)

where a series of overlap matrices S are defined using the
periodic parts of Bloch wave functions,

S
m,n
i,i+1(kx) = 〈m,ky,i ,kx |n,ky,i+1,kx〉

ky,i = 2πi

Nya
. (A23)

Then the phases of the eigenvalues of this U (2N ) Wilson loop
D(kx) just give us Wannier centers of the occupied bands. By
letting kx evolve from 0 to π/a, we could clearly see whether
the Wannier centers switch partners (when the winding number
is odd and the system is topologically nontrivial) or not (when
the winding number is even and the system is topologically
trivial). As is shown in both Figs. 4 and 5, the winding numbers
of Wannier function centers precisely characterize topological
phase transitions and the appearance of surface states.

TABLE III. 3D space groups that can host surfaces with nonsymmorphic symmetries. In the brackets after the 3D space-group symbols,
we list the number of the 3D space group and the Miller indices of the corresponding surfaces with nonsymmorphic symmetry groups.

Wallpaper group 3D space groups and the corresponding surfaces

pmg

Pma2(28,(001)),Aem2(39,(001)),Ama2(40,(001)),Ima2(46,(001)),
P ccm(49,(100),(010)),Pmma(51,(010)),Pmna(53,(010)),P bcm(57,(100)),
Cmcm(63,(100)),Cmce(64,(010)),Cccm(66,(100),(010)),Cmme(67,(100),(010)),
Ibam(72,(100),(010)),Imma(74,(100),(010)),P 4/mcc(124,(100),(010),(110),(11̄0)),
P 4/nbm(125,(110),(11̄0)),P 4/mnc(128,(110),(11̄0)),P 4/nmm(129,(110),(11̄0)),
P 42/mmc(131,(110),(11̄0)),P 42/mcm(132,(100),(010)),P 42/nnm(134,(110),(11̄0)),
P 42/mbc(135,(110),(11̄0)),P 42/ncm(138,(110),(11̄0)),I4/mcm(140,(100),(010)),
I41/amd(141,(100),(010)),P 6̄c2(188,(011̄0),(1̄010),(11̄00)),
P 6̄2c(190,(1̄21̄0),(1̄1̄20),(21̄1̄0)),
P 6/mcc(192,(011̄0),(1̄010),(11̄00),(1̄21̄0),(1̄1̄20),(21̄1̄0)),
P 63/mcm(193,(011̄0),(1̄010),(11̄00)),P 63/mmc(194,(1̄21̄0),(1̄1̄20),(21̄1̄0)),
Pm3̄n(223,(110),(11̄0),(011),(011̄),(101),(1̄01)),
Pn3̄m(224,(110),(11̄0),(011),(011̄),(101),(1̄01)),
Fm3̄c(226,(110),(11̄0),(011),(011̄),(101),(1̄01)),
Fd 3̄m(227,(110),(11̄0),(011),(011̄),(101),(1̄01))

pgg

Pba2(32,(001)),Aea2(41,(001)),Iba2(45,(001)),P ban(50,(001)),
P cca(54,(010)),P bam(55,(001)),Cmce(64,(100)),Ccce(68,(100),(010)),
Ibam(72,(001)),Ibca(73,(001),(100),(010)),P 42bc(106,(001)),
I41cd(110,(001)),P 4̄b2(117,(001)),I 4̄c2(120,(001)),P 4/nnc(126,(110),(11̄0)),
P 4/ncc(130,(110),(11̄0),P 42/nbc(133,(001),(110),(11̄0)),P 42/mbc(135,(001)),
P 42/nmc(137,(110),(11̄0)),I41/acd(142,(001),(100),(010)),
Ia3̄(206,(001),(100),(010)),F 4̄3c(219,(001),(100),(010)),
Pn3̄n(222,(110),(11̄0),(011),(011̄),(101),(1̄01)),
Fd 3̄c(228,(001),(100),(010),(110),(11̄0),(011),(011̄),(101),(1̄01)),
Ia3̄d(230,(001),(100),(010))

p4g
I4cm(108,(001)),P 4/nbm(125,(001)),P 4/mbm(127,(001)),
I4/mcm(140,(001)),Fm3̄c(226,(001),(100),(010))
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APPENDIX B: SPACE-GROUP TABLES FOR
TOPOLOGICAL NONSYMMORPHIC CRYSTALLINE

INSULATORS

Figures 6(a) and 6(b) show the example structures for pgg

and p4g symmetry group, respectively. Here we take the sur-
face normal be to the y direction and assume the lattice along
the y direction preserves the 2D symmetry group of the surface.
Thus, the degeneracies found in the surface BZ are preserved
along the whole ky line in the 3D bulk BZ, which allows us to
define a Z2 topological invariant in a way similar to the case
of pmg.

The Tables I and II give the possible 2D space groups
for the surfaces that can host topological nonsymmorphic
crystalline insulators in the spinless and spinful systems,
respectively. The essential step is to determine the degeneracy
of HSM for the corresponding symmetry group based on the
projective representation theory [22]. We have shown how to
determine the factor system and the corresponding projective
representation for the single group case, which is applicable
to spinless fermions and bosons. The generalization to the
double group (spinful fermions) is quite straightforward. In
this case, at a momentum �k the representation matrix takes the
form D�k({S| �R}) = ei�k· �RD(S)χ (S) for the symmetry operator
{S| �R}, where D(S) is for the spatial part and χ (S) is for the
spin part. Now the factor system is determined by the phase
factor ω(S1,S2) defined asD(S1)D(S2) = ω(S1,S2)D(S1S2) for
two operators {S1| �R1} and {S2| �R2}. Therefore, it is easy to
see that the spin part χ (S) gives an additional contribution
to the phase factor ω(S1,S2). To determine to which class

the projective representation belongs, one needs to consider
the parameter α = ω(S1,S2)

ω(S2,S1) . Therefore, it is essential how two
operators S1 and S2 act on the spin part. Let us consider the
example of pmg group. For the operators m̂z and ĝx = {m̂x |�τ },
since χ (m̂z) = iσz anticommutes with χ (m̂x) = iσx (σx and
σz are two Pauli matrices), one can show that α = −1 for
�K = ̄,X̄ and α = 1 for �K = Z̄,Ū for the spinful case, which

is exactly opposite to the spinless case. The results for other
2D nonsymmorphic space groups are summarized in Table II.

Table III gives the corresponding 3D space groups that can
have surfaces with the required 2D space-group symmetry.

To identify the symmetry groups on specific surfaces, we
make use of the concept of layer groups. By comparing their
symmetry operations, we arrive at the following correspon-
dence between 2D space groups and layer groups:

pmg group ⇒ Layer group 24,

pgg group ⇒ Layer group 25,

p4g group ⇒ Layer group 56.

This correspondence is such that the layer group is isomorphic
to the space group. Then Table III can be obtained with the help
of the scanning tables found in Volume E of the International
Tables for Crystallography, Ref. [38].

Finally, based on Table III, one can easily identify appro-
priate systems to look for. For example, the surfaces with
pmg symmetry group can exist in many compounds of iron
pnictides and chalcogenides (P 4/nmm group) [39–42] and
some antiferromagnetic materials with the spinel structures
(Fd3̄m) [43,44].

[1] X. L. Qi and S. C. Zhang, Phys. Today 63(1), 33 (2010).
[2] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045

(2010).
[3] J. E. Moore, Nature (London) 464, 194 (2010).
[4] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
[5] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005).
[6] L. Fu, Phys. Rev. Lett. 106, 106802 (2011).
[7] T. H. Hsieh, H. Lin, J. Liu, W. Duan, A. Bansil, and L. Fu, Nat.

Commun. 3, 982 (2012).
[8] R.-J. Slager, A. Mesaros, V. Juričić, and J. Zaanen, Nat. Phys.
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