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Boson features in STM spectra of cuprate superconductors: Weak-coupling phenomenology
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We derive the shape of the high-energy features due to a weakly coupled boson in cuprate superconductors,
as seen experimentally in Bi2Sr2Ca1Cu2O8+x (BSCCO) by Lee et al. [Nature (London) 442, 546 (2006)]. A
simplified model is used of d-wave Bogoliubov quasiparticles coupled to Einstein oscillators with a momentum-
independent electron-boson coupling and an analytic fitting form is derived, which allows us (a) to extract
the boson mode’s frequency and (b) to estimate the electron-boson coupling strength. We further calculate the
maximum possible superconducting gap due to an Einstein oscillator with the extracted electron-boson coupling
strength, which is found to be less than 0.2 times of the observed gap indicating at the observed boson’s
nondominant role in the superconductivity’s mechanism. The extracted momentum-independent electron-boson
coupling parameter (that we show a posteriori to indeed be in the weak-coupling regime) is then to be interpreted as
an (band-structure detail dependent weighted) average over the Brillouin zone of the actual momentum-dependent
electron-boson coupling in BSCCO.
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I. INTRODUCTION

Scanning tunneling microscopy (STM), applied to the
superconducting cuprate Bi2Sr2Ca1Cu2O8+x (BSCCO 2212)
[1], found a feature in the density of states (DOS ) at an energy
well above the energy scale of the so-called coherence peak
energy (Fig. 1), and attributed it to an electron-boson coupling.
In conventional (s-wave) superconductors (e.g., Hg, Pb, Al),
such features due to electron-phonon coupling were known in
tunneling spectra from superconductor-insulator-normal metal
junctions [2,3]. The phonon frequencies inferred from the
tunneling feature agreed with the phonon density of states
inferred from neutron scattering; furthermore, the phonon-
mediated superconducting Tc and gap were correctly predicted
[2] from the tunneling using the Eliashberg formalism [4]. In
the case of cuprates, the mechanism for superconductivity is
not established, and there are divergent opinions whether the
mode observed by Lee et al. contributes to the pairing [1,5–7].

In BSCCO, the pairing strength is highly inhomogeneous at
the nanoscale [8–13], as inferred from the spatial fluctuations
of the energy Ecoh of the “coherence peak” in STM spectra
(Fig. 1). Lee et al. discovered that the boson feature’s energy
Ebos “floats” with the same inhomogeneity as Ecoh, namely,
Ebos = Ecoh + ��0 with a (spatially uniform) boson frequency
�0. To infer Ebos, they identified it as the inflection point
in DOS n(ω) before the feature. In this paper, we improve
on this recipe by deriving an analytic formula for the boson
feature, starting from the simplest phenomenological model
of a cuprate and using basic random-phase approximation
(RPA) calculations. Our focus here is the energy dependence
rather than the spatial modulations [14,15] of this feature. Prior
calculations [16,17] addressed the same question of extracting
�0 from the shape of the DOS of BSCCO. Reference [16] uses
a more elaborate (Eliashberg) calculation, but in an entirely
numerical framework, making the physical interpretation
indirect and the method computationally bulky to use for fitting
the vast number of spectra that STM affords us with. However,
Ref. [16] and related Ref. [6] have extensively discussed
the material details about the electron-boson coupling and

related form factors, which we intentionally avoid in favor
of simplicity.

We first ask just what point in the feature is to be identified
as Ebos: our recipe implies a value for ��0 in basic agreement
with the analysis in Ref. [1]. Secondly, we ask how can
one extract the electron-boson coupling strength; our results
indicate it is indeed small enough that our weak-coupling
approximation is justified, and furthermore this coupling
alone is unlikely to explain the magnitude of the observed
superconducting gap.

II. WEAK-COUPLING MODEL

We begin by setting up the simplest possible model, taking
the electron-boson coupling as a small perturbation to an
already superconducting fermion dispersion of the standard
mean-field form (as in Refs. [14,17–19]), and then setting
up the DOS calculation within the RPA approximation.
Our analysis is agnostic as to the boson’s nature, which is
sometimes argued to be magnetic [7], but usually considered
to be an oxygen vibration, on account of the O18 isotope effect
[1].

Our bare fermion Hamiltonian has the usual mean-field
form

H =
∑
k,σ

ε(k)c†k,σ ck,σ + �(k)ck,σ c−k,−σ + H.c., (1)

where ε(k) is the normal-state band dispersion, for which (in
all numerical calculations in this paper) we adopt Norman’s
six-parameter tight-binding fit to ARPES data on BSCCO [20].
The quasiparticle dispersion is then E(k) =

√
ε(k)2 + �(k)2,

where we will assume d-wave pairing with

�(k) ≡ �0

2
[cos(kx) − cos(ky)]. (2)

We (plausibly) approximate the bosonic mode as a disper-
sionless (Einstein) oscillator at frequency �0, and assume an
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FIG. 1. (Color online) A typical measured STM spectrum in
BSCCO [proportional to DOS n(ω)] as a function of energy E; the
data were provided by Jacob Alldredge. Energies of the “coherence
peak” Ecoh and boson feature Ebos are indicated. Boxes show energy
windows used to fit the analytic form (see Fig. 3 below).

electron-phonon coupling

He-ph = 1√
N

∑
k,q,σ

g(q)c†k+q,σ ck,σ (b−q + b†q), (3)

where b
†
q and bq are the bosonic creation and annihilation

operators, and N is the number of lattice sites. For simplicity
we work through the case g(q) ≡ g; after completing that, we
will revisit the more general case with a momentum-dependent
g(q).

Our object, the DOS, is defined as the trace of the electron
term in the Green’s function:

n(ω) ≡ − 1

π
Trk Im G11(k,ω), (4)

where Trk ≡ a2
∫

B.Z.
d2k/(2π )2, and the integral is over the

Brillouin zone. In the 2 × 2 Nambu formalism, the bare
Green’s function is given by

G0(k; ω)−1 =
(

ω − ε(k) �(k)
�(k)∗ ω + ε(k)

)
. (5)

We shall henceforth use Pauli matrices τ i , and adopt the
gauge in which �0 is real: thus G0 = [EI + ε(k)τ 3 +
�(k)τ 1]/[ω2 − E(k)2)]. The boson propagator has the form

D(q; �) = 1

2

(
1

� − �0
− 1

� + �0

)
≡ D(�). (6)

III. SELF-ENERGY AND DENSITY OF STATES
DUE TO THE BOSON

The boson feature enters the DOS via the dressed Green’s
function, in the RPA approximation,

G(k,ω)−1 = G0(k,ω)−1 − 	(k,ω). (7)

Because �0 and D(�) were momentum-independent, so is
the electronic self-energy, reducing (at lowest order in g) to

	(k,ω) ≡ 	(ω), where

	(ω) = g2
∫

d�

2π
D(�) Trq[τ 3 G0(k − q; ω − �)τ 3]. (8)

After a contour evaluation of the � integral, Eq. (8) reduces to

	(ω) = g2

2
Trk

{
(ω + �0)I + ε(k)τ 3 − �(k)τ 1

(ω + �0)2 − E(k)2

+
�0

(
I + ε(k)

E(k)τ 3 − �(k)
E(k) τ 1

)
[ω − E(k)]2 − �2

0

}
. (9)

The off-diagonal (τ 1) terms in Eq. (9) vanish, 	12 = 	21 ≡
0, since �k has d-wave symmetry (reverses sign under 90◦
rotations).

We write n(ω) = n0(ω) + δn(ω), where n0(ω) is the basic
DOS in the absence of the boson coupling [derived from (5)]
and has the well-known “coherence peaks” centered at energy
values ±Ecoh close to ±�0; δn(ω) contains contributions of
order g2, in particular the boson feature. Writing the Taylor
expansion of (7), we extract the terms in G11 linear in 	 and
thus

δn(ω) = − 1

π
ImTrk

[
[ω + ε(k)]2	11(ω) + |�(k)|2	22(ω)

[ω2 − E(k)2]2

]

≡ 1

π
Im [I1(ω)	11(ω) + I2(ω)	22(ω)] . (10)

This is the first version of our result, suitable for numerical
fits [21], but requiring integrations over the zone at each
iteration [for the key formulas (9) and (10)]. Note that
in numerical calculations, we replace ω → ω + iη in (5),
where iη represents the physical quasiparticle damping (from
all sources except our boson mode), a parameter found
essential for fitting the “coherence peaks” in the DOS [22].
It is easy to replace this energy-independent damping by
η(ω), as used in Ref. [22]. Figure 2 shows a representative
numerical calculation of the self-energy function (inset) and
the resulting DOS . We see a dip-hump shape, in agreement
with experiment; Ebos falls between the dip and the hump
similar to the assumption of Ref. [1].

IV. ASYMPTOTIC FORM NEAR Ebos = Ecoh + �0

We now extend our results to an approximate analytic
formula, for the boson feature’s shape, by treating not only
the electron-boson coupling g, but also the damping η as a
small parameter; in the limit η → 0, the feature is a singularity
centered at Ebos ≡ Ecoh + �0.

First recollect the origin of the familiar “coherence peak”
in the basic DOS n0(ω): it is a van Hove singularity due to the
saddle points at k = (ks,π ) and equivalent momenta where
the Fermi surface crosses the zone boundary. The pertinent
pole in G0 is 1

2 [ω − E(k)]−1I; there is no contribution from τ 3
due to the factor ε(k) which vanishes on the Fermi surface. It is
well known that Trk[ω − E(k)] at a saddle gives a logarithmic
singularity, so we find a singular part

n
sing
0 (ω) = −a2m∗

π2
Ref (ω − Ecoh + iηcoh) (11)
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FIG. 2. (Color online) Numerically computed DOS as a function
of energy. The standard six-parameter dispersion for BSCCO was
used [20]; we chose the pairing amplitude to be �0 = 0.2|t1| ≈
29.6 meV, the boson energy to be ��0 = 0.25|t1| ≈ 37 meV and
electron-boson coupling to be g = √

0.1|t1| ≈ 47 meV, where t1 is
the nearest-neighbor hopping. Three different choices of damping are
shown: from sharpest to flattest, η = 0.005, 0.01, and 0.02 (in units
of t1). Lower inset shows real and imaginary parts of the electron
self-energy function. This has singularities at Ebos rounded by the
damping.

with

f (z) ≡ ln(m∗z/4KxKy). (12)

Here, E(k) ≈ Ecoh + (kx − ks)2/2mx − (ky − π/a)2/2my

near the saddle, m∗ ≡ √
mxmy , and Kx , Ky are the cutoffs,

representing the range of (kx,ky) within which this expansion
is valid. For our parameters, 1/m∗ = 94.07 meV a2, and
we take Kx = 0.5a−1 and Ky = 0.06a−1 for later numerical
calculations.

The self-energy 	(E) has a singularity due to the same
saddle point, with the pole of form ( 1

2 )2g2I[ω − E(k) −
�0]−1, coming from the second big term in (9). Clearly,
integrating over k gives the same logarithmic divergence, with
its argument shifted by �0. Thus

	(ω + iη) = regular terms + ig2a2

2π
m∗f (ω − Ebos + iη)I

(13)

with f (z) from (12). This behavior is confirmed by the inset
of Fig. 2.

The I dependence in (13) signifies that 	11 ≈ 	22 at the
singularity. Thus (10) simplifies to

δnsing(ω) = 1

π
Im[	11(ω)I (Ebos + iη)], (14)

with I (ω) ≡ [I1(ω) + I2(ω)]/2 [see Eq. (10)].
Thus our key asymptotic result is that δn(ω) has a logarith-

mic singularity at Ebos, rounded by the finite damping η. The
result is a linear combination of a rounded step and a cut-off
log divergence, with the exact shape (and the location of Ebos

within it) depending on the phase angle in I (ω) ≡ |I (ω)|eiφI ,
which depends on the band structure [cf. Eq. (14)].

For energies around the boson feature (e.g., ω ≈ 115 meV),
the rough dependence on damping is I (ω + iη) = 1.5 ×

10−5(η − 15) + 0.7 × 10−3i. Thus the shape of δn(ω) is a
(comparable) combination of a rounded upwards step from
Re	11 and a rounded logarithmic hump from Im	11 leading
to location of the boson mode frequency ω before the hump
(as seen in numerics cf. Fig. 2).

We can attach physical interpretations [23] to the real and
imaginary parts of 	22(ω). The imaginary part represents an
inelastic event in which a real boson excitation is created; the
real part represents the quasiparticle being dressed by virtual
bosons.

Since the predicted feature includes a “step up,” we are
in agreement with the recipe of Lee et al. that placed Ebos

at the inflection point before the hump of the boson feature,
motivated by previous work on molecular vibrational features
in electron tunneling [24,25]. References [16], [17], and [26]
located Ebos even lower, at the minimum of the dip in the
dip-hump feature. As mentioned before, we also place Ebos

before the hump but more specifically in between the hump
and its preceding inflection point.

We can attempt to compare our self-energy functions with
those of Ref. [16] [Fig. 3(c)], computed numerically from
Eliashberg theory. Re	ii(ω) is proportional to their ImZ(ω),
which indeed resembles a (positive) logarithmic divergence,
while Im	ii ∝ 1 − Z(ω) shows a rounded up step.

V. FITTING SCHEME FOR THE EXPERIMENTAL
BOSON FEATURE

In this section, we translate our asymptotic forms to a
simplified fitting scheme for our weak-coupling model and,
by applying it to the experimental spectrum in Fig. 1, extract
the Ebos and also obtaining the electron-boson coupling g

from the boson feature’s amplitude [27]. We consider the
experimental signal to be in arbitrary units so we write it
ñ(ω) = βcaln(ω), where the coefficient βcal includes unknown
factors such as the STM tip set-point. As the dispersion ε(k)
is already known from ARPES [20], the “coherence peak”
is sufficiently constrained that we can calibrate βcal from it.
We read off Ecoh = 40.8 meV from the peak position in Fig. 1.
From this, using Ecoh = E(ksaddle), we infer �0 = 44.23 meV.

The saddle point of the quasiparticle dispersion at ksaddle

contributes a logarithmic singularity to the DOS at the
“coherence peak”:

n0(ω) = nreg(ω) + n
sing
0 (ω), (15)

where n
sing
0 (ω) is given by (11), and we adopt the simplest

usable form nreg(ω) = acohω + bcoh for the regular part, which
is due mainly to n0(ω).

Table I gives the results of the calibration fit to the data
in Fig. 1, using energies in (30 meV, 50 meV). As Fig. 3
(left) shows, the fitting is good in this window. This fit gives
a quasiparticle broadening ηcoh ≈ 10 meV (assumed to be
constant over the Brillouin zone and the energy window
30–50 meV), uncomfortably large in that ηcoh/Ecoh ≈ 1/4. We
do not know why this exceeds the result η(Ecoh ≈ 40 meV) ≈
1 meV, fitted by Ref. [22] assuming a broadening η(ω) ∝ ω.

Now we turn to the fit of the boson feature, using an energy
window (80 meV, 140 meV), which contains the hump in
Fig. 1, to the fitting form implicit in Eqs. (10) [for I (ω)], (13),
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TABLE I. Fit parameters for the “coherence peak” using Eq. (15)
(left column) and for the boson feature using Eq. (16) (right column).
The error bars on the fit parameters were estimated by determining the
parameter range where χ 2 � 2 ∗ χ 2

min, where χ 2 = ∑
i(yi − f (xi))2,

i is the (energy) index for data points, yi and f (xi) are the
experimental datum and the value of fitting function, respectively,
at the ith data point.

�0 44.23 meV �0 56(1) meV
βcal 3.2(4)×104 arb. units meV−1 g 36(16) meV
ηcoh 10.7(9) meV ηbos 11(2) meV
acoh 3.1(2) × 10−2 meV−2 abos 0.40(35) × 10−2 meV−2

bcoh 8.1(7) meV−1 bbos 6.9(5) meV−1

and (14):

n(ω) = n
reg
bos(ω) + δnsing(ω). (16)

Here, we take the simplest usable form for the regular
part n

reg
bos(ω) = abosω + bbos, representing n0(ω) plus regular

contributions from 	(E). Also from (14) we see

δnsing(ω) = 2ig2a2m∗

(2π )4

× Im [I (ω + iηbos) f (ω − Ebos + iηbos) ]. (17)

The fitted parameters are given in Table I; the fit (Fig. 3) is
fairly good in its energy window.

We note that, based on the data from which Fig. 1 is drawn,
Ref. [1] identified the bosonic mode energy as 52 ± 8 meV,
using the inflection point before the hump, so our result of 56 ±
1 meV (fitting just one typical spectrum) is in agreement with
them. The quasiparticle damping was ηbos ≈ 11 meV. Thus
η(k)/E(k) ≈ ηbos/Ebos ≈ 0.11 	 1 in the Ebos fit window,

30 Ecoh 40.8 50
ω meV

n
ω

135Ebos 96.41

6.

7.

ω meV
(a) (b)

n
ω

FIG. 3. (Color online) Fit of the experimental DOS n(ω) to fitting
forms, using the windows of energies marked in Fig. 1. (a) Fit of
“coherence peak” to Eq. (15), using energies 30–50 meV. (b) Fit of
boson feature to Eq. (16), using energies 80–140 meV.

verifying the criterion for the Bogoliubov quasiparticles to be
well-defined.

A dimensionless measure of coupling strength is the the
ratio of the logarithmic factors f (z) in the boson feature
[Eq. (16)] and coherence peak [Eq. (15)]:

λlog ≡ 2g2|I (Ebos + iηbos)|
(2π )2

≈ 0.057, (18)

using the numerical value |I (Ebos + iηbos)| =
8.7 × 10−4 meV−2, validating our weak-coupling assumption.

VI. MOMENTUM-DEPENDENT BOSON COUPLING AND
GAP RENORMALIZATION

What if the electron-boson coupling g(q) in (3) is not
constant but depends on the electron momentum transfer q?
Firstly, it gives renormalizations of �(k) due to 	12, which is
no longer zero [see Eqs. (4) and (5)]. To obtain an upper
bound for the gap renormalization, we try the form for q
dependence, which leads to the maximal renormalization,
namely, |g(q)|2 = g̃2[ 1

2 (cos qx + cos qy)], where we set g̃

to the fitted g value from Table I. We compute the gap
renormalization using the obvious generalization of Eq. (8)
to account for the q dependence of electron-boson coupling
in the off-diagonal components of Eq. (8) (see Sec. A 1 for
details). We find that for all energies, the gap renormalization is
less than 5 meV (see Fig. 4), which is small enough compared
to �0 to justify our weak-coupling assumption, but not so
small to categorically rule out some contribution by the boson
to pairing.

For the boson feature, the overall structure of the calculation
carries through but the self-energy 	 becomes momentum
dependent. We find the same sort of DOS feature, in which
“g2” is now interpreted as a certain weighted average of
|g(q)|2 over the Brillouin zone—a lumped parameter in the
spirit of the “α2F (ω)” combination from the strong-coupling
formalism [2]. The singularity in the self-energy still come

50 100 150 200 250 300
ω meV

1

1

2

3

4

5
12 k π,0 ;ω

FIG. 4. (Color online) Maximal gap renormalization due to a
momentum-dependent electron boson coupling for our chosen band
structure and extracted boson frequency and electron boson coupling
strength. We adopt the six-parameter fit from M. R. Norman
et al., [22]: hopping amplitudes to successive neighbors of t1 =
−147.9 meV, t2 = 40.9 meV, t3 = −13.0 meV, t4 = −14.0 meV,
and t5 = 12.8 meV, plus a chemical potential μ = 130.5 meV as in
main text. See Table I of the main text for the values of the fitted
parameters. We have plotted for the particular momentum (π ,0).
Similar magnitudes are obtained for other momenta.
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from the saddle point in the dispersion of the d-wave BCS
quasiparticles, leading to the same qualitative shape (smoothed
step + logarithm) for the boson feature. See Sec. A 2 for
details.

VII. CONCLUSION AND DISCUSSION

We have shown how a weak-coupling point of view can
be used to analyze the high-energy features in the STM data
of BSCCO. The ideal analytic shape of the feature is a linear
combination of a (rounded) logarithmic-kink and a (rounded)
step edge [cf. Eq. (14)]. Our proposed fitting scheme allowed
us to extract (1) the boson’s frequency �0 (2) an average
electron-boson coupling g, and an estimate of the damping
of the d-wave Bogoliubov quasiparticles. Our estimate �0 ≈
56 meV is in agreement with previous estimates from STM
data, which were not fully in agreement with ARPES data
[28–32], (ARPES results suggest �0 ≈ 40 meV.)

Our simplified simple functional form for the boson feature
[Eq. (16)] facilitates the vast number of numerical fits required
by the extreme spatial inhomogeneity of STM spectra in
BSCCO [8–13,22]. However, our theory did not address the
spatial Fourier spectrum of the boson feature [1,14,15], which
might distinguish the true functional form of g(q) and thus
illuminate the nature of the bosonic mode.

Our approach was agnostic as to the pairing mechanism.
If the fitted g respects the weak-coupling assumption—as we
found for a typical spectrum—it can be inferred that the boson
producing the STM feature is not contributing significantly
to the pairing; if the weak-coupling assumption were to be
violated, we can only conclude that the boson perhaps plays
a role in the main mechanism. To resolve that question, one
must see if a strong-coupling Eliashberg calculation predicts
a pairing amplitude �0 comparable to the observed value.
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APPENDIX: EFFECTS OF MOMENTUM DEPENDENT
ELECTRON-PHONON COUPLING

We quickly recall the basic formula for the weak-coupling
self-energy where we have now an explicitly momentum
dependent electron boson coupling g(q) and self-energy
	(k,ω)

	(k; ω) =
∫

B.Z.

d2q
(2π )2

g(q)2

2

{
(ω + �0)I + ε(k − q)τ 3 − �(k − q)τ 1

(ω + �0)2 − E(k − q)2
+

�0
(
I + ε(k−q)

E(k−q)τ 3 − �(k−q)
E(k−q) τ 1

)
[ω − E(k − q)]2 − �2

0

}
. (A1)

As was mentioned in the main text, the two effects of
the momentum dependent electron-boson coupling g(q) are
(1) renormalization of the bare d-wave gap �(k) and (2) the
self-energy will no longer be momentum independent (as in
the main text).

1. Renormalization of the bare d-wave gap

Consistency of the weak-coupling assumption requires
expectedly that the renormalization of the bare d-wave gap
should be at most a nonappreciable fraction of the bare
gap. This is a different consistency check than done in the
main text using λlog. λlog instead measures the smallness of
the diagonal components of the self-energy 	11 and 	22
with respect to that of the diagonal components of the bare
(inverse) Green’s function. To estimate an upper bound for
the gap renormalization, we tried the form for q dependence,
which leads to the maximal renormalization, namely g(q)2 =
g̃2[ 1

2 (cos qx + cos qy)], where we set g̃ to 50 meV, which is
the fitted g plus one error bar on it. We computed the gap
renormalization using Eq. (9), which is

	12(ω) =
∫

B.Z.

d2q
(2π )2

g(q)2

2

{
−�(k − q)

(ω + �0)2 − E(k − q)2

+
�0

( − �(k−q)
E(k−q)

)
[ω − E(k − q)]2 − �2

0

}
(A2)

to account for q dependence of electron-boson coupling in
(the off-diagonal components of) Eq. (9). We find that for all

energies, the gap renormalization is less than 5 meV as shown
in Fig. 4. This is small enough compared to �0 ≈ 40 meV
to justify our weak-coupling assumption, but not so small
to categorically rule out some contribution by the boson to
pairing. A small contribution of the observed boson to the
superconductivity that is dominantly established by the as-yet-
unknown mechanism is not unrealistic phenomenologically.

2. Effect on the boson feature

Firstly, we recall that for the momentum independent
electron boson coupling, the off-diagonal part of the self-
energy is identically zero as mentioned in the main text.
According to our analysis for the diagonal parts, the sin-
gular contributions are equal for 	11 and 	22. They are
of the form (ig2a2m∗/2π ) ln[(ω − Ecoh − �0)m∗/KxKy] +
regular terms. Here, E(k) ≈ Ecoh + (kx − ks)2/2mx − (ky −
π/a)2/2my near its saddle points (here in this expression
assumed to be K∗ = (ks,0); there are four such saddle points),
m∗ ≡ √

mxmy , and Kx , Ky are the cutoffs, representing the
range of (kx,ky) within which this expansion is valid.

When g has k dependence, the singular contributions get
modified to

	11(k,ω) = 	22(k,ω)

=
∑
K∗

ig(k − K∗)2a2m∗

2π
ln

[
(ω − Ecoh − �0)m∗

KxKy

]

(A3)
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	12(k,ω) = 	21(k,ω)∗

=
∑
K∗

ig(k − K∗)2a2m∗

2π
ln

[
(ω − Ecoh − �0)m∗

KxKy

]

× −�(K∗)

E(K∗)
, (A4)

where K∗ = (±ks,0) and (0, ± ,ks) are the saddle points in
E(k) as discussed in the main text.

Now, the off-diagonal part is also nonzero and
[−�(K∗)/E(K∗)] is the additional factor for the off-diagonal

terms, and the value of this factor is either +1 or −1 since
ε(K∗) = 0. 	12(k,ω) has d-wave symmetry as expected.

In the above, we have made the algebraic step that near
the saddle point of the singular denominator of the integrand,
rest of the (regular) terms in the integrand can be replaced
by their zeroth order values. The other terms contribute only
to the regular part of the self-energy (i.e., do not appreciably
contributed to the qualitative shape of the boson feature). From
the above we see that the off-diagonal terms of self-energy will
have same log singularities as diagonal terms.

Going to shape of boson feature in DOS, we get for
singular contribution of the electron-boson coupling to the
DOS:

δn(ω near Ebos + iηbos)

= 1

π
Im

[ ∫
B.Z.

d2k
(2π )2

− 	22(k,ω)
|�(k)|2

(ω2 − E(k)2)2 − 	11(k,ω)
(ω + ε(k))2

(ω2 − E(k)2)2 + 	12(k,ω)
2�(k)(ω + ε(k))

(ω2 − E(k)2)2

]
(A5)

= 1

π
Im

{
ia2m∗

2π
ln

[
(ω − Ecoh − �0)m∗

KxKy

]
(I1(ω) + I2(ω) + I3(ω))

}
, (A6)

where I1, I2, and I3 come from 	11 piece,

I1(ω) = −
∑
K∗

∫
B.Z.

d2k
(2π )2

g(k − K∗)2 (ω + ε(k))2

(ω2 − E(k)2)2 , (A7)

from 	22 piece,

I2(ω) = −
∑
K∗

∫
B.Z.

d2k
(2π )2

g(k − K∗)2 |�(k)|2
(ω2 − E(k)2)2 , (A8)

and from 	12 piece,

I3(ω) =
∑
K∗

∫
B.Z.

d2k
(2π )2

g(k − K∗)2

(−�(K∗)

E(K∗)

)[
2�(k)(ω + ε(k))

(ω2 − E(k)2)2

]
, (A9)

respectively.

As was argued in the main text, the shape of the
feature is due to the logarithmic term and thus is not
qualitatively changed due to the momentum dependence of
the electron-boson coupling. The I1, I2, and I3 integrals
determine the relative contributions of self-energy terms
and they also govern the weighting in the Brillouin zone
averaging of g(k)2. These integrals are reminiscent of the

α2F (ω) term in Eliashberg theory to represent the electron
boson coupling. We thus have shown that our assumption
of momentum independence is not a bad one for extracting
a single number g due to the argument elaborated in this
section. This fitted g is to be interpreted a zone-averaged
electron-boson coupling and is a reasonable estimate of its
magnitude.
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