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Currently, there is much interest in discovering analytically tractable (3 + 1)-dimensional models that describe
interacting fermions with emerging topological properties. Towards that end we present a three-dimensional tight-
binding model of spinless interacting fermions that reproduces, in the low-energy limit, a (3 + 1)-dimensional
Abelian topological quantum field theory called the BF model. By employing a mechanism equivalent to Haldane’s
Chern insulator, we can turn the noninteracting model into a three-dimensional chiral topological insulator. We
then isolate energetically one of the two Fermi points of the lattice model. In the presence of suitable fermionic
interactions, the system, in the continuum limit, is equivalent to a generalized (3 + 1)-dimensional Thirring
model. The low-energy limit of this model is faithfully described by the BF theory. Our approach directly
establishes the presence of (2 + 1)-dimensional BF theory at the boundary of the lattice and it provides a way to
detect the topological order of the model through fermionic density measurements.
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I. INTRODUCTION

The interest in strongly interacting fermionic systems
has recently found new applications related to topological
phases of matter. In the noninteracting case a complete
classification [1,2] of standard topological insulators [3] of
free fermions exists. Unfortunately, it is not possible to
straightforwardly extend these results to the interacting case.
For example, it is not possible to generalize the band theory
approach to topological invariants, so more flexible approaches
have to be invented [4]. The introduction of interactions in
a free-fermion system can either connect different phases of
matter [5] or give access to new ones [6]. Examples of the latter
are the two-dimensional topological Mott insulators [7], where
interactions can open an insulating gap and drive the system to
topological phases not accessible in the noninteracting case.

Much progress in the study of interacting fermionic systems
has already been made in 1 + 1 and 2 + 1 dimensions [8,9]. In
three spatial dimensions the situation is somehow less clear,
though some analysis has been already carried out [6,10].
Complications arise already in the effective description, where
the Chern-Simons theory [11] only holds in even spatial
dimensions with broken time-reversal symmetry. A natural
generalization of Chern-Simons theory is the topological BF
theory, which is well defined in any dimensions [12]. In
two spatial dimensions BF theories can be interpreted as
double Chern-Simons theories, allowing for the description
of time-reversal symmetric topological insulators [13]. BF
theories have also been proposed as effective theories for
describing topological insulators in any dimension [14–18].
Nevertheless, very few interacting fermionic models that give
rise to BF theory are available.

Here we make another step into the exploration of
interaction-driven phases of matter. Our starting point is a
cubic lattice of spinless fermions. For particular values of
the couplings and in the absence of interactions the system
becomes a chiral topological insulator [19]. Our approach
is similar in spirit to Haldane’s Chern insulator [20], which
gives us the ability to arbitrarily tune the asymmetry in

the energy spectrum of the model. This allows us to enter
a regime where the dynamics, associated with one of the
two Dirac fermions present in the model, is adiabatically
eliminated [21,22]. Subsequently, we introduce interactions
between the tight-binding fermions to obtain a generalization
of the (3 + 1)-dimensional massive Thirring model [23] with a
tensorial current. By applying a series of transformations [24]
we show that our system simulates a (3 + 1)-dimensional
topological massive gauge theory [25,26]. The short-distance
behavior of this theory is dominated by a Maxwell term. The
long-distance behavior is characterized by an Abelian BF term
which is topological in nature and it gives mass to the gauge
field. The connection of the fermionic tight-binding model to
the BF theory allows us to directly obtain that the boundary of
the lattice is described by the (2 + 1)-dimensional BF theory.
Finally, we identify analytical expressions for topological
invariants associated with the model and relate them to
physical local fermionic observables. This method allows us
to probe the topological properties of our three-dimensional
system and provides a possible platform for simulating
(3 + 1)-dimensional gauge theories in the laboratory with cold
atoms [27] in optical lattices [28–30].

This article is organized as follows. In Sec. II a free-
fermion tight-binding model is introduced. We focus on the
kinematic sector by analyzing the (gapless) energy spectrum,
the symmetry properties, and the low-energy limit of the
model. We also consider the effect of additional mass terms
which open a gap in the spectrum and allow us to show the
existence of a chiral topological insulating phase. In Sec. III
we leave the free-fermion description by introducing 4-body
interactions in the tight-binding model. We then show that in
the low-energy limit the model is described by bosonic degrees
of freedom and we find the corresponding effective theory
through a duality operation. Interestingly, the effective theory
contains a purely topological term. By proposing opportune
bosonization rules we give a map between observables for the
effective and microscopic theory. We then explore two features
of the theory in its purely topological regime. We find that the
boundary of the model is described by a topological theory.
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Finally, we describe microscopic fermionic observables which
can be used to test the topological features of the model.

II. FREE-FERMION MODEL

Let us begin with an overview of the model. We consider
spinless fermions, positioned on the vertices of a three-
dimensional cubic lattice �, as shown in Fig. 1. The tight-
binding Hamiltonian is given by

H = t
∑
〈i,j〉

χt
ijf

†
i fj + δt

∑
〈i,j〉y

χδt
ij f †

i fj − t̄

2

∑
〈〈〈i,j〉〉〉

χt̄
ijf

†
i fj, (1)

where i,j ∈ � and f
†
i and fi are the creation and annihilation

fermion operators at position i of the lattice. We define planar
unit cells populated by four fermion flavors f ∈ {a,b,c,d}, as
shown in Fig. 1. Let us analyze each term of the Hamiltonian.
The first term, which we call kinematic, has coupling t and
corresponds to nearest-neighbor 〈i,j〉 hopping. The phases χt

are such to create a net π flux through each plaquette. The term
proportional to δt describes a staggering between sites along
the y direction indicated by 〈i,j〉y . The last term corresponds
to tunneling between the next-next-nearest neighboring sites,
〈〈〈i,j〉〉〉, with coupling t̄ . The phase factors χt , χδt , and χt̄ are
defined in Fig. 1. Let us now study this model more explicitly.

The lattice of the unit cells (in blue in Fig. 1) is given by
�̄ = {i ∈ R : i = n1s1 + n2s2 + n3s3}, with ni ∈ N and s1 =
(2,0,0), s2 = (0,2,0), s3 = (1,0,1) written in units of a fixed
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FIG. 1. (Color online) The tight-binding model, where spinless
fermions (yellow) reside on the vertices of a cubic lattice. The
plaquette unit cell has four fermions labeled a,b,c,d . The fermions
tunnel along the lattice via Hamiltonian (1). Tunneling takes place
along the edges of the cubic lattice (black) with coupling t and a phase
that is determined by the black arrows; i.e., χt = i for positive and
χt = −i for negative direction. A purely imaginary staggering term
in the y direction (orange) has coupling δt and a phase χδt with the
same phase convention as χt . Tunneling along the diagonals of the
cube (green) have coupling t̄ and phase χt̄ = it̄e±iφ with φ ∈ [0,π/2],
where the negative (positive) sign is chosen for full (dashed) lines.

reference length. The Hamiltonian in Eq. (1) can be written as

H = H0 + Hm, (2)

where H0 = t
∑

〈i,j〉 χt
ijf

†
i fj is a kinematic Hamiltonian (de-

fined through the black links in Fig. 1) which has a gapless
spectrum. In order to open a gap in the model we introduce
Hm = δt

∑
〈i,j〉y χδt

ij f
†
i fj − t̄

2

∑
〈〈〈i,j〉〉〉 χt̄

ijf
†
i fj which is defined

along the red and green links in Fig. 1. Let us now define the
two terms of the Hamiltonian one by one.

A. The kinematic model

As can be seen by inspecting Eq. (2) and Fig. 1, the
kinematic Hamiltonian of the model can be written as

H0 = it
∑

i

[
(−a†

i bi + b†i di + d†
i ci + c†i ai)

+ (
a
†
i+s1

bi + c
†
i+s1

di + d†
i bi+s2 + a

†
i+s2

ci
)

+ (
b
†
i+s3−s1

ai + b†i ai+s3 + d†ci+s3 + d
†
i+s3−s1

ci
)] + H.c.,

(3)

where i ∈ �̄ is intended and where t is an energy scale. This
Hamiltonian is known [31] to give rise in the continuum limit
to two massless Dirac fermions. Let us now calculate the
spectrum explicitly.

The reciprocal lattice is defined as �̄p = {p ∈ R3 : p =∑
i nipi} where the vectors pi satisfy pi · sj = 2πδij and

are explicitly defined to be p1 = π (1,0, − 1), p2 = π (0,1,0),
p3 = 2π (0,0,1). The Brillouin zone (BZ) is defined as the
elementary cell in the reciprocal lattice BZ = {p ∈ �̄p : p =
pipi} with pi ∈ [0,1). A generic vector in the Brillouin
zone can be written as p ≡ (px,py,pz) = π (p1,p2,2p3 − p1).
The periodic invariance of the phase space allows us to
parametrize the Brillouin zone in a different and somehow
more convenient way. We can in fact define it as BZ =
{p ∈ �̄p : p = (px,py,pz)} with px ∈ [0,π ), py ∈ [0,π ), pz ∈
[0,2π ) where the volume of the Brillouin zone is 2π3. We now
have all the ingredients to define the Fourier transform ar =∑

p∈BZ e−ip·rap and analogously for b,c,d. By introducing the
Fourier-transformed operators in Eq. (3) we find

H0 = it
∑

p

[( − 1 + e2ipx − e−i(pz−px ) − ei(pz+px )
)
a†

pbp

+ (e2ipy − 1)a†
pcp + i(1 − e2ipy )b†pdp

+ ( − 1 + e2ipx − ei(pz+px ) − e−i(pz−px ))c†pdp
] + H.c.

=
∑

p

� ′†H̄ ′
0�

′, (4)

with

� ′ =

⎛
⎜⎝

ap
bp
cp
dp

⎞
⎟⎠ , (5)
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and with the kernel H̄ ′
0 given by

H̄ ′
0 = t

⎛
⎜⎝

0 B C 0
B∗ 0 0 −C

C∗ 0 0 B

0 −C∗ B∗ 0

⎞
⎟⎠ , (6)

where we have defined B = i(−1 + e2ipx − e−i(pz−px ) −
ei(pz+px )) and C = i(e2ipy − 1). From the explicit expression
of H0 and from Fig. 1 we can easily see that the set of vertices
a and d only interacts with the set b and c. This condition
defines a chiral symmetry. In fact, such a symmetry describes
the existence of a bipartition of the lattice “broken” by all
couplings (see Appendix A for more details). The existence
of chiral symmetry allows us to cast the Hamiltonian in an
off-block diagonal form. In our case this is easily seen: after
the definition of a new basis

� =

⎛
⎜⎜⎝

ap

dp

cp

bp

⎞
⎟⎟⎠ , (7)

the Hamiltonian takes the form

H0 = �†H̄0�, (8)

with

H̄0 = t

⎛
⎜⎝

0 0 C B

0 0 B∗ −C∗
C∗ B 0 0
B∗ −C 0 0

⎞
⎟⎠ . (9)

This Hamiltonian has eigenvalues (with degeneracy 2) given
by

E0 = ±t
√

6 − 2 cos 2px − 2 cos 2py + 2 cos 2pz. (10)

The spectrum has then two double-degenerate bands and it
becomes gapless at two Fermi points where the two bands
touch each other. The two independent Fermi points are
given by

P+ =
(

0,0,
π

2

)
, P− =

(
0,0,

π

2
+ π

)
. (11)

In order to study the behavior around the Fermi points we now
define the matrices

αx =

⎛
⎜⎝

0 0 0 −1
0 0 −1 0
0 −1 0 0

−1 0 0 0

⎞
⎟⎠ ,

αy =

⎛
⎜⎝

0 0 −1 0
0 0 0 1

−1 0 0 0
0 1 0 0

⎞
⎟⎠ , (12)

αz =

⎛
⎜⎝

0 0 0 +i

0 0 −i 0
0 i 0 0

−i 0 0 0

⎞
⎟⎠ ,

which satisfy the algebra

{αi,αj } = 2δij (13)

We now introduce coordinates around the Fermi points
�p = �P± + (kx,ky,kz) for small kx , ky , and kz, so that the
Hamiltonian around the Fermi points looks like

H̄0
± = c(kxαx + kyαy ± kzαz), (14)

where c = 2t/�. The Hamiltonians in Eq. (14) represent two
massless Dirac fermions.

1. Symmetries

The symmetries of the kinematic model can be studied
by analyzing the Hamiltonian kernel (9). In particular we
are interested in checking the behavior of the model under
time-reversal, particle-hole, and chiral symmetry. For an
introduction to the definitions of these symmetries we refer
to Appendix A. In the table below we express the conditions
on the Hamiltonian kernel under which these symmetries are
satisfied:

Symmetry Condition

Time-Reversal H̄ (p) = H̄ ∗(−p)
Particle-Hole H̄ (p) = −H̄ ∗(−p)

Chiral ∃C̄s : C̄
†
s = C̄−1

s : C̄sH̄ (p)C̄†
s = −H̄ (p)

Inspection of the Hamiltonian kernel given in (9) shows us
that H̄ ∗

0 (−p) = −H̄0(p). This condition means that the system
breaks time-reversal symmetry and preserves particle-hole
symmetry. We also have an explicit chiral symmetry since
the Hamiltonian anticommutes with the matrix C̄s defined as

C̄s =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎠ , (15)

which is Hermitian and unitary, as expected from the block
structure of Hamiltonian (9).

B. Gapped model

The kinematic model introduced in the previous section
is gapless. We now introduce a gap term. In this way the
low-energy physics of the model is described by a massive
Dirac fermion. Such a mass term has to anticommute with all
the α matrices [Eq. (12)], square to the identity, and we also
require it to satisfy chiral symmetry. As can be checked, the
mass term has to be proportional to β = C̄sα

xαyαz. In the
chosen representation, we have

β =

⎛
⎜⎝

0 0 i 0
0 0 0 i

−i 0 0 0
0 −i 0 0

⎞
⎟⎠ . (16)

The implementation of such a mass term requires the intro-
duction of additional couplings between the sites a and c and
between b and d [as can be seen by inspecting the explicit
form of β in the basis given by Eq. (7)]. We introduce a
staggering of the a,c and b,d couplings along the y axis and
a next-next-nearest neighbor (NNN) interactions as shown
in Fig. 1. The staggering NNN interactions give an equal
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(opposite) mass term to the two Dirac fermions defined in
Eq. (17). Explicitly we define

Hm =
∑

r

iδta†
rcr + iδtd†

rbr

+ t̄

2

∑
r

ie−iφa†
rcr+s3 + ieiφa†

rcr−s3

+ t̄

2

∑
r

ie−iφd†
rbr+s3 + ieiφd†

rbr−s3 + H.c., (17)

where we have introduced different energy scales δt and t̄ for
the staggering and NNN term, respectively. We also introduced
a phase φ associated with the NNN couplings. In momentum
space this Hamiltonian becomes

Hm =
∑

p

i[δt + t̄ cos (pz + px + φ)]a†
pcp

+ i[δt + t̄ cos (pz + px + φ)]d†
pbp + H.c. (18)

In the basis of Eq. (7) the kernel in momentum space of the
interaction Hamiltonian H1 reads

H̄m = [δt + t̄ cos (pz + px + φ)]β. (19)

This term is proportional to the matrix β so it can be interpreted
as a fermion mass as discussed above.

Now, we first notice that, when t̄ 	= 0 and φ 	= 0,π

the particle-hole symmetry is broken: H̄ ∗
m(−k) 	= −H̄m(k).

Incidentally, it is important to notice that by adding these in-
teractions we did not restore time-reversal symmetry (already
broken in the kinematic model) in the full model.

The results of this section imply that the full Hamiltonian
H = H0 + Hm breaks time-reversal and particle-hole symme-
try while it is symmetric under chiral symmetry. We also note
that the joint presence of staggering and NNN interactions
allows us to arbitrarily tune the fermion masses at the two
Fermi points (Fig. 2). This is easily seen by evaluating Eq. (19)
at the two Fermi points to get two independent masses. More
precisely, let us define

m+c2 = δt + t̄ cos

(
π

2
+ φ

)
,

(20)

m−c2 = δt + t̄ cos

(
3π

2
+ φ

)
,

which, for the choice φ = π
2 , becomes

m+c2 = δt − t̄ , m−c2 = δt + t̄ . (21)

With these definitions we get the expression for the full
Hamiltonian around the two Fermi points [to be compared
with Eq. (14)]:

H±(k) = �̄±(cα · k + m±c2β)�±, (22)

where α = {αx,αy,αz} and k = {kx,ky,kz}. Notice that when
δt = 0 or φ = 0,π such an arbitrary tuning would not be
possible and we would get m+ = m−.

We end up this section with the bookkeeping explicit
expression for the total Hamiltonian of the model of Eq. (1).
From Eqs. (9) and (19) and with the definitions (12), (16), and

FIG. 2. (Color online) Energy bands for the full model described
in Eq. (1) as a function of the momentum variable pz for fixed px =
py = 0, in arbitrary units. The parameters δt and t̄ are tuned to open
a gap. The model is in fact a description of a chiral topological
insulator. The dashed line represents the Fermi energy and highlights
the insulating properties of the material.

the ones below Eq. (6) the kernel H̄ of the total Hamiltonian
reads

H̄ = H̄0 + H̄m

= t[sin 2px − sin (px + pz) − sin (px − pz)]α
x

+ t sin 2pyα
y + t[cos 2px − cos (px + pz)

− cos (px − pz) − 1]αz + [t cos 2py − t + δt

+ t̄ cos (px + pz + φ)]β. (23)

The spectrum of the total Hamiltonian has two double-
degenerate bands

E = ±
√

(4 − 2 cos 2px + 2 cos 2pz + |M|2), (24)

where M = [e2ipy − 1 + δt + t cos (px + py + φ)].

C. Chiral topological insulator

Symmetry-protected phases of matter for models described
by a free-fermion model are completely classified [1]. This
classification characterizes phases of matter within 10 different
symmetry classes determined by the symmetry properties
under time-reversal, particle-hole, and chiral symmetry. More
specifically, one starts by continuously deforming the Hamil-
tonian H that describes a free-fermion model to a “reference”
Hamiltonian Q [32]. This Hamiltonian has all occupied
(empty) bands “flatten” with energy +1 (−1) in the whole
Brillouin zone. This can be done by defining the operator
Q(k) as

Q(k) = 2P (k) − In+m, (25)

with

P (k) =
m∑

i=1

|ui(k)〉 〈ui(k)| , (26)
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where ui(k), i = 1, . . . ,m, are the eigenvalues of the occupied
bands for the total Hamiltonian and m (n) is the number of
occupied (empty) bands. The operator Q is such that Q† = Q,
Q2 = I, and tr(Q) = m − n. This operator has eigenvalues
+1 and −1 corresponding to occupied and empty bands. Each
of the 10 symmetry classes mentioned above determines a
manifold B such that Q : BZ → B. Within each symmetry
class (and hence for each manifold B), we want to classify
the phases of matter described by the reference Hamiltonians
Q. Two Hamiltonians belong to the same phase if they can
be continuously deformed one into the other without encoun-
tering a critical point. As shown in [1] one can classify such
phases through the dth homotopy group πd of the manifold B
where d is the spatial dimension of the model. For example,
for the symmetry class A (all symmetries broken), we have
that B is isomorphic to the Grassmannian: B � Gn,n+m(C) ≡
U (n + m)/[U (n) × U (m)]. In fact, the collection of all energy
eigenvectors describes an element of U (n + m) modulo the
“gauge” symmetry relabeling the eigenvectors corresponding
to occupied and empty bands. Now, for two spatial dimensions
we have an infinite number of different phases as implied
by π2[Gn,n+m(C)] = Z (specifying, for example, the number
of edge states for the quantum Hall effect, which in fact,
being a Chern insulator, belongs to the symmetry class
A). In three spatial dimensions we have π3[Gn,n+m(C)] = e

(where e represents the group trivial element) so that only the
trivial phase is allowed. Such models can become nontrivial
when more symmetries are considered. Specifically, we are
interested in the symmetry class AIII where only chiral
symmetry is preserved. In this case n = m (positive and energy
eigenstates come in pairs; see Appendix A), and one can write
Q in the following block form [1]:

Q(p) =
(

0 q(p)
q†(p) 0

)
, (27)

with q(p) ∈ U (n). Our model is then described by the
function q : BZ → B where B � U (n). Contrary to the class
A example, we now find that π3[U (n)] = Z allowing for
nontrivial phases in three spatial dimensions. In fact, we can
define [1] a winding number ν (associated with the map q)
labeling all the possible phases as

ν = 1

24π3

∫
d3kεabctr[(q−1∂aq)(q−1∂bq)(q−1∂cq)], (28)

where a,b,c = 1,2,3.

1. Phase diagram

We now want to see under which conditions on the
parameters of the full Hamiltonian of our model [Eq. (1)]
we can get a nonzero winding number [Eq. (28)]. Let us first
review what we learned so far. First of all, from the results
of Sec. II B we know that nontrivial topological properties
are forbidden for δt = 0 or φ = {0,π}. In fact, in such a
regime, the particle-hole symmetry is not broken leading to
the impossibility to define a winding number as shown in [1].
Second, we know that the conditions δt = t̄ cos (π

2 + φ) and
δt = t̄ cos ( 3π

2 + φ) imply [see Eq. (20)] that either m+ = 0
or m− = 0 meaning that the system is critical. Then, in these

FIG. 3. (Color online) Phase diagram of Hamiltonian (1) as a
function of the couplings δt and t̄ parametrized by the phase φ. The
gapped regions with nontrivial winding number ν = ±1 (yellow) are
separated by phase transition (blue lines) from the topologically trivial
regions with ν = 0 (white). The winding number, ν, is correlated
with the sign of m+ · m−, in the same way as in Haldane’s model.
The critical lines for φ = π/2 (dashed blue) and for generic value of
φ ∈ [0,π/2] (solid blue) are depicted.

cases we expect the winding number in Eq. (28) to be not well
defined.

Let us now draw the phase diagram of the model in the
parameter space {δt,t̄} (see Fig. 3). A gapless system is
described by imposing the equations m+ = 0 and m− = 0 [see
Eq. (20)]. Pictorially, these equations are two straight lines in
the δt,t̄ plane, parametrized by the phase φ. They divide the
parameter space δt,t̄ in four disconnected regions. We studied
the behavior of the winding number in these four regions and
we found that two of them are in fact nontrivial with ν = ±1
(see Fig. 3). When the parameter φ tends to 0 the two nontrivial
phases disappear as the two critical lines merge together. This
result is consistent with the fact that φ = 0 corresponds to a
system where particle-hole symmetry is not broken [see the
analysis following Eq. (19)] which is a sufficient condition
for the absence of topological order [1]. The nontriviality of
the winding number Eq. (28) (for a certain parameter regime)
shows that the system is a chiral topological insulator.

To summarize, the introduction of NNN neighbor inter-
actions (t̄ 	= 0) breaks particle-hole symmetry (provided that
φ 	= 0) and gives an opposite contribution to the masses in
Eq. (20). On the contrary, the staggered interactions (δt 	= 0)
give an equal contribution to the fermion masses. As a
consequence, the simultaneous presence of both interactions
allows us to arbitrarily tune the masses m±.

Intuitively, this model presents several formal analogies
with the Haldane model [20] where spinless electrons hop
on the vertices of a honeycomb lattice. Such a model has a
kinematic term which preserves time-reversal and inversion
symmetries (and breaks particle-hole symmetry) and that
gives rise to two gapless Fermi points. In addition, next-
nearest neighbor interactions (mimicking a nested magnetic
field) and a staggered chemical potential break, respectively,
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FIG. 4. (Color online) Adiabatic elimination of a Fermi point.
The energy spectrum (in arbitrary units) of the model described by the
Hamiltonian in Eq. (1) (as a function of the momentum variable pz for
fixed px = py = 0) allows us to arbitrarily tune the masses around
the two Fermi points [see Eq. (20)]. In particular, by opportunely
choosing the parameters δt and t̄ , it is possible to work in a regime
where m− � m+. If we suppose not to have any perturbation with
energy scale bigger than |m−|, then the low-energy physics of the
system is completely described around the P+ Fermi point in the
Brillouin zone.

time-reversal and inversion symmetry. The breaking of each
symmetry allows for a nonzero energy gap to appear. More
precisely, the fermions at the two Fermi points acquire the same
(opposite) mass due to the breaking of time-reversal (inversion)
symmetry. In this sense, our NNN neighbor and staggering
terms mimic, respectively, the staggered magnetic field and
the chemical potential of the Haldane model. In the light of the
classification given in [1], the key feature to build a nontrivial
topological phase on top of our (Haldane) kinematic theory is
to break the particle-hole (time-reversal) symmetry. Despite
these similarities, the Haldane model breaks all symmetries
(it describes the physics of the quantum Hall effect without
magnetic field) while we have to pay extra attention to preserve
chiral symmetry in order to protect the topological phase in
3 + 1 dimensions.

III. INTERACTING-FERMIONS MODEL

We now turn to the case of interacting fermions. The
starting point is the effective theory described in Eq. (22)
with φ = π/2. This model has enough flexibility to allow
us to arbitrarily tune the masses around the two Fermi points
shown in Fig. 4. Following the approach in [21] we can define a
hierarchy in the energy scales, given by |m+c2|  |m−c2|, and
adiabatically eliminate the physics around the second Fermi
point, P−. We now introduce four-body fermionic interactions
with coupling U that is small compared to the energy scale
of P−, i.e.,

√
(�c)3/U  m−c2, and comparable to |m+c2|.

These interactions are particularly designed so that they give
rise to self-interacting current-current terms in the single

Dirac fermion description corresponding to P+. The resulting
effective physics is encoded in the Hamiltonian

H(p) = �†(cα · p + mc2β)� + g2

2m
(2JμνJ

μν − JμJμ),

(29)

where m ≡ m+ = (δt − t̄)/c2 and g2 = 2mU . There are
two types of currents given by Jμ = �̄γ μ� and Jμν =
�̄γ5[γ μ,γ ν]�, for �̄ = �†γ 0 with the gamma matrices γ μ

defined as γ = βα, γ 0 = β, and γ 5 = iγ 0γ 1γ 2γ 3. A dimen-
sional analysis shows that the four-component Dirac field has
dimensions [�] = (Length)−3/2 compatible with the units of
the Hamiltonian density above. This fixes the dimensions of
the current-current interaction terms [to (Length)−6] which, in
fact, implies that [U ] = Energy · (Length)3. The Hamiltonian
in Eq. (29) is the tensorial generalization of the Thirring
model [23] in 3 + 1 dimensions. This generalization of the
Thirring model is not renormalizable (at least by means of
perturbative methods). It is analogous in spirit to the Nambu-
Jona-Lasinio model [33] and the Fermi effective model [34]
for weak interactions which involves the non-renormalizable
pointlike interaction between two currents. The energy scale
associated with the Thirring coupling U is given by Ũ =√

(�c)3

U
(which is the only energy scale we can define from

�, c and U ). This gives a dimensional analysis justification to

the adiabaticity condition Ũ =
√

(�c)3

U
 m−c2 given above

which allows us to restrict the physics around one Fermi point.
From now on we will use units where c = � = 1.

A. Microscopic prescription

We now want to find the microscopic description for
the Hamiltonian in Eq. (29). To achieve this, we proceed
backwards and substitute in Jμ and Jμν the expressions for the
spinor � = (ap dp cp bp)T and the gamma matrices as given
by γ0 = β and γi = βαi . After some tedious calculations one
gets

JμJμ = (�̄γμ�)(�̄γ μ�)

= −2(a†a + b†b + c†c + d†d)

+ 2(a†a)(d†d) + 4(a†a)(c†c) + 6(c†c)(d†d)

+ 6(a†a)(b†b) + 4(b†b)(d†d) + 2(c†c)(b†b)

+ 6a†b†cd + 6c†d†ab − 2adb†c† − 2bca†d† (30)

and

JμνJ
μν = (�̄γ 5[γμ,γν]�)(�̄γ 5[γ μ,γ ν]�)

= 48[(a†a)(b†b) + (c†c)(d†d)

− (a†a)(d†d) − (b†b)(c†c)]

− 48[a†b†cd + b†c†ad + c†d†ab + a†d†bc]. (31)

The terms involving only two fermions can be omitted since
they give a contribution to the Hamiltonian kernel which is
proportional to the identity and can be seen as a constant
chemical potential on every site of the lattice. The other terms
are either interactions between two-site populations or between
four sites.
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This shows the explicit form of the microscopic interaction
needed to simulate the tensorial Thirring model at low energies
given by Eq. (29). We note that some of these interactions are
attractive while others are repulsive.

B. Bosonization

Throughout the rest of the section we assume that g 	= 0 in
Eq. (29). The Thirring model describes relativistic fermions
with self-interactions. In order to get a more accessible theory
it is possible to linearize the interaction by introducing new
degrees of freedom. Following this approach, we now show
how to describe the low-energy physics of the tensorial
Thirring model with a pure bosonic theory.

As can be seen from Eq. (29), the effective theory of our
model is described, in Euclidean space, by the action

ZTTh =
∫

D[�̄]D[�]e−SD−SJ , (32)

where the Dirac action, SD = ∫
d4x�̄(/∂ − m)�, and the

action for the currents, SJ = ∫
d4x

g2

2m
(2JμνJ

μν − JμJμ), are
given in Euclidean space. Clearly, SJ involves products of
four spinors. To analytically treat this model we linearize the
action in terms of the currents by introducing the Hubbard-
Stratonovich transformation [35]. Indeed, we employ the
bosonic degrees of freedom F ≡ (aμ,bμν) (in terms of a
4-vector field aμ and an antisymmetric tensor field bμν) to
write

e−SJ =
∫

D[F]e
∫

d4x 1
2 ( 1

2 bμνb
μν−aμaμ)+ g√

m
(bμνJ

μν−aμJμ)
. (33)

Following [35] we can integrate out the Dirac fermions to find
an effective bosonic theory

ZTTh =
∫

D[a]D[b]e−Seff+ 1
2

∫
d4x( 1

2 bμνb
μν−aμaμ), (34)

where the effective action is defined as

Seff[aμ,bμν] = − log det

(
/∂ − m + g√

m
/F
)

, (35)

where /∂ = γ μ∂μ and /F = γ μaμ + γ 5[γ μ,γ ν]bμν . Up to
terms of order ∂/m (p/m in momentum space) [35] this
effective action can be written as

Seff[aμ,bμν] = −8
g2

(4π )2

∫
d4xεμνλσ aμ∂νbλσ , (36)

where εμνλσ is the Levi-Civita symbol. The correction terms
are insignificant in the long-wavelength/low-energy regime
we are interested in. By neglecting the irrelevant constants,
the partition function for the final theory can be written as

Z̃ =
∫

D[F]e− ∫
d4x 1

2 (aμaμ− 1
2 bμνb

μν )+ g2

2 εμνραaμ∂νbρα . (37)

We note that the fields a and b have dimension (Length)−2.
We could be tempted to consider the field a as a sort of
electromagnetic field and b as a sort of curvature field.
Unfortunately, such an interpretation is not obvious at this
stage. In fact, the theory is not invariant under the gaugelike
transformation [36]

aμ → aμ + ∂μχ, bμν → bμν + ∂μξν − ∂νξμ, (38)

where χ and ξμ are a scalar and a vector field, respectively.
In fact, the kinetic terms aμaμ and bμνb

μν explicitly break
invariance under these transformations (as, for example, the
vector potential appears explicitly). Hence, the partition func-
tion Z̃ describes a massive spin-1 theory that does not allow
easy interpretations. We would like to recast this theory in a
more suitable form given in terms of a “vector potential” and
a “curvature” field, which naturally leads to the next section’s
topic. This process is analogous to the (2 + 1)-dimensional
one where a duality between a self-dual free massive field
theory and a topologically massive theory [37] has been
demonstrated.

As a final note, it is important to stress that it is not possible
to apply the bosonization procedure proposed here to free
Dirac fermions, i.e., without the presence of the current-current
interactions in Eq. (29). This means that we cannot tune
the parameter g2 to zero without encountering nonanalytical
points, which justifies the presence of the factor 1/g2 in
Eq. (40). Physically, the naive replacement g = 0 into the
initial [Eq. (29)] and final [Eq. (37)] theories would lead to a
mapping between free fermionic degrees of freedom and free
bosonic ones, which is clearly forbidden by the statistics of
the fields involved. The presented “transmutation” of degrees
of freedom holds only for interacting theories (g 	= 0), as for
example happens in superconductivity where the interaction
between electrons in a metal leads to a physics described by
bosonic degrees of freedom in terms of Cooper pairs [38].

C. Duality

In order to recast the theory defined in Eq. (37) in a
more suitable form, one can employ a BFT quantization
procedure [39,40] to show the equivalence of the massive
spin-1 theory,

L = −1

4
bμνb

μν + 1

2
aμaμ + g2

2
εμνλσ bμν∂λaσ , (39)

to one involving an “electromagnetic” field Aμ and a so-called
Kalb-Ramond field Bμν [41]. The two theories can in fact
be embedded in the same enlarged theory from which they
descend as different choices of gauge fixing [42,43]. The
resulting theory, in the Lorentzian signature, is described by
the Cremmer-Scherk Lagrangian [25]

L = −1

4
FμνF

μν + 1

12
HμνλH

μνλ + 1

4g2
εμνλσBμνF λσ ,

(40)

where Fμν = ∂μAν − ∂νAμ and Hμνλ = ∂μBνλ + ∂νBλμ +
∂λBμν . The field A is an effective electromagnetic field [with
dimension (Length)−1] while the field B [with dimension
(Length)−1] is the so-called Kalb-Ramond field. As above,
we can define the symmetry transformation

Aμ → Aμ + ∂μχ, Bμν → Bμν + ∂μξν − ∂νξμ. (41)

Contrary to the theory described in Eq. (37), this one is
explicitly invariant under this “gauge” transformation.

Let us now take some time to analyze the terms appearing
in the action in Eq. (40). The first two kinematic terms are
geometric (the metric appears explicitly) while the last one
has a topological nature and it is the standard BF term.
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This theory is a topological massive gauge theory in 3+1
dimensions [25,26] and represents the natural Abelian general-
ization of Chern-Simons-Maxwell theory in 2 + 1 dimensions
as the Chern-Simons theory cannot exist in 3+1 dimensions.
This way of generating mass for the electromagnetic field
(through a topological interaction) is an alternative to the Higgs
mechanism and can in fact be connected to superconducting
phenomena [44,45]. The theory is renormalizable [26] and
explicitly gauge invariant in the bulk.

D. Bosonization rules

The possibility to map the tensorial Thirring model to a
massive gauge theory does not come as a surprise. In fact,
in the (1 + 1)-dimensional case the massive Thirring model
is equivalent to the sine-Gordon massive scalar theory [46],
while in (2 + 1) dimensions is equivalent to the Maxwell-
Chern-Simons theory [24], where the Maxwell field acquire
a mass through a topological mechanism. Motivated by
the analogies with the low-dimensional cases we propose
the natural generalization of the bosonization rules to the
three-dimensional case. These rules connect the degrees of
freedom of the equivalent fermionic and bosonic theories (up
to multiplicative factors) in the following way:

Dimensions Theory Bosonization Rules

1 + 1 sine-Gordon Jμ → εμν∂νφ

2 + 1 Maxwell-CS Jμ → εμνλ∂νAλ

3 + 1 Cremmer-Scherk
{
Jμ → εμνλγ ∂νBλγ

Jμν → εμνλγ ∂λAγ

Let us take a little more time to emphasize the analogies with
the lower dimensional cases and get some more intuitions
on the bosonization procedure. We can note that the Thirring
model is always equivalent to some massive theory. In the
(1 + 1)-dimensional case the equivalent theory is a sine-
Gordon massive scalar theory. The equivalence with the
Thirring model has been shown by Coleman [46] (see also [47]
for extension of the proof to the finite-temperature case). In
(2 + 1) dimensions the Thirring model has been proven by
Fradkin and Schaposnik to be equivalent to a Maxwell-Chern-
Simons theory [24]. In this last case, the proof relies on a
dualization procedure first showed by Deser and Jackiw [37]
and the equivalent theory corresponds to a massive gauge
theory where the mass of the photon is given thanks to the
interaction with a topological Chern-Simons term (which, as
already mentioned, is an alternative to the Higgs procedure to
give mass to a gauge theory). In 3+1 dimensions the tensorial
Thirring model we are studying is going to be equivalent to
a so-called Cremmer-Scherk model [25] where a Maxwell
theory is coupled to a Kalb-Ramond field [41] thanks to a BF
term. This is, in analogy with the (2 + 1)-dimensional case, a
massive gauge theory where the mass comes from the topolog-
ical interaction with the Kalb-Ramond field. Note that, in this
case, we need two fields since we are considering two different
types of current-current interactions in the fermionic model.
These two fields are necessary to generate mass for the gauge
theory in a topological fashion [48]. We also note that similar
bosonization rules in d + 1 dimensions were proposed in [49].

E. Pure topological regime

From now on we work in a regime where the contribution
of the topological BF term in (40) is dominant; i.e., we want to
work with energy scales much smaller than 1/g2. Intuitively,
this suggests that the Maxwell and Kalb-Ramond field have
small kinetic energy compared to their (topologically) acquired
mass. In such a regime we are sufficiently close to the ground
state and the important contributions to the effective theory
come from the topological BF term

SBF = 1

4g2

∫
M

d4x εμνλσBμνF λσ , (42)

whereM is the spacetime manifold associated with our theory.

1. Boundary behavior

We now consider the behavior of our lattice model at its
physical boundary. Several approaches are possible based, for
example, on the Symanzik method [50] or on gauge invariance
analysis [14,51]. Focusing on the latter at the bosonic level a BF
theory defined on a noncompact space, M, is not manifestly
gauge invariant due to contributions from the boundary, ∂M.
Restoring gauge invariance generates a (2 + 1)-dimensional
BF theory on the boundary, while leaving the bulk theory
unchanged [14,51]. Here, we show that the bosonization rules
allow us to infer exactly the same theory on the boundary of the
(3 + 1)-dimensional fermionic lattice model (for more details
we refer to Appendix B).

We start by introducing a minimal coupling between the
tight-binding fermions and a pure gauge U (1) field Aφ

μ =
∂μφ parametrized by φ. This coupling extends (42), in the
continuum limit, by

Sφ =
∫
M

d4x Jμ∂μφ, (43)

but it leaves the physics of the model unchanged. We can
now employ the bosonization rule Jμ → εμνλγ ∂νBλγ , together
with Stokes’ theorem and an integration by parts, to show that

Sϕ =
∫

∂M
d3x φ εμνλ∂

μBλν, (44)

where here (and throughout the rest of the paper for integra-
tions on the boundary) the indices run through the coordinates
that parametrize ∂M. The field φ can now be interpreted as a
Lagrange multiplier enforcing the condition dB = 0 on ∂M.
This implies that, locally, Bμν = ∂μην − ∂νημ, which conve-
niently implies Sϕ = 0. This means that the possibility to add
Sϕ to our action is equivalent to the constraint dB = 0 on ∂M.
We are now ready to find the effective action on the boundary.
In fact, we can rewrite the right-hand side of Eq. (42) as

1

4g2

( ∫
∂M

d3x εμνλB
μνAλ −

∫
M

d4x εμνλ∂
μBνλAσ

)
, (45)

which, by restriction on the boundary, implies the following
form for the theory on the boundary:

S∂M = 1

4g2

∫
∂M

d3x εμνλ ημ∂νAλ. (46)
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This is indeed a (2 + 1)-dimensional Abelian BF theory. It
is equivalent to a double Chern-Simons theory that describes
time-reversal symmetric physics [52] on the boundary.

2. Physical observables

We now want to identify physical observables associated
with the purely topological part, SBF. Gauge-invariant ob-
servables of the (3 + 1)-dimensional BF theory are given by
expectation values of Wilson surface operators [53,54], which
are a generalization of the (2 + 1)-dimensional Wilson loop
operators. These observables

WB = 〈
e

i

g2

∫
∂�

B 〉
(47)

are defined for any two-dimensional boundary ∂� of a
three-dimensional volume �, where B is the Kalb-Ramond
field [41]. The corresponding fermionic observables are given
by

W� = 〈
eiq

∫
�

d3x �†�
〉
, (48)

where q is a generic charge of the (stringlike) excitations
associated with the field B. The correspondence is easily
proven by an opportunely manipulation of the Noether charge
Q = ∫

�
J 0d3x (where J 0 = q�†�). The joint use of the

bosonization rule J 0 = 1
g2 ε

ijk0∂νBij (where the constant g2

has been introduced for dimensional reasons) and Stokes’
theorem immediately leads to Q = 1

g2

∫
∂�

B. This proves

that q
∫
�

d3x �†� = 1
g2

∫
∂�

B (where any proportionality
constant implicit in the definition of the bosonization rules
is absorbed inside the charge q) or, in other words,

WB = W�. (49)

For more details of this proof we refer to Appendix C 1. It is
a well known fact that WB = 1, identically [12]. Indeed, one
can explicitly confirm (see Appendix C 2) that

1

g2

∫
∂�

B = 2πn, n ∈ Z, (50)

for all permissible configurations of B. This implies that
the charge q

∫
�

d3x �†� inside a volume � takes discrete
values. While this condition gives, as expected, trivial values
for the observable W� it can be employed to distinguish
between trivial (product) states and topologically ordered
ones [21]. Indeed, product states correspond to a fixed value
of n for a given �, while the highly correlated ones can give
different values at each measurement. These values of n are
experimentally accessible by measuring fermion populations
on the vertices of the tight-binding model that are inside �.

IV. CONCLUSIONS

In summary, we presented a tight-binding model of spinless
fermions that has a variety of behaviors. In the absence
of interactions it generalizes the methodology employed
in the (2 + 1)-dimensional Haldane model to the (3 + 1)-
dimensional case giving a chiral topological insulator. In the
presence of interactions it gives rise, in the continuum limit, to
the (3 + 1)-dimensional BF theory accompanied by a Maxwell
term. Our model can be tuned to be in the topological (BF) or

the nontopological (Maxwell) regimes, thus being of relevance
to both condensed matter and high-energy physics. The
versatile method we presented for detecting the topological
character of the model can become a powerful diagnostic
tool for experimentally probing the topological properties of
three-dimensional systems.
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APPENDIX A: DISCRETE SYMMETRIES

In this Appendix we briefly analyze the definitions of
the three symmetries used to study the model given in
Eq. (1). Following the main text, throughout this Appendix we
restrict ourselves to translationally invariant spinless fermionic
systems.

1. Time reversal

Time-reversal transformations are associated with the inver-
sion of time. From a physical point of view we want to
address whether the system distinguishes a time direction or
not. More precisely, given a certain Hamiltonian H and a
solution �(t) of the Schrödinger equation H�(t) = i∂t�(t)
we want to know whether a solution � ′(−t) of the equation
H� ′(−t) = i∂−t�

′(−t) also exists. We can then define the
(antiunitary) time-reversal operator T by its action on �(t) as
T �(t) = � ′(−t).

Formally, we define a system to be time-reversal symmetric
if such an operator T exists such that HT �(t) = i∂−t T �(t),
where �(t) is known to be a solution of the Schrödinger
equation H�(t) = i∂t�(t). This condition is equivalent to
imposing T −1HT �(t) = T −1iT ∂−t�(t) which is satisfied if

T −1iT = −i, T −1HT = H. (A1)

The first condition tells us that the operator T must be
antiunitary while the second can be viewed as a restriction
on the Hamiltonian. Given these two conditions, the existence
of a solution �(t) of the Schrödinger equation H�(t) =
i∂t�(t) implies that T −1HT �(t) = T −1iT ∂t�(t) which in
turn implies HT �(t) = i∂−t�(t); that is T �(t) satisfies the
Schrödinger equation with reversed time.

The operator T can be written as T = TUK where K is
the complex conjugation operator and TU a generic unitary
operator. From this, it is easy to show that

T T † = I, T T = T , (A2)

since we have T T † = TUKKT
†
U = I and T T = KT T

U =
KT T

U KK = TUK = T .
In the case of spinless fermions, the operator TU can be cho-

sen to be the identity, so that T −1f
†
r T = f

†
r for every generic

fermion operator fr labeled by its position r. The action on the
Fourier-transformed fermion operator ap is easily found to be
T −1apT = ∑

r T −1eip·rT ar = ∑
r e−ip·rar = a−p. Basically,

the time-reversal operator maps a particle with momentum
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p to a particle with momentum −p. The time-reversal
action on the Hamiltonian kernel H̄ (p) in momentum space
follows from T −1HT = ∑

p f
†
−pH̄

∗(p)f−p, where ∗ denotes
the complex conjugation which is introduced accordingly
to the first of Eqs. (A1). The previous identity shows that
time-reversal induces an action T̄ on the Hamiltonian kernel
given by T̄ H̄ (p)T̄ † = H̄ ∗(−p) (with T̄ unitary such that
T̄ = T̄ †). Invariance under time reversal is then equivalent to
the request

H̄ ∗(−p) = H̄ (p). (A3)

Note that the time-reversal operator for spinless particles is
just complex conjugation so that T 2 = I.

2. Particle-hole

In this subsection we define particle-hole symmetry [55]
following the analysis given in [57]. We start by defining a (uni-
tary) charge conjugation transformation. This transformation
does not involve any action on spatial or temporal coordinates.
Under the action of C the operator that annihilates a particle f

transforms in the operator that annihilates an antiparticle f ′ as
C−1fpC = f ′

p. Incidentally, from this definition and from the
linearity of the operator we can derive the action in real space:
C−1frC = C−1 ∑

p eip·rfpC = ∑
r eip·rf ′

p = f ′
r . In our case

we identify the antiparticle with a hole with momentum p by
imposing that f ′

p = f
†
−p (the creation of a hole of momentum

p is equivalent to destroying a particle of momentum −p),
to finally get C−1f T

p C = f
†
−p, where the transpose operator

has been introduced to match the notation used so far where
creation (annihilation) operators are accommodated in a row
(column) vector.

The action on the Hamiltonian kernel is given by :C−1HC

:=: C−1 ∑
p f

†
p H̄ (p)fpC := ∑

p : f T
−pC

−1H̄ (p)Cf
†T
−p :=

−∑
p f

†
−pH̄ (p)T f−p, where : : indicates the normal ordering

operator (which imposes creation operators to be on the left of
annihilation ones) and where the minus sign takes into account
the fermionic statistics. The above identity shows that charge
conjugation induces an action C̄ on the Hamiltonian kernel
given by C̄H̄ (p)C̄† = −H̄ ∗(−p) (with C̄ unitary and such
that C̄ = C̄†).

A system is defined to be particle-hole symmetric if
: C−1HC :=: H :, which implies

H̄ ∗(−p) = −H̄ (p), (A4)

as one can see by comparing the expression given above
for : C−1HC : and the expression for the Hamiltonian in
momentum space (and taking into account that the Hamil-
tonian is Hermitian). We also note that the charge conjugation
operator for spinless particles is just complex conjugation so
that C2 = I. This condition, together with the unitarity one,
implies

CC† = I, C† = C. (A5)

3. Chiral symmetry

We define a system to have chiral symmetry if there exists
a unitary matrix C̄s that anticommutes with the Hamiltonian

kernel in momentum space [1,32]

C̄sH̄ (p) = −H̄ (p)C̄s, (A6)

and such that C̄2
s = I. This immediately implies that, for each

eigenfunction �p with energy Ep, there exists an eigenfunction
C̄s�p with energy −Ep, since H̄ (p)C̄s�p = −C̄sH̄ (p)�p =
−EpC̄s�p. In the context of our model, chiral symmetry
reflects a particular structure of the lattice. In fact, a sufficient
condition for the existence of this symmetry is the possibility to
color the lattice such that two vertices of the same color do not
have a common link. This property is known as bi-colorability.
In this case it is clear that the Hamiltonian kernel can be
written in a block off-diagonal form (0 ·· 0) which implies the
anticommutation with σz.

Another sufficient condition for the presence of chiral
symmetry is the existence of both time-reversal and charge
conjugation symmetries [58]. In this case we can define an (an-
tiunitary) operator Cs = T C whose action on the Hamiltonian
kernel is given by (see sections above) H̄ → C̄sH̄ C̄

†
s , where

C̄s = T̄ · C̄. The existence of both time-reversal and particle-
hole symmetries implies that the operator C̄s anticommutes
with the Hamiltonian since T̄ · C̄H̄ (p) = −T̄ H̄ ∗(−p)C̄ =
−Ĥ (p)T̄ · C̄. As it combines the action of the time-reversal
and charge conjugation operators, chiral symmetry maps a
particle with momentum p to a hole with momentum −p.

APPENDIX B: BEHAVIOR ON THE BOUNDARY

In this Appendix we study the details of how to obtain
the effective theory describing the boundary of our material.
Throughout this Appendix we use the differential forms
formalism [59]. In this language, the bosonic fields introduced
in Sec. III B consist of a 1-form A and a 2-form B.

Given their importance in the following derivation, we
rewrite here the bosonization rules connecting the fermionic
microscopic degrees of freedom and the bosonic effective ones
given in Sec. III D:

Jμ → 1

g2
ε

μ
νλγ ∂νBλγ → 1

g2
∗dB,

(B1)

Jμν → 1

g2
ε

μν
λγ ∂λAγ → 1

g2
∗dA,

where ∗ denotes the Hodge operator [59] and where we retain
the correct dimensions through the coupling g2.

We now introduce an example of a procedure to obtain the
theory on the boundary as proposed in [14,51]. This approach
relies on restoring gauge invariance on the boundary. We then
propose a procedure specific to the model presented here which
uses the information contained in Eqs. (B1). The advantage of
this procedure is that it does not require any additional physical
hypothesis on the system.

1. Example: How to restore gauge invariance on the boundary

We start from the BF theory defined in Eq. (42):

SBF = 1

4g2

∫
M

B ∧ F. (B2)

Let us begin by showing that the theory is not gauge invariance
on the boundary. The gauge transformation considered here is
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the one defined in Eq. (41), that is,

A → A + dχ, B → B + dξ, (B3)

where χ is a scalar function and ξ is a 1-form. It is easy to
see that, when we add a boundary ∂M to the manifold M , the
theory is invariant under the gauge transformations in Eq. (B3)
of A alone (since the only dependence of A is through the
gauge-invariant quantity F ). Unfortunately, the theory is not
invariant under the generalized gauge transformations for the
B term in Eq. (B3). In fact, under such a transformation, the
action changes as

S → S + �S, (B4)

where

�S =
∫

M

dξ ∧ F =
∫

∂M

ξ ∧ F, (B5)

where in the last step we used integration by parts, Stokes’
theorem, and the Abelian Bianchi identity dF = d2A = 0.

We now want to modify the original action to restore gauge
invariance on ∂M . Following [51] and [14] (see also [45]) we
now add a boundary term

∫
∂M

B ∧ A to the action so that S ′ =
S + ∫

∂M
B ∧ A. This solves the gauge invariance problem for

the field B as easily shown with the following:

�S ′ = �S +
∫

∂M

dξ ∧ A

=
∫

∂M

ξ ∧ F −
∫

∂M

ξ ∧ F +
∫

∂M

d(ξ ∧ A)

= 0, (B6)

where in the last equality we used Stokes’ theorem together
with the fact that ∂∂M = 0. Note that we now have broken
the gauge invariance under the transformation on A as can
be easily seen by simple inspection of the additional term∫
∂M

B ∧ A which is explicitly dependent on the (gauge) field
A. In order to restore full gauge invariance, we introduce
a new scalar field φ with the following transformation
properties:

φ → φ − χ, (B7)

where χ is the same function appearing in the transformation
rule for A. We now notice that if we redefine A → A′ = A +
dφ = Dφ we get �A′ = dχ − dχ = 0, which means that the
field A′ is gauge invariant. We then can define a final gauge-
invariant action as

Stot =
∫

M

B ∧ F ′ +
∫

∂M

B ∧ A′. (B8)

Explicitly, the total action is

Stot =
∫

M

B ∧ F ′ +
∫

∂M

B ∧ A′

=
∫

M

B ∧ dA′ +
∫

∂M

B ∧ A′

=
∫

M

B ∧ (dA + d2φ) +
∫

∂M

B ∧ (A + dφ). (B9)

Notice that we have modified the action only on the boundary
and that the additional term breaks time-reversal symmetry

(B is even for time reversal since it is a sort of “electric
field” [60], while A is odd) and it is in fact odd under such
symmetry if we impose that φ → −φ under time reversal.

What is the role of the new field φ in our theory? This field is
actually not a dynamical one. We can see this by calculating its
equation of motion. Let us start by computing δφStot. We have

δφStot =
∫

∂M

B ∧ δdφ

=
∫

∂∂M

d(B ∧ δφ) −
∫

dB ∧ δφ

= −
∫

dB ∧ δφ. (B10)

The equation of motion for the field φ is given by δφStot = 0
which [from Eq. (B10)] is fulfilled if dB = 0 on the boundary
∂M . This means that the field φ is nothing but a Lagrange
multiplier enforcing the constraint

dB = 0 on ∂M. (B11)

We can now suppose that the boundary for our system is
∂M = R × � where the spatial manifold � is topologically
equivalent to S2. Otherwise stated, our boundary is a sphere
embedded in space. The constraint in Eq. (B11) tells us that
B is a closed 2-form on ∂M . Since the second de Rham
cohomology class on ∂M is nontrivial, we can conclude that
B = dη locally on ∂M (i.e., B is a pure gauge there) so that
the total action becomes

Stot =
∫

M

B ∧ F +
∫

∂M

dη ∧ A′, (B12)

where the boundary term is local on the boundary. This allows
us to conclude that, locally on ∂M , the theory is described by
a BF theory [61].

2. BF theory on the boundary

In the previous example, the existence of a BF theory on
the boundary was proved by invoking additional terms on the
boundary (which involve a new scalar field), justified by the
requirement of gauge invariance. In this section we want to
closely follow this procedure. Specifically, we still want to add
a scalar field in order to impose dB = 0 on the boundary ∂M .
The main question we want to address is, can we justify the
addition of such a field without imposing gauge invariance? We
will find a positive answer as a consequence of the bosonization
rules given in Eq. (B1).

Let us begin by introducing a pure gauge electromagnetic
field Aφ = dφ in the fermionic tight-binding model (we stress
that we do not actually require the field Aφ in the system but
we introduce it as a pure gauge only to prove that dB = 0
on ∂M). The interaction can be defined by minimal coupling
of the fermionic current with the field Aφ . This implies the
addition of a term JμA

μ
φ to the microscopic action. Such a

term, manipulated through the bosonization rules Eq. (B1)
and Stokes’ theorem, gives

Sφ =
∫

M

JμA
μ
φ =

∫
M

∗J ∧ Aφ =
∫

M

dB ∧ dφ

=
∫

M

d(B ∧ dφ) =
∫

∂M

B ∧ dφ. (B13)
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We notice that this additional term contains a scalar field
φ. Compared to the example given in the previous section
the introduction of this term is now naturally arising from
the minimal coupling of the microscopic theory with a
pure gauge degree of freedom. The possibility of this result is
given by the bosonization rules present in our analysis. This
pure gauge is totally arbitrary and does not change the physics
of the model. We can then treat this field as being a Lagrange
multiplier enforcing the condition dB = 0 on the boundary as
explained in the example above. We then have B = dη locally
on ∂M and we can write the total action of our theory as

Stot =
∫

M

B ∧ F +
∫

∂M

dη ∧ dφ. (B14)

We can now notice that the second term in this expression
(the one coming from the minimal coupling) is actually
zero since

∫
∂M

dη ∧ dφ = ∫
∂M

d(η ∧ dφ) = ∫
∂∂M

η ∧ dφ =
0 (where we used Stokes’ theorem and the fact that ∂∂M = 0).
Basically, the gauge field φ “lives” just enough to impose
the constraint dB = 0 on ∂M before quietly “dying” without
leaving any trace. The action is then given by

Stot =
∫

M

B ∧ F =
∫

M

B ∧ dA

=
∫

M

d(B ∧ A) −
∫

M

dB ∧ A

=
∫

∂M

B ∧ A −
∫

M

dB ∧ A. (B15)

Since dB = 0 on the boundary we have that on ∂M the value
of the action is just

S∂M =
∫

∂M

B ∧ A, (B16)

and, locally,

S∂M =
∫

∂M

dη ∧ A. (B17)

This means that (locally) on the boundary ∂M our model
is described by a (2 + 1)-dimensional BF theory and proves
Eq. (46) in the main text. The (2 + 1)-dimensional BF theory
is equivalent to a double Chern-Simons theory that describes
time-reversal symmetric physics on the boundary.

In summary, we have seen that our model is equivalent to
one which has a theory on the boundary with a topological
BF term. Notice that, without the term

∫
B ∧ A (described

in Sec. B 1), the introduction of the scalar field done in this
section is not enough to restore the gauge invariance on the
boundary. More precisely, the theory in Eq. (B17) is invariant
for gauge transformations involving the field A alone but not
for ones involving also the field B.

APPENDIX C: OBSERVABLES

This section has two purposes. The first is to prove
Eq. (49) which gives a map between microscopic and effective
observables. Such a map is desirable because, on the effective
side, it is possible [12,53] to define observables which witness
the topological nature of the BF theory. Equation (49) gives
a way to witness these effects in a microscopic theory. The

observables in a BF theory are defined as expectation values
of Wilson surface operators

〈
e
i

q

g2

∫
∂�

B 〉
, (C1)

where the surface ∂� is defined as the boundary of a generic
3-dimensional spatial manifold � and where q is a generic
charge of the stringlike [62] excitations associated with the
field B. In [12] it is shown that such an expectation value is
equal to 1 for the (3 + 1)-dimensional case considered here.
In fact, it represents the trivial case in which the surface ∂�

does not intersect any loop (which would be defined thanks to
the pointlike excitations associated with the field A) leading
to a null linking number. Explicitly we have

〈
e
i

q

g2

∫
∂M

B 〉 = 1. (C2)

This brings us to the second purpose of this section: to
explicitly check the validity of Eq. (C2) for our specific model,
or otherwise stated, to prove Eq. (50).

1. Effective Noether charge as a topological number

We begin the proof of Eq. (49) by noticing that the Wilson
surface observable in Eq. (C1) can be written as an effective
Noether charge. The effective Noether charge can be written
as a function of the zeroth component of the Noether fermionic
current as

Q =
∫

�

J 0d3x. (C3)

The general expression for the current is obtained by using the
bosonization rule for J in Eq. (B1) as

J = 1

g2
∗dB = 1

g2
∂λBμν

∗[dxλ ∧ dxμ ∧ dxν]

= 1

g2
∂λBμνε

λμν
ρdxρ, (C4)

where we used the definitions

B = Bμνdxμ ∧ dxν,
(C5)

dB = ∂λBμνdxλdxμ ∧ dxν.

Equation (C4) directly leads to the expression for the zeroth
component of the Noether current

J0 = 1

g2
∂λBμνε

λμν

0 = 1

g2
∂iBjkεijk0. (C6)

Any proportionality constant left implicit in the bosonization
rules can simply be used to rescale the parameter g2. We now
note that this is the same expression in coordinates as the
exterior differential in the space dimensions of the form ϕ∗

t B

where ϕ∗
t denotes the pullback [59] of the form B in a constant

time slice of spacetime under the map ϕ : R3 → R4 given by
{x} �→ {x,t}. We in fact simply have

dϕ∗
t B = d(ϕ∗

t (Bμνdxμdxν)) = d(Bijdxidxj )

= ∂kBij dxidxjdxk = ∂kBij ε
kij dx1dx2dx3

= g2J0d
3x. (C7)
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We can now finally write the expression for the effective
Noether charge as

Q =
∫

�

J 0d3x = 1

g2

∫
�

d(ϕ∗
t B). (C8)

Since J 0 = q�†� for a given charge q, we can now use these
results to identify observables for the effective topological
theory with fermionic physical observables as

e
i

g2

∫
∂�

B = eiq
∫
�

�†�. (C9)

In this way we just proved Eq. (49).

2. Check of quantization of the effective Noether charge

In this subsection we further analyze the left-hand side
of Eq. (C9) in order to check the validity of Eq. (C2).
For simplicity, we start by rescaling the field 1

g2 B → B.

We can consider the embedding ϕ� : ∂� → R3 of the two-
dimensional manifold ∂� in R3 and include it in the definition
of Q. In fact, such an embedding induces a pullback map
ϕ∗

� [59] which takes differential forms defined in R3 to
differential forms defined in ∂�. We get

Q =
∫

∂�

Bjk ϕ∗
�[dxj ∧ dxk]. (C10)

If we introduce coordinates θ1,θ2 on ∂� and write the pullback
function in coordinates [59], we find

Q =
∫

∂�

Bij

∂ϕi
�

∂θa

∂ϕ
j

�

∂θb
dθa ∧ dθb

=
∫

∂�

B̃abdθa ∧ dθb =
∫

∂�

B̃, (C11)

with i,j = 1,2,3 and a,b = 1,2 and where, for simplicity, we
defined B̃ as a 2-form living on ∂� [63] which is simply
defined with a double pullback on B as B̃ = ϕ∗

�ϕ∗
t B.

Equation (C11) tells us that we have to compute the surface
integral of a 2-form. In a two-dimensional space every spatial
2-form is always closed; that is, dspaceB̃ = 0. In our case ∂� =
S2, which has a nontrivial second de Rham cohomology group.
This allows us to conclude that B is only locally exact on ∂�.
We now define two patches of the sphere labeled N and S

respectively around the north and south pole. We suppose that
the two patches intersect on a closed loop γ (let us say the
equator). From the previous analysis, we can define B̃ = dÃN

and B̃ = dÃS on the two patches and write

Q =
∫

N

dÃN +
∫

S

dÃS

=
∫

N

(
∂1Ã

N
2 − ∂2Ã

N
1

)
dθ1 ∧ dθ2

+
∫

S

(
∂1Ã

S
2 − ∂2Ã

S
1

)
dθ1 ∧ dθ2. (C12)

We can now use Stokes theorem and write

Q =
∫

γ

ÃN − ÃS, (C13)

where, as defined above, γ is the common line where the
surfaces N and S intersect. The origin of the minus sign lies in
the fact that ∂� has no boundary so that γ has to be taken with
different orientations depending on whether we are integrating
on N or S.

How are the two “potentials” ÃN and ÃS related on γ ?
We know that, in general, our theory is invariant under the
symmetry B �→ B + dξ where ξ is a 2-form, which in coor-
dinates reads Bμν �→ Bμν + ∂μξν + ∂νξμ. We now remember,
from the analysis given above, that B̃ = ϕ∗

�ϕ∗
t B. Since the

exterior derivative d commutes with the pullback [59] we have
that B̃ �→ B̃ + dξ̃ , where ξ̃ = ϕ∗

�ϕ∗
t ξ . This transformation has

been studied before [64] but its connection with a gauge group
is not clear and we in fact do not suppose any association
with a gauge group. Since B̃ = dÃ the transformation has
to act on the potentials Ã as Ã �→ Ã + ξ̃ , or in coordinates
Ãμ �→ Ãμ + ξ̃μ (where, for clarity, we omitted the labels
N/S). We now require the field B̃ to be single valued on
γ . This can be imposed by writing the simple-looking relation
B̃N = B̃S (on γ ) which leads to

dÃN = dÃS = dÃN + dξ̃ , (C14)

so that dξ̃ = 0 on γ . This means that ξ̃ is closed and locally
exact (ξ̃ = dχ ) on γ and also allows us to write

ÃN − ÃS = dχ, (C15)

where χ is a function defined on γ everywhere except for a
point. Since we can take a point out of the integral over γ

without affecting the value of the integral we can write, from
Eq. (C13),

Q =
∮

γ

dχ =
∮

( �∇χ ) · d �γ . (C16)

Unfortunately what was done so far did not give us any
constraints on the value of the discontinuity in χ around
γ . This is a reflection of the fact that we decided (in all
generality) not to associate a gauge group to the transformation
properties of the field B. Nevertheless, we can still obtain
such constraint by invoking the observable nature of the
Wilson surface operators 〈ei

∫
∂�

B〉. As such, we do not
want these observables to be dependent on some “gauge”
choice. In particular, we can always use the arguments given
above to show that every transformation of the fields implies
〈ei

∫
∂�

B〉 �→ 〈ei
∫
∂�

B〉ei
∮
γ

dχ . Since we do not want the value
of the observable to be affected by a (generalized) gauge
transformation, we have to impose the condition

∫
γ

dχ = 2πn

(see also [65,66]) which leads to the final result

Q = 2πn. (C17)

This ends the proof of Eq. (50) for our specific model.
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[28] D. Banerjee, M. Bögli, M. Dalmonte, E. Rico, P. Stebler, U.-J.

Wiese, and P. Zoller, Phys. Rev. Lett. 110, 125303 (2013).
[29] M. Lewenstein, A. Sanpera, and V. Ahufinger, Ultracold Atoms

in Optical Lattices (Oxford University Press, New York, 2012).
[30] E. Alba, X. Fernandez-Gonzalvo, J. Mur-Petit, J. K. Pachos, and

J. J. Garcia-Ripoll, Phys. Rev. Lett. 107, 235301 (2011).
[31] L. Susskind, Phys. Rev. D 16, 3031 (1977).
[32] A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig, AIP

Conf. Proc. 1134, 10 (2009).
[33] Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961).
[34] E. Fermi, Z. Phys. 88, 161 (1934).
[35] M. Botta Cantcheff and J. A. Helayel-Neto, Phys. Rev. D 67,

025016 (2003).
[36] M. Blau and G. Thompson, Ann. Phys. 205, 130 (1991).

[37] S. Deser, R. Jackiw, and S. Templeton, Phys. Rev. Lett. 48, 975
(1982).

[38] L. N. Cooper, Phys. Rev. 104, 1189 (1956).
[39] I. A. Batalin and E. S. Fradkin, Nucl. Phys. B 279, 514 (1987).
[40] I. A. Batalin and I. V. Tyutin, Int. J. Mod. Phys. A 06, 3255

(1991).
[41] M. Kalb and P. Ramond, Phys. Rev. D 9, 2273 (1974).
[42] E. Harikumar and M. Sivakumar, Nucl. Phys. B 565, 385 (2000).
[43] Y.-W. Kim, S.-K. Kim and Y.-J. Park, Mod. Phys. Lett. A 18,

2287 (2003).
[44] T. H. Hansson, V. Oganesyan, and S. L. Sondhi, Ann. Phys. 313,

497 (2004).
[45] A. Balachandran and P. Teotonio-Sobrinho, Int. J. Mod. Phys.

A 08, 723 (1993).
[46] S. Coleman, Phys. Rev. D 11, 2088 (1975).
[47] D. Delpine, R. G. Felipe, and J. Weyers, Phys. Lett. B 419, 296

(1998).
[48] Without them, it would be impossible to generate such a mass

with just one field. In the Abelian case this is very easily seen.
In fact, with the presence of one field the only possibilities
for a gauge-invariant 4-form are F ∧ F and F ∧ ∗F . The
first term has a topological nature while the second term is
geometric. The topological term can be rewritten as F ∧ F =
d(A ∧ dA). This allows us to conclude that the addition of such
a differential to the Lagrangian would not change the equation
of motion (since it adds a total derivative to the Lagrangian)
and for this reason it cannot possibly add a mass to the gauge
field.

[49] F. A. Schaposnik, Phys. Lett. B 356, 39 (1995).
[50] A. Amoretti, A. Blasi, N. Maggiore, and N. Magnoli, New J.

Phys. 14, 113014 (2012).
[51] A. Momen, Phys. Lett. B 394, 269 (1997).
[52] A. Marzuoli and G. Palumbo, Europhys. Lett. 99, 10002

(2012).
[53] G. Horowitz and M. Srednicki, Commun. Math. Phys. 130, 83

(1990).
[54] I. Oda and S. Yahikozawa, Phys. Lett. B 238, 272 (1990).
[55] It is important to notice that the nomenclature is not uniform in

the literature as noted in, for example, Ref. [56]. For consistency,
we chose to follow the nomenclature used in Ref. [1], which is
in fact different from the one used in [57]. More precisely, the
term “particle-hole” used in this article and in [1] reads “charge
conjugation” in [56] and [57].

[56] P. V. Sriluckshmy, A. Mishra, S. R. Hassan, and R. Shankar,
Phys. Rev. B 89, 045105 (2014).

[57] S. Weinberg, The Quantum Theory of Fields, Volume 1: Founda-
tions (Cambridge University Press, Cambridge, England, 1995).

[58] Following our previous comment, we notice that in a context
where our “particle-hole” symmetry reads “charge conjugation,”
it can also be the case that “chiral” symmetry reads “particle-
hole” symmetry.

[59] M. Nakahara, Geometry, Topology and Physics (IOP Publishing
Ltd, Bristol, 1990).

[60] J. C. Baez, Lect. Notes Phys. 543, 25 (2000).
[61] Incidentally, we notice that this method of imposing gauge

invariance on the boundary is not the only possible one. In
fact, one could change the transformation rules of the B field
and impose that (trivially) B �→ B on the boundary (that is, B

is a true “curvature” form on ∂M). In this case we can avoid
adding the term

∫
B ∧ A.

085114-14

http://dx.doi.org/10.1103/PhysRevB.78.195125
http://dx.doi.org/10.1103/PhysRevB.78.195125
http://dx.doi.org/10.1103/PhysRevB.78.195125
http://dx.doi.org/10.1103/PhysRevB.78.195125
http://dx.doi.org/10.1063/1.3149495
http://dx.doi.org/10.1063/1.3149495
http://dx.doi.org/10.1063/1.3149495
http://dx.doi.org/10.1063/1.3149495
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/PhysRevB.83.085426
http://dx.doi.org/10.1103/PhysRevB.83.085426
http://dx.doi.org/10.1103/PhysRevB.83.085426
http://dx.doi.org/10.1103/PhysRevB.83.085426
http://dx.doi.org/10.1103/PhysRevB.81.134509
http://dx.doi.org/10.1103/PhysRevB.81.134509
http://dx.doi.org/10.1103/PhysRevB.81.134509
http://dx.doi.org/10.1103/PhysRevB.81.134509
http://dx.doi.org/10.1126/science.1243326
http://dx.doi.org/10.1126/science.1243326
http://dx.doi.org/10.1126/science.1243326
http://dx.doi.org/10.1126/science.1243326
http://dx.doi.org/10.1103/PhysRevLett.100.156401
http://dx.doi.org/10.1103/PhysRevLett.100.156401
http://dx.doi.org/10.1103/PhysRevLett.100.156401
http://dx.doi.org/10.1103/PhysRevLett.100.156401
http://dx.doi.org/10.1103/PhysRevB.83.075103
http://dx.doi.org/10.1103/PhysRevB.83.075103
http://dx.doi.org/10.1103/PhysRevB.83.075103
http://dx.doi.org/10.1103/PhysRevB.83.075103
http://dx.doi.org/10.1103/PhysRevB.86.125119
http://dx.doi.org/10.1103/PhysRevB.86.125119
http://dx.doi.org/10.1103/PhysRevB.86.125119
http://dx.doi.org/10.1103/PhysRevB.86.125119
http://dx.doi.org/10.1103/PhysRevB.79.245331
http://dx.doi.org/10.1103/PhysRevB.79.245331
http://dx.doi.org/10.1103/PhysRevB.79.245331
http://dx.doi.org/10.1103/PhysRevB.79.245331
http://dx.doi.org/10.1016/0370-1573(91)90117-5
http://dx.doi.org/10.1016/0370-1573(91)90117-5
http://dx.doi.org/10.1016/0370-1573(91)90117-5
http://dx.doi.org/10.1016/0370-1573(91)90117-5
http://dx.doi.org/10.1103/PhysRevLett.96.106802
http://dx.doi.org/10.1103/PhysRevLett.96.106802
http://dx.doi.org/10.1103/PhysRevLett.96.106802
http://dx.doi.org/10.1103/PhysRevLett.96.106802
http://dx.doi.org/10.1016/j.aop.2010.12.011
http://dx.doi.org/10.1016/j.aop.2010.12.011
http://dx.doi.org/10.1016/j.aop.2010.12.011
http://dx.doi.org/10.1016/j.aop.2010.12.011
http://dx.doi.org/10.1103/PhysRevB.87.085132
http://dx.doi.org/10.1103/PhysRevB.87.085132
http://dx.doi.org/10.1103/PhysRevB.87.085132
http://dx.doi.org/10.1103/PhysRevB.87.085132
http://dx.doi.org/10.1142/S0217979213501932
http://dx.doi.org/10.1142/S0217979213501932
http://dx.doi.org/10.1142/S0217979213501932
http://dx.doi.org/10.1142/S0217979213501932
http://dx.doi.org/10.1088/1367-2630/14/6/063013
http://dx.doi.org/10.1088/1367-2630/14/6/063013
http://dx.doi.org/10.1088/1367-2630/14/6/063013
http://dx.doi.org/10.1088/1367-2630/14/6/063013
http://dx.doi.org/10.1103/PhysRevLett.112.016404
http://dx.doi.org/10.1103/PhysRevLett.112.016404
http://dx.doi.org/10.1103/PhysRevLett.112.016404
http://dx.doi.org/10.1103/PhysRevLett.112.016404
http://dx.doi.org/10.1103/PhysRevB.81.045120
http://dx.doi.org/10.1103/PhysRevB.81.045120
http://dx.doi.org/10.1103/PhysRevB.81.045120
http://dx.doi.org/10.1103/PhysRevB.81.045120
http://dx.doi.org/10.1103/PhysRevLett.61.2015
http://dx.doi.org/10.1103/PhysRevLett.61.2015
http://dx.doi.org/10.1103/PhysRevLett.61.2015
http://dx.doi.org/10.1103/PhysRevLett.61.2015
http://dx.doi.org/10.1103/PhysRevLett.110.211603
http://dx.doi.org/10.1103/PhysRevLett.110.211603
http://dx.doi.org/10.1103/PhysRevLett.110.211603
http://dx.doi.org/10.1103/PhysRevLett.110.211603
http://dx.doi.org/10.1103/PhysRevD.90.027703
http://dx.doi.org/10.1103/PhysRevD.90.027703
http://dx.doi.org/10.1103/PhysRevD.90.027703
http://dx.doi.org/10.1103/PhysRevD.90.027703
http://dx.doi.org/10.1016/0003-4916(58)90015-0
http://dx.doi.org/10.1016/0003-4916(58)90015-0
http://dx.doi.org/10.1016/0003-4916(58)90015-0
http://dx.doi.org/10.1016/0003-4916(58)90015-0
http://dx.doi.org/10.1016/0370-2693(94)91374-9
http://dx.doi.org/10.1016/0370-2693(94)91374-9
http://dx.doi.org/10.1016/0370-2693(94)91374-9
http://dx.doi.org/10.1016/0370-2693(94)91374-9
http://dx.doi.org/10.1016/0550-3213(74)90224-7
http://dx.doi.org/10.1016/0550-3213(74)90224-7
http://dx.doi.org/10.1016/0550-3213(74)90224-7
http://dx.doi.org/10.1016/0550-3213(74)90224-7
http://dx.doi.org/10.1142/S0217732391000580
http://dx.doi.org/10.1142/S0217732391000580
http://dx.doi.org/10.1142/S0217732391000580
http://dx.doi.org/10.1142/S0217732391000580
http://dx.doi.org/10.1103/PhysRevA.88.023617
http://dx.doi.org/10.1103/PhysRevA.88.023617
http://dx.doi.org/10.1103/PhysRevA.88.023617
http://dx.doi.org/10.1103/PhysRevA.88.023617
http://dx.doi.org/10.1103/PhysRevLett.110.125303
http://dx.doi.org/10.1103/PhysRevLett.110.125303
http://dx.doi.org/10.1103/PhysRevLett.110.125303
http://dx.doi.org/10.1103/PhysRevLett.110.125303
http://dx.doi.org/10.1103/PhysRevLett.107.235301
http://dx.doi.org/10.1103/PhysRevLett.107.235301
http://dx.doi.org/10.1103/PhysRevLett.107.235301
http://dx.doi.org/10.1103/PhysRevLett.107.235301
http://dx.doi.org/10.1103/PhysRevD.16.3031
http://dx.doi.org/10.1103/PhysRevD.16.3031
http://dx.doi.org/10.1103/PhysRevD.16.3031
http://dx.doi.org/10.1103/PhysRevD.16.3031
http://dx.doi.org/10.1063/1.3149481
http://dx.doi.org/10.1063/1.3149481
http://dx.doi.org/10.1063/1.3149481
http://dx.doi.org/10.1063/1.3149481
http://dx.doi.org/10.1103/PhysRev.122.345
http://dx.doi.org/10.1103/PhysRev.122.345
http://dx.doi.org/10.1103/PhysRev.122.345
http://dx.doi.org/10.1103/PhysRev.122.345
http://dx.doi.org/10.1007/BF01351864
http://dx.doi.org/10.1007/BF01351864
http://dx.doi.org/10.1007/BF01351864
http://dx.doi.org/10.1007/BF01351864
http://dx.doi.org/10.1103/PhysRevD.67.025016
http://dx.doi.org/10.1103/PhysRevD.67.025016
http://dx.doi.org/10.1103/PhysRevD.67.025016
http://dx.doi.org/10.1103/PhysRevD.67.025016
http://dx.doi.org/10.1016/0003-4916(91)90240-9
http://dx.doi.org/10.1016/0003-4916(91)90240-9
http://dx.doi.org/10.1016/0003-4916(91)90240-9
http://dx.doi.org/10.1016/0003-4916(91)90240-9
http://dx.doi.org/10.1103/PhysRevLett.48.975
http://dx.doi.org/10.1103/PhysRevLett.48.975
http://dx.doi.org/10.1103/PhysRevLett.48.975
http://dx.doi.org/10.1103/PhysRevLett.48.975
http://dx.doi.org/10.1103/PhysRev.104.1189
http://dx.doi.org/10.1103/PhysRev.104.1189
http://dx.doi.org/10.1103/PhysRev.104.1189
http://dx.doi.org/10.1103/PhysRev.104.1189
http://dx.doi.org/10.1016/0550-3213(87)90007-1
http://dx.doi.org/10.1016/0550-3213(87)90007-1
http://dx.doi.org/10.1016/0550-3213(87)90007-1
http://dx.doi.org/10.1016/0550-3213(87)90007-1
http://dx.doi.org/10.1142/S0217751X91001581
http://dx.doi.org/10.1142/S0217751X91001581
http://dx.doi.org/10.1142/S0217751X91001581
http://dx.doi.org/10.1142/S0217751X91001581
http://dx.doi.org/10.1103/PhysRevD.9.2273
http://dx.doi.org/10.1103/PhysRevD.9.2273
http://dx.doi.org/10.1103/PhysRevD.9.2273
http://dx.doi.org/10.1103/PhysRevD.9.2273
http://dx.doi.org/10.1016/S0550-3213(99)00487-3
http://dx.doi.org/10.1016/S0550-3213(99)00487-3
http://dx.doi.org/10.1016/S0550-3213(99)00487-3
http://dx.doi.org/10.1016/S0550-3213(99)00487-3
http://dx.doi.org/10.1142/S0217732303012052
http://dx.doi.org/10.1142/S0217732303012052
http://dx.doi.org/10.1142/S0217732303012052
http://dx.doi.org/10.1142/S0217732303012052
http://dx.doi.org/10.1016/j.aop.2004.05.006
http://dx.doi.org/10.1016/j.aop.2004.05.006
http://dx.doi.org/10.1016/j.aop.2004.05.006
http://dx.doi.org/10.1016/j.aop.2004.05.006
http://dx.doi.org/10.1142/S0217751X9300028X
http://dx.doi.org/10.1142/S0217751X9300028X
http://dx.doi.org/10.1142/S0217751X9300028X
http://dx.doi.org/10.1142/S0217751X9300028X
http://dx.doi.org/10.1103/PhysRevD.11.2088
http://dx.doi.org/10.1103/PhysRevD.11.2088
http://dx.doi.org/10.1103/PhysRevD.11.2088
http://dx.doi.org/10.1103/PhysRevD.11.2088
http://dx.doi.org/10.1016/S0370-2693(97)01436-6
http://dx.doi.org/10.1016/S0370-2693(97)01436-6
http://dx.doi.org/10.1016/S0370-2693(97)01436-6
http://dx.doi.org/10.1016/S0370-2693(97)01436-6
http://dx.doi.org/10.1016/0370-2693(95)00776-H
http://dx.doi.org/10.1016/0370-2693(95)00776-H
http://dx.doi.org/10.1016/0370-2693(95)00776-H
http://dx.doi.org/10.1016/0370-2693(95)00776-H
http://dx.doi.org/10.1088/1367-2630/14/11/113014
http://dx.doi.org/10.1088/1367-2630/14/11/113014
http://dx.doi.org/10.1088/1367-2630/14/11/113014
http://dx.doi.org/10.1088/1367-2630/14/11/113014
http://dx.doi.org/10.1016/S0370-2693(97)00010-5
http://dx.doi.org/10.1016/S0370-2693(97)00010-5
http://dx.doi.org/10.1016/S0370-2693(97)00010-5
http://dx.doi.org/10.1016/S0370-2693(97)00010-5
http://dx.doi.org/10.1209/0295-5075/99/10002
http://dx.doi.org/10.1209/0295-5075/99/10002
http://dx.doi.org/10.1209/0295-5075/99/10002
http://dx.doi.org/10.1209/0295-5075/99/10002
http://dx.doi.org/10.1007/BF02099875
http://dx.doi.org/10.1007/BF02099875
http://dx.doi.org/10.1007/BF02099875
http://dx.doi.org/10.1007/BF02099875
http://dx.doi.org/10.1016/0370-2693(90)91735-T
http://dx.doi.org/10.1016/0370-2693(90)91735-T
http://dx.doi.org/10.1016/0370-2693(90)91735-T
http://dx.doi.org/10.1016/0370-2693(90)91735-T
http://dx.doi.org/10.1103/PhysRevB.89.045105
http://dx.doi.org/10.1103/PhysRevB.89.045105
http://dx.doi.org/10.1103/PhysRevB.89.045105
http://dx.doi.org/10.1103/PhysRevB.89.045105
http://dx.doi.org/10.1007/3-540-46552-92
http://dx.doi.org/10.1007/3-540-46552-92
http://dx.doi.org/10.1007/3-540-46552-92
http://dx.doi.org/10.1007/3-540-46552-92


(3 + 1)-DIMENSIONAL TOPOLOGICAL QUANTUM FIELD . . . PHYSICAL REVIEW B 90, 085114 (2014)

[62] The excitations are stringlike and not pointlike because the 2-
form field Bμν couples with tensorial currents J μν and not to the
usual vector currents J μ as the electromagnetic field Aμ does.

[63] Notice that the above integral can be written as a flux
∫

B · dS

with Bi = 1
2 εijkBjk , dSi = εijk

∂ϕ
j
�

∂θa

∂ϕk
�

∂θb dθa ∧ dθb.

[64] A. S. Cattaneo, P. Cotta-Ramusino, J. Frohlich, and M.
Martellini, J. Math. Phys. 36, 6137 (1995).

[65] R. J. Szabo, Ann. Phys. 280, 163 (2000).
[66] M. Bergeron, G. W. Semenoff, and R. J. Szabo, Nucl. Phys. B

437, 695 (1995).

085114-15

http://dx.doi.org/10.1063/1.531238
http://dx.doi.org/10.1063/1.531238
http://dx.doi.org/10.1063/1.531238
http://dx.doi.org/10.1063/1.531238
http://dx.doi.org/10.1006/aphy.1999.5986
http://dx.doi.org/10.1006/aphy.1999.5986
http://dx.doi.org/10.1006/aphy.1999.5986
http://dx.doi.org/10.1006/aphy.1999.5986
http://dx.doi.org/10.1016/0550-3213(94)00503-7
http://dx.doi.org/10.1016/0550-3213(94)00503-7
http://dx.doi.org/10.1016/0550-3213(94)00503-7
http://dx.doi.org/10.1016/0550-3213(94)00503-7



