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Phase diagram of the Kane-Mele-Coulomb model
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We determine the phase diagram of the Kane-Mele model with a long-range Coulomb interaction using
an exact quantum Monte Carlo method. Long-range interactions are expected to play a role in honeycomb
materials because the vanishing density of states in the semimetallic weak-coupling phase suppresses screening.
According to our results, the Kane-Mele-Coulomb model supports the same phases as the Kane-Mele-Hubbard
model. The nonlocal part of the interaction promotes short-range sublattice charge fluctuations, which compete
with antiferromagnetic order driven by the onsite repulsion. Consequently, the critical interaction for the magnetic
transition is significantly larger than for the purely local Hubbard repulsion. Our numerical data are consistent with
SU(2) Gross-Neveu universality for the semimetal to antiferromagnet transition, and with 3D XY universality
for the quantum spin Hall to antiferromagnet transition.
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I. INTRODUCTION

Inspired by the experimental realization of graphene [1],
electrons with a linear band dispersion, or Dirac fermions, have
become a major topic in condensed matter physics. Interest in
correlated fermions on the honeycomb lattice has been boosted
by the theoretical proposal of the quantum spin Hall (QSH)
state [2], debates about the existence of a topological Mott
insulator [3–6] and a quantum spin-liquid phase [7–11], and the
mean-field prediction of an interaction-generated topological
phase (the QSH* phase) in a model for Na2IrO3 [12,13].

In order to make analytical and numerical studies feasible,
previous work has often invoked the approximation of a
purely local (Hubbard) repulsion between electrons [14]. The
honeycomb Hubbard model can be simulated using exact
quantum Monte Carlo methods [7,15,16], and has received
considerable interest after reports of a gapped spin-liquid
phase at intermediate interactions [7]. Simulations can also
be carried out for the Hubbard model with additional spin-
orbit coupling [17,18], usually referred to as the Kane-Mele-
Hubbard (KMH) model [19], which provides a framework to
study correlated topological insulators in two dimensions [20].

The existence of Dirac cones at isolated points in the
Brillouin zone, as compared to a Fermi surface, is a key feature
of the honeycomb lattice [21]. In the absence of interactions
and for a half-filled band, the system is a semimetal (SM)
with the density of states vanishing at the Fermi level [22].
The SM is stable at weak coupling [23], and any phase
transitions take place at finite critical interactions. According
to analytical calculations, the universality of the Mott-Hubbard
transition should be modified by the presence of gapless
fermionic modes [10,23–25]. The vanishing of the density
of states also implies that the Coulomb interaction will not be
screened, and that the approximation of a Hubbard interaction
is therefore a priori not justified. The long-range Coulomb
interaction leads to a logarithmic divergence of the Fermi
velocity [26,27] which was confirmed experimentally [28],
and marginal Fermi-liquid behavior [27]. On the other hand,
the divergence of the velocity makes the long-range interaction
in graphene marginally irrelevant at the critical point in the
framework of the ε expansion [24]. This result for weak

interactions, which holds close to 3 + 1 dimensions [23,24,27]
as well as close to 1 + 1 dimension [29], suggests the same
universality class for the Mott transition as in the Hubbard
model.

For the Hubbard model, our present understanding based
on numerical and analytical results suggests the existence
of a second-order Mott transition from a semimetallic to an
antiferromagnetic phase at U/t ≈ 3.8, with no intermediate
spin-liquid phase [9,10]. The KMH model with additional
spin-orbit coupling instead undergoes a transition from a
quantum spin Hall (QSH) state to an antiferromagnetic phase,
also at a finite critical U [17–19]. The phase diagram is
shown in Fig. 2(b). Quantum Monte Carlo (QMC) data are
consistent with the predicted SU(2) Heisenberg Gross-Neveu
universality for the Hubbard model [10], and with three-
dimensional (3D) XY universality for the KMH model [30].
The honeycomb lattice with long-range Coulomb interaction
has been investigated in detail in the context of graphene
(see [21] for a review). An interaction-driven metal-insulator
transition in graphene was demonstrated using quantum Monte
Carlo simulations [31]. More recently, long-range Coulomb
interaction has been studied in models with Dirac and Weyl
fermions [32–35], including the KM model [33].

In this work, we present exact results for electrons on the
honeycomb lattice interacting via a 1/r Coulomb potential.
The auxiliary-field QMC method used is free of a sign
problem at half-filling, and can be applied to more general
nonlocal interactions. Here, we study the phase diagram
of the Kane-Mele-Coulomb model. In the absence of spin-
orbit coupling, we find a quantum phase transition from a
SM to an antiferromagnet consistent with the Gross-Neveu
universality class, with the critical point shifted to larger
interaction strengths compared to the Hubbard model. At a
nonzero spin-orbit coupling, the KM model with long-range
electron-electron interaction is found to be either in a QSH
or in a magnetic insulating state. Similar to the KMH model,
the phase transition is consistent with the 3D XY universality
class, but again occurs at larger values of the interaction. We
find no evidence of a potential, intermediate QSH* phase [13]
or any other additional phases.
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The paper is organized as follows. In Sec. II, we define the
models. Section III provides a discussion of the QMC method.
Our results are presented in Sec. IV, and Sec. V contains our
conclusions.

II. KANE-MELE-COULOMB MODEL

The KM Hamiltonian [2,36] can be written as

Ĥ0 = −t
∑
〈i, j〉

ĉ
†
i ĉ j + i λ

∑
〈〈i, j〉〉

ĉ
†
i (ν i j · σ ) ĉ j . (1)

Here, we have used the spinor notation ĉ
†
i = (c†i↑,c

†
i↓), where

c
†
iσ creates an electron with spin σ at site i . The symbols 〈i, j〉

and 〈〈i, j〉〉 denote pairs of nearest-neighbor and next-nearest-
neighbor lattice sites on the honeycomb lattice, respectively,
and implicitly include the Hermitian conjugate terms. The first
term corresponds to the usual nearest-neighbor hopping [21].
The second term describes the z component of Rashba
spin-orbit coupling [36] in graphene, which takes the form
of a complex next-nearest-neighbor hopping ±iλ. The sign
depends on the sublattice, the electron spin, and the direction
of the hopping process. It may be compactly written in the
form ν i j · σ , with

ν i j = di k × dk j

|di k × dk j | . (2)

The vector di k (with vanishing z component) connects sites i
and k, k being the intermediate lattice site between i and j ;
σ = (σx,σ y,σ z) is the Pauli vector.

The QMC method used here can be applied to a rather
general electron-electron interaction of the form

ĤV = 1

4

∑
i j

Vi j (n̂i − 1)(n̂ j − 1), (3)

with a positive-definite matrix V . The numerical results shown
were obtained for the specific choice

Vi j =
{

2U , if |i − j | = 0
αUδ
|i− j | , if |i − j | > 0.

(4)

In Eq. (4), α determines the relative strength of the onsite and
the nonlocal interactions, and δ = 2

3 |a2 − 1
2 a1| is the distance

between the two orbitals in the unit cell [a1 = (1,0), a2 =
1
2 (1,

√
3) are the basis vectors of the honeycomb lattice]. The

distance |i − j | is the minimal distance between the sites i
and j . For α = 0, ĤV reduces to the Hubbard interaction

ĤU = U

2

∑
i

(n̂i − 1)2. (5)

We refer to the Hamiltonian Ĥ = Ĥ0 + ĤV , with Vi j

defined as in Eq. (4) as the Kane-Mele-Coulomb (KMC)
model. Its Hamiltonian respects C3 rotational symmetry, U(1)
spin symmetry, Z2 time-reversal symmetry, and U(1) gauge
invariance. In the absence of spin-orbit coupling (λ = 0),
we recover the full C6 rotation symmetry of the lattice, and
SU(2) spin symmetry. At half-filling, there is an additional
particle-hole symmetry.

Throughout the paper we will consider half-filled lattices
with L × L unit cells and periodic boundary conditions. The
number of lattice sites is given by N = 2L2.

III. QUANTUM MONTE CARLO METHOD

We discuss the method for a Hamiltonian Ĥ = Ĥ0 + ĤV ,
with Ĥ0 given by Eq. (1) and a general, nonlocal interaction
as defined by Eq. (3).

The starting point for the implementation of the long-range
interaction is the action

S({A,c†,c}) = S0({c†,c}) +
∫ β

0
dτ

∑
i

iA(i,τ )[niσ (τ ) − 1]

+
∫ β

0
dτ

∑
i j

A(i,τ )V −1
i j A( j ,τ ). (6)

Here, S0 corresponds to the action of the noninteracting
Hamiltonian (1), ni (τ ) = ∑

σ c
†
iσ (τ )ciσ (τ ), and A(i,τ ) is a real

scalar field. If the matrix Vi j is positive definite, the Gaussian
integral over the scalar field can be carried out to give

S({c†,c}) = S0({c†,c}) + S1({c†,c}) (7)

with

S1({c†,c}) = 1

4

∫ β

0
dτ

∑
i j

[ni (τ ) − 1]Vi j [n j (τ ) − 1]. (8)

A similar approach was used in Ref. [37].
The action in the presence of the scalar field is quadratic

in the fermionic degrees of freedom. The latter can hence be
integrated out to obtain

S({A}) =
∫ β

0
dτ

∑
i j

A(i,τ )V −1
i j A( j ,τ )

− ln Tr[T e− ∫ β

0 dτĤ ({A})], (9)

where

Ĥ ({A}) = Ĥ0 +
∑

i

iA(i,τ )(n̂i − 1). (10)

The presence of particle-hole and U(1) spin symmetry
guarantees that the action is real. In particular, the U(1) spin
symmetry allows us to factorize the trace into spin-up and
spin-down contributions

Tr[T e− ∫ β

0 dτĤ ({A})] =
∏
σ

Trσ [T e− ∫ β

0 dτĤσ ({A})]. (11)

With the canonical transformation c
†
i↑ → (−)ici↓, where (−)i

takes the value 1 (−1) on the A (B) sublattice, we can show
that (the bar denotes complex conjugation)

Tr↑[T e− ∫ β

0 dτĤ↑({A})] = Tr↓[T e− ∫ β

0 dτĤ↓({A})]. (12)

Therefore, the action S({A}) is real and the weight for a
given field configuration e−S({A}) is positive. Consequently,
the Monte Carlo sampling of the scalar field does not suffer
from the minus sign problem.

The implementation of the method relies on a Trotter
discretization of imaginary time β = Lτ	τ . There are many
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possibilities for carrying out the sampling. A possible choice
is hybrid molecular dynamics [31,37,38] based on a Gaussian
integral representation of the determinant. Here, we have
implemented a simpler, sequential updating scheme in which
field configurations are proposed according to the probability

e
∫ β

0 dτ
∑

i, j A(i,τ )V −1
i j A( j ,τ ) and then accepted or rejected using

importance sampling. This approach is advantageous when
the matrix V has a small number of low-lying eigenvalues that
favor specific modulations of the scalar field. To implement the
algorithm, we chose a basis where V is diagonal. Because V

is symmetric and positive definite, we can find an orthogonal
transformation M such that M†V M = diag(ξ1, . . . ,ξN ) with
ξi > 0. With �(i,τ ) = ∑

j M
†
i jA( j ,τ ), the partition function

reads as

Z =
∫

D{�}
∏
i,τ

e−	τ�2(i,τ )/ξi W ({�}) + O(	τ 2), (13)

where

W ({�}) = Tr
∏
τ

e− 	τ
2 Ĥ0e−	τ

∑
i j iMi j �( j ,τ )(n̂i −1)e− 	τ

2 Ĥ0 . (14)

We propose new configurations according to

T0({�} → {�′}) =
∏
i,τ

{PiτP0[�′(i,τ )] + (1 − Piτ )δ[�0(i,τ )

−�′
0(i,τ )]}, (15)

with P0(�′(i,τ )) =
√

	τ
πξi

e−	τ�′2(i,τ )/ξi . The proposed config-

uration {�′} is accepted with probability

P = min

(
T0({�′} → {�})Wtot({�′})
T0({�} → {�′})Wtot({�}) ,1

)

≡ min

(
W ({�′})
W ({�}) ,1

)
. (16)

Here, the total weight of a configuration is given by

Wtot({�}) =
∏
i,τ

P0(�(i,τ ))W ({�}). (17)

The probabilities Pi,τ in Eq. (15) can be chosen arbitrarily,
allowing us to optimize the acceptance rate. We have opted for
a sequential updating of the time slices. We set Pi,τ ≡ P and
used values of P that yield a good acceptance rate for updates.

Because we are interested in ground-state properties, we
used the projective (zero-temperature) auxiliary-field QMC
algorithm. Taking |T 〉 to be the ground state of the nonin-
teracting Hamiltonian Ĥ0, and assuming that it has a finite
overlap with the ground state |0〉 of Ĥ , expectation values
can be calculated as

〈0|Ô|0〉
〈0|0〉 = lim

�→∞
〈T|e−�Ĥ/2Ôe−�Ĥ/2|T〉

〈T|e−�Ĥ |T〉 . (18)

The implementation of the projective algorithm is similar to
that for finite temperatures, a detailed description of which can
be found in Ref. [39]. Dynamical correlation functions were
computed with the method of Ref. [40]. We used a symmetric
Trotter decomposition to minimize the systematic error, with
	τt = 0.1. A projection parameter �t = 40 was sufficient
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FIG. 1. (Color online) Acceptance rate Racc for Monte Carlo
updates and spin structure factor SAF [Eq. (20)] as a function of
the parameter P . Here, U/t = 4, α = 1, L = 6.

to achieve convergence to the ground state within statistical
errors.

Figure 1 shows the acceptance rate Racc and the spin
structure factor [Eq. (26)] as a function of the parameter P

for U/t = 4 and α = 1. The results reveal that P can be used
to tune the acceptance rate without changing the values of
physical observables.

Compared to the Hubbard interaction, simulations with
the long-range interaction (4) and local updates become
increasingly difficult at strong interactions, leading to long
autocorrelation times. Because the phase transitions in the
KMC model occur at larger interactions, the quality of the
data and the finite-size extrapolations is not as good as for the
KMH model [7,10,17,30].

IV. RESULTS

To better orient the discussion, we first present the phase
diagram of the KMC model. Then, we discuss how the phase
boundaries were obtained from finite-size scaling, look at
the critical behavior, provide an explanation for the shift of
the magnetic transition compared to the KMH model, and
comment on the absence of new phases. We focus on α = 1,
but very similar results were obtained for α = 1.23.

A. Phase diagram

The zero-temperature phase diagram of the KMC model
with α = 1, as obtained from QMC simulations, is shown in
Fig. 2(a). For comparison, we also show the phase diagram
of the KMH model in Fig. 2(b). As discussed in detail below,
the phase boundaries are based on a finite-size scaling of the
magnetization m. The data for the KMH model were taken
from Refs. [10,17,30,41]. The restriction of the SM to λ = 0
follows from the fact that the spin-orbit term immediately
opens a mass gap in a gapless Dirac metal, as previously
illustrated for the KMH model [30].

Similar to the KMH model [7], the KMC model has a
semimetallic ground state for λ = 0 and U < Uc; note that
with our definition of the interaction in Eq. (4), both the
local and the nonlocal parts of the interaction scale with
U . For stronger interactions U > Uc, the ground state is an
antiferromagnetic Mott insulator (MI). At nonzero spin-orbit
coupling λ, we find a QSH phase up to a critical Uc, and
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FIG. 2. (Color online) (a) Phase diagram of the KMC model
with α = 1. The phases correspond to a semimetal (SM) which
exists for λ = 0, a quantum spin Hall insulator (QSHI), and an
antiferromagnetic Mott insulator (AFMI). (b) Phase diagram of
the KMH model (corresponding to α = 0) based on previous
simulations [10,17,30,41] (see also Ref. [42]).

again a magnetic insulator for U > Uc. The same phases
have previously been observed in the KMH model [17–19]
[see Fig. 2(b)]. As for the KMH model, the critical value for
the transition increases with increasing λ. We have found no
evidence for a previously reported quantum spin-liquid phase
at intermediate interactions [7,17,30], consistent with recent
numerical results for the Hubbard model [9–11].

As observed before for the KMH model, the magnetic
ordering in the AFMI occurs in the transverse and longitu-
dinal spin directions at λ = 0, whereas only the transverse
spin components order at λ > 0. For the KMH model, the
effective spin model [19] valid at large U/t contains exchange
interactions J = 4t2/U and J ′ = ±4λ2/U . The sign of J ′
is different for the z (J ′ > 0) and the xy (J ′ < 0) directions
of spin. Because J and J ′ act between nearest- and next-
nearest-neighbor spins, respectively, the z component becomes
frustrated for λ �= 0, favoring easy-plane antiferromagnetic
order. The different symmetry of the order parameter at λ = 0

and λ > 0, and the absence or presence of gapless fermionic
modes below Uc, also implies different universality classes
for the corresponding phase transitions. Numerical results for
the KMH model are consistent with an SU(2) Gross-Neveu
transition for λ = 0 [10], and a U(1) 3D XY transition for
λ > 0 [30].

B. Magnetic phase transition at λ = 0

The quantum phase transition from the SM to the AFMI in
the Hubbard model on the honeycomb lattice (α = 0, λ = 0)
has attracted a lot of interest, partly because the transition has
a finite critical value Uc, and can be studied exactly using
QMC methods. An intriguing question is if the transition
between these phases is a direct transition [9–11] or involves an
intermediate spin-liquid phase [7,8]. After initial evidence for
the existence of such a phase [7], more recent results on larger
lattices [9] and using alternative methods to compute the order
parameter [10] favor the scenario of a direct quantum phase
transition. The absence of a jump in the double occupation
(which corresponds to the derivative of the free energy with
respect to U ) at the critical point suggests that the transition is
continuous [7].

In Ref. [10], it was shown that QMC results for the Mott
transition of the honeycomb Hubbard model are consistent
with a novel fermionic critical point described by the Gross-
Neveu-Yukawa theory [24,43]. The latter describes Dirac
fermions coupled to magnetic (bosonic) degrees of freedom
via a Yukawa term [24]. The question we address here is if the
nature of the transition is altered by a long-ranged Coulomb
interaction. Analytically, it is possible to include the Coulomb
potential with the help of a scalar field and show that it is, if
weak, a (marginally) irrelevant perturbation [24].

To study the onset of long-range antiferromagnetic order,
we consider the spin-spin correlation function

Sαβ(i − j ) = 〈Si · S j 〉, (19)

where α (β) is the orbital index belonging to site i ( j ), and the
corresponding Q = 0 structure factor

SAF = 1

L2

∑
α

∑
i j

Sαα(i − j ), (20)

where we have taken the trace over the orbitals. The magneti-
zation per site is then given by

m =
√

SAF/N. (21)

It extrapolates to zero in the nonmagnetic SM phase, but takes
on a finite value in the thermodynamic limit for U � Uc, where
Uc is the critical value for the magnetic phase transition. In
contrast to previous work [10], we did not use pinning fields.

Figure 3(a) shows the finite-size scaling of the magnetiza-
tion for different values of U/t . We simulated system sizes
ranging from L = 6 to 18, and used quadratic fits for the
extrapolation. Within the accuracy of this scaling procedure,
the phase transition seems to occur between U/t = 5 and 5.5.
The critical value is hence significantly larger than for the
transition in the Hubbard model where Uc/t = 3.78(5) [10].

As for the Hubbard model [10], we test if our data are
compatible with the critical exponents z = 1, β/ν = 0.9,
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FIG. 3. (Color online) SM-AFMI quantum phase transition.
(a) Finite-size scaling of the magnetization m using quadratic fits.
(b) Scaling intersection using the critical exponents for the Gross-
Neveu universality class from the ε expansion [10,24]. (c) Scaling
collapse using the critical value U (ε)

c /t = 5.45. Here, λ = 0, α = 1.

and ν = 1/2 + 21/55 ≈ 0.88 for the SU(2) Gross-Neveu
universality class in 2+1 dimensions, obtained from the ε

expansion with ε = 1. The plot of mLβ/ν in Fig. 3(b) produces
a satisfactory intersection of curves for different system sizes
at a critical value U (ε)

c /t = 5.45(10).
Using U (ε)

c /t = 5.45, we plot mLβ/ν as a function of
L1/ν(U − Uc)/Uc in Fig. 3(c). The rather good scaling col-
lapse suggests that our numerical data are consistent with the
Gross-Neveu critical exponents from the ε expansion, similar
to the analogous transition in the Hubbard model [10]. The
scaling collapse quickly deteriorates upon variation of U (ε)

c .
Figure 4(a) shows a finite-size scaling of the single-

particle excitation gap 	sp, which is extracted from fits
to the single-particle Green’s function at the Dirac point,
G(q = K ,τ ) [7,30]. Second-order polynomial extrapolations
to the thermodynamic limit suggest a vanishing of the gap for

0.0
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FIG. 4. (Color online) (a) Finite-size scaling of the single-
particle gap using quadratic fits. (b) Expectation value of the
interaction term, corresponding to the derivative of the free energy
with respect to U . Here, λ = 0, α = 1.

U/t � 4.5, and a very small but nonzero single-particle gap
for U/t � 5.5. For U/t = 5, the data curve downward at large
L; a quadratic fit suggests a small but nonzero gap.

The uncertainty in the finite-size extrapolation of m and
	sp is larger than for the KMH model. In particular, these
quantities suggest a critical value in the range [5,5.5], smaller
than U (ε)

c /t = 5.45(10) obtained using the critical exponents
from the ε expansion. Apart from the limitations in system
size, which affect the accuracy of the finite-size extrapolation
of m and 	sp, it was previously shown that a measurement of
m2 instead of m is problematic close to the critical point [10].
In addition, we see evidence for logarithmic corrections to
scaling for the system sizes considered. The critical value
U (ε)

c /t = 5.45(10) further depends on the ratio β/ν, with β and
ν obtained from the ε expansion. The accuracy of the values
for the critical exponents is unknown for the present model,
but a recent comparison with QMC simulations for Z2 and
U(1) Gross-Neveu models showed good agreement [44,45]. A
scaling analysis independent of critical exponents is beyond
the scope of this paper, and will be published elsewhere.

Finally, Fig. 4(b) shows the free-energy derivative
∂F/∂U = 〈ĤV 〉/U [see also Eq. (4)]. The continuous evo-
lution of this quantity across the critical point suggests a
continuous (second-order) phase transition.

C. Competition of spin and charge order

The main difference between the phase diagrams of the
KMC and the KMH models is a shift of the magnetic phase
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(a) N(rx, ry), α = 0 (b) S(rx, ry), α = 0

(c) N(rx, ry), α = 1.23 (d) S(rx, ry), α = 1.23
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FIG. 5. (Color online) Real-space charge and spin correlations
relative to the central site for (a), (b) the Hubbard model (α = 0), and
(c), (d) a long-range interaction (α = 1.23). Here, λ = 0, U/t = 3.5,
L = 15.

to larger values of U . For λ = 0, this shift can be understood
already at the classical level where the total energy is given by

Ecl = 1

4

∑
i j

(ni − 1)Vi j (n j − 1). (22)

The state with uniform density at half-filling (that is, with
ni = 1) has Ecl = 0. If Vi j is positive definite, all other
charge configurations have a positive and hence higher energy.
However, with increasing α, the energy of the charge-density-
wave state with doubly occupied sites on sublattice A and
empty sites on sublattice B (or vice versa) decreases, leading to
a competition with the uniform state. For a model with onsite
(U ) and nearest-neighbor (V ) repulsion only, the two states
become degenerate when 3V = U , whereas for the long-range
interaction (4) degeneracy occurs close to α = 1.23. The
competition between the magnetic Mott state and the charge-
density-wave state provides an explanation for the observed
increase of the critical value Uc upon going from a Hubbard
to a long-range interaction (see Fig. 2). The suppression of
magnetic order can also be understood as resulting from a
reduction of the effective onsite repulsion by the nonlocal
interactions [46].

To illustrate this competition, we show in Fig. 5 the real-
space charge-charge correlation function

N (r) = 〈n̂r n̂0〉 − 〈n̂r〉〈n̂0〉, (23)

and the spin-spin correlation function

S(r) = 〈Ŝr · Ŝ0〉. (24)

The results are for λ = 0 and U < Uc, corresponding to the
semimetallic phase. For α = 0 (Hubbard interaction), N (r)
is slightly suppressed around the origin with respect to the
noninteracting system. This is typical of a liquid phase with
contact interactions where charges avoid each other at short
distances.

In the case of a long-range interaction, α = 1.23, we find
enhanced short-range charge correlations. At the same time, on
going from α = 0 to 1.23, we observe a significant suppression
of spin correlations. These numerical data highlight the
competition between charge and spin order, and hence support
the explanation of the shift of Uc in terms of competing
orders. Interestingly, even for α = 1.23, where charge and spin
correlations are nearly degenerate in the classical limit, we do
not find a stable charge-ordered phase, but a direct transition
from the SM to the AFMI phase.

D. Magnetic phase transition at λ/ t = 0.2

Similar to the KMH model [19,30], the presence of spin-
orbit coupling is expected to allow long-range magnetic order
only in the transverse spin direction. To determine the phase
boundary, we therefore measure the transverse spin correlation
function1

S±
αβ(i − j ) = 〈S+

i S−
j + S−

i S+
j 〉 (25)

from which we obtain the structure factor

S
xy

AF = 1

L2

∑
α

∑
i, j

S±
αα(i − j ) (26)

and the transverse magnetization

mxy =
√

S
xy

AF/N. (27)

Figure 6(a) shows a finite-size scaling of mxy for different
values of U/t for the KMC model with α = 1. The fits of
the data to second-order polynomials suggest that the critical
point is located in the range Uc/t ∈ [8,8.5], compared to the
value Uc/t = 5.70(3) found for the KMH model at the same
spin-orbit coupling λ/t = 0.2. The enhanced critical value
compared to the Hubbard case can again be attributed to
the competition between charge and spin correlations (see
Sec. IV C). Similar to the KMH model [30], we find no
magnetic order in the spin-z direction over the whole range
of interactions considered.

We can further test if the assumption of 3D XY universality,
as previously demonstrated for the analogous transition in
the KMH model [30], is consistent with our numerical data.
Figure 6(b) shows the quantity Lβ/νmxy as a function of U

for different system sizes, taking the critical exponents z = 1,
ν = 0.6717(1), and β = 0.3486(1) of the 3D XY model [47].
We find an intersection of curves for different system sizes at a
value of Uc/t = 8.4(1), compatible with Fig. 6(a). In contrast
to λ = 0, we do not observe logarithmic corrections to scaling
as a result of the long-range interaction. Nevertheless, the
large critical value of the transition renders simulations on
large systems very demanding.

Taking Uc/t = 8.4, we can produce a satisfactory scaling
collapse in Fig. 6(c). The consistency between the onset of
the magnetization and the scaling intersection and collapse
using the critical exponents of the 3D XY model suggests
that the universality class of the transition is not changed by

1For the SU(2) symmetric case (λ = 0), we have the relation
Sαβ (i − j ) = (3/4)S±

αβ (i − j ).
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FIG. 6. (Color online) QSHI-AFMI quantum phase transition.
(a) Finite-size scaling of the magnetization mxy using quadratic
fits. (b) Scaling intersection using the critical exponents of the 3D
XY model [30,47]. (c) Scaling collapse using Uc/t = 8.4. Here,
λ/t = 0.2, α = 1.

the long-range interaction. In particular, the quality of the
intersection and the data collapse in Fig. 6 are very similar to
that for the KMH model [30]. We attribute the insensitivity to
the nonlocal part of the interaction to the fact that the magnetic
excitons (corresponding to particle-hole pairs) involved in the
transition are charge neutral, and therefore not affected by
modifications of the potential.

E. Absence of an intermediate phase

The shift of the phase boundary for the magnetic phase
transition in the KMC model to significantly larger values of
U/t provides room for the QSH* phase predicted to emerge
from the interplay of strong spin-orbit coupling and strong
electron-electron interaction in Na2IrO3 [13]. In particular,
the QSH phase undergoes a transition to the QSH* phase

0
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Δ
sp

/t

U/t

(a)
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N

−
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L = 18

FIG. 7. (Color online) (a) Finite-size extrapolated single-particle
gap. (b) Expectation value of the interaction term, corresponding to
the derivative of the free energy with respect to U . Here, λ/t = 0.2,
α = 1.

at sufficiently large values of the spin-orbit coupling upon
increasing the Hubbard interaction [13]. While the model
for Na2IrO3 includes a Rashba spin-orbit term that does not
conserve spin [12,13], mean-field calculations suggest that
such an interaction is not essential for the existence of the
QSH* phase, and that this phase could also exist in the KMH
model [48]. Its absence in numerical results for the KMH
model may therefore be due to the onset of magnetic order
already at intermediate values of U/t . (Similar to the QSH
phase, the QSH* phase relies on time-reversal symmetry, and
can therefore not coexist with magnetism.) Because the onset
of magnetic order is shifted to stronger interactions, the KMC
model can in principle provide a more favorable setting to
observe this exotic phase.

Because the QSH* phase is not adiabatically connected
to the QSH phase of the KM model, we expect this phase to
manifest itself in terms of an additional phase transition. While
a closing of the single-particle gap is not generally necessary
in correlated systems, we still expect such a transition to leave
a signature in the evolution of the gap with increasing U .
However, the results for the single-particle gap of the KMC
model shown in Fig. 7(a) are qualitatively the same as for
the KMH model, and can be reproduced at the mean-field
level [30]. The single-particle gap remains nonzero throughout
the QSH phase, and shows a single cusp at the critical point of
the magnetic transition. Similarly, and as in the case of λ = 0,
the free-energy derivative with respect to the interaction shows
a continuous evolution as a function of U [see Fig. 7(b)].
Finally, because the QSH* phase is expected to be located
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between the QSH and the MI phase, it would change the
universality class of the magnetic transition, the latter being
a QSH*-MI transition instead of a QSH-MI transition. The
scaling collapse obtained with the 3D XY critical exponents
in Fig. 6(c) hence contradicts the existence of an intermediate
phase. Finally, the response to π fluxes could be used to
measure the Z2 topological invariant as a function of U [41].

V. CONCLUSIONS

We have studied the Kane-Mele model with long-range
Coulomb interaction using an auxiliary-field quantum Monte
Carlo method. The phase diagram shows the same phases
and phase transitions as for the Kane-Mele-Hubbard model,
namely, a semimetal, a quantum spin Hall phase, and an
antiferromagnetic Mott insulator. Most notably, the magnetic
transition is shifted to significantly larger onsite interactions
(in addition to the nonlocal part) compared to a Hubbard
interaction. This shift can be understood as originating from
the competition between charge and spin order, with charge
fluctuations being enhanced by the nonlocal interactions.

The phase transitions between the semimetal and the anti-
ferromagnetic insulator in the absence of spin-orbit coupling,
and between the quantum spin Hall insulator and the antiferro-
magnetic insulator in the presence of spin-orbit coupling, were

analyzed with regard to the critical behavior. In both cases, the
critical exponents appear to be the same as for the Hubbard
interaction, namely, those of the Gross-Neveu and the 3D XY
universality classes, respectively. This observation agrees with
analytical findings regarding the marginal irrelevance of the
long-range interaction. Compared to the case of a Hubbard
interaction, the problem with long-range interactions is more
challenging. Consequently, the finite-size extrapolations and
critical values are less accurate.

Finally, we did not find any evidence for additional phases.
Our results suggest that apart from quantitative differences, the
Hubbard repulsion captures the essential physics associated
with strong correlations. Unfortunately, because of a minus-
sign problem, our method cannot be applied to models with
dominant nearest- or next-nearest-neighbor interactions which
may support additional symmetry-breaking phases [3].
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