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Magnetic and transport signatures of Rashba spin-orbit coupling on the ferromagnetic
Kondo lattice model in two dimensions
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Motivated by emergent phenomena at oxide surfaces and interfaces, particularly those involving transition
metal oxides with perovskite crystal structure such as LaTiO3/SrTiO3, we examine the ferromagnetic Kondo
lattice model (FKLM) in the presence of a Rashba spin-orbit coupling (RSOC). Using numerical techniques,
under the assumption that the electrons on localized orbitals may be treated as classical continuum spins, we
compute various charge, spin, and transport properties on square clusters at zero temperature. We find that the
main effect of the RSOC is the destruction of the ferromagnetic state present in the FKLM at low electron fillings,
with the consequent suppression of conductivity. In addition, near half filling the RSOC leads to a departure of
the antiferromagnetic state of the FKLM with a consequent reduction to the intrinsic tendency to electronic phase
separation. The interplay between phase separation on one side, and magnetic and transport properties on the
other, is carefully analyzed as a function of the RSOC/hopping ratio.
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I. INTRODUCTION

Transition metal oxides (TMOs) are typical strongly cor-
related systems because of the available d orbitals, and are
characterized by a complex interrelation between charge, spin,
and orbital degrees of freedom, leading in turn to remarkable
properties such as high-Tc superconductivity in cuprates and
colossal magnetoresistance in manganites. The intensive study
of these strongly correlated systems has identified the ultimate
origin of those phenomena as caused by the collective behavior
of electrons, which could only be captured by appropriate
many-body approaches.

Additional emergent phenomena at the interface between
strongly correlated materials, and particularly TMOs, or
at the surface of such materials, have been revealed even
more recently by a number of theoretical and experimental
studies [1]. In essence, this exciting new physical phenomena
is induced by the breaking of the inversion symmetry, r → −r,
at the interface (or surface) itself. Also, it is important to notice
that reducing the spatial dimensionality, to two dimensions
in the present case, usually enhances the effects of electron
correlations as it is well-known in fact by studies on cuprates
and other layered perovskites. As a result of the broken
inversion symmetry, and due to relativistic considerations, the
so-called Rashba effect appears [2], which describes various
momentum-dependent spin-splitting processes, including spin
currents and the spin-Hall effect [3,4]. The relativistic or
Rashba spin-orbit coupling (RSOC) is usually stated by the
Hamiltonian [5]:

HSOC = αR(k × σ ) · ẑ, (1)

where k is the electron momentum, σ the electron spin, and
ẑ is the unit vector normal to the surface or interface. As
emphasized in a rather extensive literature, the Rashba SOC
opens new avenues for applications in spintronic devices [6–8].
The Rashba coefficient αR is in principle proportional to the
electric field appearing due to the broken inversion symmetry,
and in an appropriate device, this electric field can also be
tuned by an external gate voltage.

Various types of interfaces between TMOs where
RSOC is present have been studied, mostly involving
SrTiO3 [9–12], particularly LaAlO3/SrTiO3 [13–15], but also
LaMnO3/SrMnO3 interfaces [1] have been considered. The
contribution of gate tunable RSOC in addition to the in-plane
RSOC of broken symmetry origin, has been measured in
LaAlO3/SrTiO3 interfaces [12,14]. A Rashba SOC has also
been reported in devices involving magnetic layers such as a
Co layer with asymmetric Pt and AlOx interfaces [16–18].
Experimental indications of Rashba SOC have also been
reported at surfaces in SrTiO3 [19] and in KTaO3 [20].

The microscopic description of several transition metal
oxides and heavy fermions is achieved through generalizations
of the ferromagnetic Kondo lattice model [21–24] (FKLM)
also called the double exchange model particularly when the
Hund exchange coupling is much larger than the hopping
integral. Renewed features and materials to which this model
can be applied are discussed in Ref. [26]. For a large Hund
coupling, it is known that a metallic ferromagnetic (FM)
phase up to a filling ν ∼ 0.8, followed by a tendency towards
an antiferromagnetic (AFM) state with semiconducting or
insulating properties [25,27–33]. Another issue that has been
thoroughly discussed in the context of manganites is the
presence of an instability towards phase separation [29,34].
Most of these previous studies have been accomplished using
the highly simplifying hypothesis that the electrons in the
localized orbitals behave as classical continuum spins, which
is a reasonable assumption at least for manganites [35]. This
assumption allows the use of a finite-temperature Monte Carlo
technique to sample the classical spins [27].

The main goal of the present study is to determine how the
Rashba spin-orbit coupling affects the magnetic and transport
properties in the two-dimensional (2D) FKLM, particularly in
its simplest form when only one conduction electron orbital
is included. Although a quantitative study of interfaces in
TMOs and hence a comparison with, for example, transport
experiments [9] would require a multiorbital model [36], we
believe that a first effort to qualitatively understand the effects
of the RSOC should start from the single-orbital FKLM,
following the program that has been pursued, for example,
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in the study of manganites. In fact, as we will show below,
the resulting model Rashba FKLM presents a highly complex
interplay between magnetic and transport properties, which
deserves a careful study before taking into account more
involved multiorbital models. Due to the increased complexity
implied by the inclusion of the RSOC, we also concentrate
our study to zero temperature, although actually most of the
previous studies have dealt with essentially zero-temperature
properties. This allows us to study the RSOC in the full
range from zero to infinity, with respect to the band hopping
parameter. The issue of phase separation will also be addressed
in the present effort since experimental indications for this
instability on interfaces with strong Rashba SOC have also
been reported [37].

The Kondo lattice model supplemented by a Rashba
spin-orbit coupling for the conduction electrons on the
hexagonal lattice has been recently considered to study
topological and Kondo insulating phases [38]. We would
also like to stress that the relativistic Rashba SOC is not
the on-site or atomic spin-orbit interaction usually discussed
in the context of TbMnO3 [39], Sr2IrO4 [40] or in the
perovskitelike Ruddlesden-Popper series of the ruthenates
Srn+1RunO3n+1 [41]. This is also the case of recently studied
models for the LaAlO3/SrTiO3 interface [11]. In the model
considered in the present work, the RSOC contributes to
the kinetic energy and competes with the spin-conserving
hopping term [42]. We would like to emphasize that the
above mentioned systems where the RSOC takes place in
ferromagnetic layers[16–18] can also be modelled by the
Rashba FKLM with the localized classical spins playing the
role of FM moments. Finally, materials with strong RSOC
also display many other interesting features such as the above
mentioned topological insulators [43–45], and relativistic
Dirac electrons in graphene [46] and other compounds [47,48].

The paper is organized as follows. In Sec. II, we introduce
our Rashba ferromagnetic Kondo lattice model. The zero-
temperature perturbative MC method is described in Sec. III.
Results for magnetic and transport properties, and phase
separation, for all electron fillings are presented in Sec. IV A,
together with a study of the effect of magnetic fields and
spectral functions, which are performed only at quarter filling.

II. MODEL

It is well known that in TMOs with perovskite struc-
ture, the originally fivefold degenerate 3d orbitals are split
into threefold degenerate t2g orbitals xy,yz,zx, and twofold
degenerate eg orbitals x2 − y2,3z2 − r2. The prototypical
TMO compounds where the FKLM was applied are the
manganites with occupied t2g orbitals that appear as localized
spins. However in the surface/interfaces of this material the
RSOC is somewhat weak, although it has been suggested that
the spin-spiral state of orthorhombic manganites is strongly
deformed by their relativistic spin-orbit interaction [49]. In
SrTiO3, only the t2g orbitals are partially occupied and involved
in both hopping and Rashba processes. However, at the
surface/interface, the filling of orbitals could change due to
orbital mixing [50,51]. More importantly, itinerant electrons
in the t2g bands of Ti interact with local magnetic moments
originating from electrons localized at the interface [13,52],

which could be described by a Rashba FKLM as the one here
studied. Besides, across an interface, located in the xy plane,
due to symmetry constraints, the solely surviving hoppings
are those involving zx/zx, yz/yz, and 3z2 − r2/3z2 − r2

orbitals [1]. There is additional complexity at the interface
such as dynamical transfer of electrons from the bulk and
location of the interface layer [14,53]. A possible effective
Rashba coupling has been proposed for Sr2RuO4, where a
FKLM for its d4 orbitals would be appropriate, only within its
chiral superconducting state [54]. Finally, the model studied
in the present work could be applied to describe the observed
tilting of magnetic order in the already mentioned systems
containing a Co layer with asymmetric interfaces [16–18]. In
this case, the interaction between localized spins J (see below)
should be strongly ferromagnetic.

Hence, we believe that important insights on the physics of
perovskite interfaces can be obtained from the Rashba FKLM
for a single delocalized orbital coupled to classical localized
spins defined by the Hamiltonian:

H1o = H0 + Hint

H0 = −t0
∑

〈l,m〉,σ
(c†lσ cmσ + H.c.) + λSO

∑

l

[c†l+x↓cl↑

− c
†
l+x↑cl↓ + i(c†l+y↓cl↑ + c

†
l+y↑cl↓) + H.c.]

Hint = −JH

∑

l

Sl · sl + U
∑

l

nl↑nl↓ + J
∑

〈l,m〉
Sl · Sm.

(2)

The first term in the noninteracting part H0, is the usual
hopping term, H0,hop, and the second one corresponds to
the RSOC, H0,SO , assuming a square lattice in the xy plane
(z is the spin quantization axis) [55]. The first term in the
interacting part of the Hamiltonian Hint is the ferromagnetic
Hund term, HH , between localized Sl and conduction electron
sl spins. The second term is the Hubbard repulsion between
conduction electrons, HU , and the last one corresponds to the
antiferromagnetic exchange Hamiltonian between localized
spins, HJ . This last term is due to virtual processes involving
various hoppings and the Coulomb interaction U , and it
may be antiferromagnetic or ferromagnetic. The notation for
the coupling −JH in Hint is drawn from the Kondo lattice
model and has been widely used for the one-orbital FKLM
and even in the two-orbital double exchange model [24]. In
Kanamori’s notation, it should read −2JH , but this notation
is mostly used in multiorbital models for TMO. As noticed in
previous literature [27,34], a large value of the Hund coupling
is appropriate for manganites. We should emphasize however
that the model here proposed, as above discussed, is not solely
proposed for manganites but for various other compounds and
devices. In this sense, the important issue is that the adopted
value of JH (see below) leads to the presence of a broad FM
region, followed by a phase separated one with dominant AFM
correlations, which are the main phases of the 2D FKLM.

To start the study of the effects of the RSOC on the known
properties of the FKLM in two dimensions, we set U = 0 and
J = 0. Actually, it is well known that a large JH prevents
double occupancy in one-orbital models so in principle U = 0
is not very restrictive. In addition, it has been shown that
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FM correlations at intermediate fillings, which are already
present for not very large JH , are just enhanced by U [23,25].
The effect of U at large fillings on phase separation is more
involved. It would be expected that a finite U would prevent
the tendency to PS but actual calculations have shown that
this only occurs for U � JH [29], which is a situation outside
of our current interest. Interestingly, it was shown that for a
spinless two-orbital Hubbard model, valid for the FM phases
and large-JH limit of manganites, the kinetic energy of a much
simpler single-band model can be used to mimic the one of
the eg model [56]. It is also important to realize that the case
U = 0 is also the relevant one for three-orbital models for
SrTiO3 surfaces and interfaces [50–52].

We normalize the hopping and RSOC parameters as t2
0 +

λ2
SO = 1 whose square root will be henceforth adopted as the

unit of energy. The RSOC implies the movement of electrons
and hence it has a kinetic energy associated with it. Then, this
normalization keeps the total kinetic energy approximately
constant with λSO/t0 as is shown in Sec. IV B. The ratio λSO/t0
can be considered as the tangent of the angle between the
spin-flipping and spin-conserved hoppings. The whole purpose
of this normalization is to keep constant the ratio between JH

and the total kinetic energy, for a fixed JH . Alternatively t0
could be kept fixed and adopted as the unit of energy, but in
this case a change in λSO would imply an effective change
of JH because the total kinetic energy would also change.
In this case we would have to deal with the double effect of
varying λSO/t0 and JH,eff/t0, which would make the analysis
less clear. In any case, we have verified that the results do
not change qualitatively with both conventions in the range
λSO � t0.

We adopted throughout the value of JH = 10 in this unit,
which satisfies the above mentioned requirements, as shown in
Sec. IV A. The sole parameters left are then the ratio λSO/t0,
and the electron filling ν ≡ Ne/N (N ≡ L × L).

III. METHOD

In this work, we will employ a Monte Carlo technique
that is based on the assumption that the localized spins
are described by classical continuum spins Sl = (S,θl,φl) in
spherical coordinates [25,27,28].

The technique works at follows. Starting from a given set of
θl,φl , a new configuration is proposed by changing at a given
site j , θj → θ ′

j = θj + �θ , φj → φ′
j = φj + �φ. The new

configuration is accepted by computing the difference in total
energy �E = E(θ ′,φ′) − E(θ,φ) with the usual Metropolis
(or Glauber) criterion. For the noninteracting case (U = 0 in
the one-orbital Hamiltonian), the single-particle Hamiltonian
is diagonalized using library subroutines and the ground state
|	0〉 is built by filling the lowest Ne states (Ne is the total
number of electrons, see Appendix A). For the interacting
case, a full diagonalization of the many-body problem requires
the implementation of for example the Lanczos algorithm,
which is much costlier than the treatment of the single-particle
problem and severely restricts the size of the clusters that
can be studied. In both cases, interacting and noninteracting,
to diagonalize the Hamiltonian at each site is excessively
expensive and we resort to the so-called perturbative Monte

Carlo (PMC) [57–59], in which the full Hamiltonian is only
diagonalized after a sweep on the whole lattice.

In this perturbative version, at each sweep a site is chosen
(sequentially in the present work) and a change is proposed,
θj → θ ′

j , and φj → φ′
j . Now, the difference in energy is

computed as �E = 〈	0|�H |	0〉, where �H involves only
local changes in the Hamiltonian, more specifically in the
terms HH and HJ , which are derived in Appendix B.

For completeness, we would like to emphasize that the
present MC technique is classical. It should not be confused
with a quantum MC (QMC) technique as for example the finite-
temperature path-integral auxiliary field algorithm applied in
Ref. [60] to the 2D Kondo lattice model. The advantage of
this QMC technique is that it could deal with finite Hubbard
repulsion U as well as with quantum localized spins. Its
main disadvantage is that it is affected by the “minus sign
problem”, which renders this technique virtually inapplicable
to models with fermionic degrees of freedom except when
it is performed at half filling as implemented in Ref. [60].
In addition to the above mentioned papers, the classical MC
has been widely used for a variety of related models, for
example to study the double-exchange model on the pyrochlore
lattice [30,31].

Since in this work we limit ourselves to study zero-
temperature properties, the Monte Carlo simulation is reduced
to a simple optimization procedure, the so-called simulated
annealed optimization, in which a Boltzmann weight is used
with a parameter that plays the role of temperature. Hence,
using the resulting zero-temperature PMC technique, clusters
as large as 16 × 16 can be studied with conventional desktop
computers, although most of the results presented below
correspond to the 8 × 8 clusters and in some cases we show
results for the 12 × 12 cluster, just to show that finite-size
effects are relatively small. The temperature in the simulated
annealing process is lowered from 0.01–0.0008 in 8–10 steps,
involving a total of 106 MC sweeps with 150 000 MC sweeps
in the final measurement stage. At least two independent runs
were performed for each set of parameters. The energy for the
lowest value of the temperature considered differs from the
one of the previous value within a relative tolerance of 510−5

and, in the worst case, it is enough to achieve a relative error of
10−4 with respect to the exact energy of the FM state starting
from a random configuration, close to quarter filling. We have
checked the results obtained by the full and the perturbative
MC for various electron densities and values of λSO/t0, and
for various types of boundary conditions.

We have also taken into account different types of boundary
conditions (BC). Most of the results reported in the following
were obtained for open BC, which avoids problems associated
with open and close level shells. To compute transport
properties we adopted mixed BC, open in one direction and
periodic in the other, which would correspond to a closed
strip or ring geometry. Results obtained for fully periodic BC,
although noisier, agree reasonably well with the ones obtained
with open or mixed BC.

Typical error bars due to PMC statistics are of the size of
the symbols employed. Results for the Drude peak strongly
depend on the boundary conditions employed and hence the
total error for these results are much larger than the PMC
errors, as indicated in Sec. IV B.
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IV. RESULTS

A. Magnetic properties

In the pure FKLM, various types of magnetic order
have been detected in the JH -density phase diagram in two
dimensions, and this variety is even richer in the presence of
an AFM interaction between localized spins J [27,28]. As we
show in this section, this is also the case when λSO is turned
on, even at a fixed JH = 10 and at zero J .

Let us start by examining the total energy as a function of
electron density and λSO . In Fig. 1, we show the difference
between the energy and the energy of the FM state, which is
exactly computed by setting θl = 0 in (2), as a function of ν

and for various values of λSO , obtained by PMC for the 8 × 8
cluster with open BC. For λSO = 0, the behavior of the energy
is consistent with the known result of a FM order up to ν � 0.8.
Now, an increasing RSOC makes the energy to increasingly
depart from the FM level indicating a departure from the FM
order, which can be understood as a lowering of the spin-
flipping term H0,SO by an AFM localized spin background.
This departure in energy is maximal close to quarter filling
(ν = 0.5). For larger fillings, for λSO = 0 the energy strongly
departs from the FM one indicating the proximity to an
AFM order that appears due to an effective AFM exchange
interaction caused by virtual processes involving t0. On the
other hand, for a finite λSO , the energy starts to get back closer
to the one of the FM state in spite of the fact that the peak of the
magnetic structure factor (discussed below) continues moving
away from (0,0). Notably, close to half filling, the effect of the
RSOC is to reduce the tendency to the AFM state. Evidently,
the effective exchange due to virtual processes involving λSO

would no longer be AFM.
It is interesting also to compare the energies obtained by

PMC with the ones obtained for a fixed localized magnetic
order that can be plugged in (2) and readily computed.
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FIG. 1. (Color online) Energy relative to the energy of the FM
state, per site, vs electron density for various values of λSO/t0.
Symbols are PMC results, lines correspond to trial spiral order. The
inset is a zoom of the [0.75,0.9] density region for the PMC results
only. Results for the 8 × 8 cluster with open BC.

In particular, in most of the phase diagram, energies quite
close to the PMC ones can be obtained for a generalized
spiral order, defined for the classical spin at site (x,y) as
θxy = kxx + kyy, φxy = φ0. In particular we have examined
the values kα = 2nαπ/L, nα = 0, . . . ,L (α = x,y), and φ0 =
mπ/4, m = 0, . . . ,7. Diagonal spiral states, kx = ky , were
mostly previously considered [61], but in the presence of
RSOC we found in a large portion of the phase diagram
more stable off-diagonal spiral orders as discussed below. Of
course the FM (AFM) state correspond to the diagonal spiral
state with kx = ky = 0 (kx = ky = π ). For λSO = 0 all values
of φ0 are equivalent, and the energy for a given (kx,ky) is
the same for all the symmetry-equivalent k points. On the
other hand, for λSO > 0, the optimal energy of the spiral with
(kx,ky,φ0) is degenerate with the one with (−kx,−ky,φ0 + π )
but they are different than the optimal energies for the spiral
orders with (kx,−ky,φ0 + π/2) and (−kx,ky,φ0 + 3π/2). This
symmetry breaking corresponds to the one observed for the
magnetic structure factor as discussed below. The energy of the
spiral states have been added to Fig. 1 for comparison. These
energies follow the general trend of the ones obtained by PMC.
However, the tendency to FM order observed for ν � 0.5 and
λSO > 0 is actually more pronounced for the spiral state, and
in fact the FM state is actually recovered for densities in the
interval [0.8,0.9] in the range of RSOC values considered.

We have also examined the canted state [22], defined by
θl = 0 and θ0 for the two sublattices (φl = φ0), but we found
that its energies are higher than the ones of the generalized
spiral state for all the parameter space considered, except
when both coincide in the FM or AFM states. This result, for
λSO = 0, is consistent with previous computational studies for
FKLM [34].

As it can be seen in Fig. 2(a) the tendency of suppressing
the AFM phase, and approaching to the FM state as the density
approaches half filling, continues for larger values of λSO/t0,
including the limiting value λSO/t0 = ∞, at which the FM
is finally reached at ν = 1. Of course this limit cannot be
realized in real materials but it is of general mathematical
interest. In this plot, results for mixed BC (or strips) on the
same 8 × 8 cluster are added for comparison for λSO/t0 = 1
and 2. The irrelevance of the sign of λSO has been checked
by a set of independent PMC runs. In Fig. 2(b) results for the
8 × 8 and 12 × 12 clusters with open BC, and also for the
12 × 12 cluster with mixed BC, provide additional evidence
that finite-size effects are negligible for these clusters and
boundary conditions.

To understand the magnetic behavior suggested by the
study of the ground state energies in Figs. 1–2, the spin-spin
correlations between localized spins, C(r) = 〈Sr · S0〉 (0 is the
reference site), and their Fourier transform leading to the static
magnetic structure function χ (k), have been computed.

The RSO coupling leads to a very rich magnetic landscape.
To describe the variety of magnetic orders present let us start
by examining the results for χ (k), in the density-λSO/t0 plane,
depicted in Fig. 3. In Fig. 3(a) we show the modulus of the peak
of χ (k), |kpeak|, which essentially describes the proximity to
the FM state (|kpeak| = 0), or to the AFM state (|kpeak| = 1),
its maximum value (in units of

√
2π ) for the 8 × 8 cluster

with open BC. For λSO = 0 there is a neat crossover from
kpeak = (0,0) to kpeak = (π,π ) states at ν ≈ 0.8, consistently
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FIG. 2. (Color online) Energy relative to the energy of the FM
state vs electron density, per site for various values of λSO/t0.
(a) λSO/t0 � 1 (λSO = 0 added for completeness), 8 × 8 cluster.
Lines and open symbols were obtained for open BC; stars (λSO/t0 =
1) and filled squares (λSO/t0 = 2) for mixed BC. (b) Comparison of
results obtained for the 8 × 8 (lines and open symbols) and 12 × 12
(filled symbols) clusters with open BC in the range 0.6 < ν < 0.9. For
λSO/t0 = 1, results for the 12 × 12 cluster with mixed BC (circles)
are also included.

with previous studies. However, if for ν � 0.8, C(r) shows an
algebraic decay towards a finite value at the maximum distance
indicating long range FM order, for ν � 0.8, C(r) indicates
short-range AFM order except at ν = 1 where a long-range
AFM order is achieved. In the ν � 0.8 region, the behavior
has been explained as a phase-separated AFM-FM state [34]
which we discuss below. In the following the term order will
refer to at least short-range magnetic order.

As λSO/t0 is increased, the peak of the magnetic structure
factor departs from both FM and AFM states but remain close
to them in the low and high electron density regions respec-
tively, up to λSO/t0 ∼ 2. It is interesting to note that for very
large values of the RSOC, λSO/t0 � 4 the situation is reversed,
that is, the low- (high-)density region holds now a AFM (FM)
state. One should notice however that, as shown in Fig. 3(b),

FIG. 3. (Color online) (a) Magnetic phase diagram in the electron
density-λSO/t0 plane determined from the modulus of the peak of the
magnetic structure factor, where dark blue corresponds to FM order
(|kpeak| = 0) and dark red to AFM order (|kpeak| = 1). (b) Intensity of
χ (kpeak) in density-λSO/t0 plane. Results for the 8 × 8 cluster with
open BC.

FIG. 4. (Color online) (a) Magnetic phase diagram in the electron
density-λSO/t0 plane determined from the distance of the peak of
χ (k) to the diagonal line in momentum space (see text), with dark
blue (red) corresponding to diagonal (off-diagonal) k, obtained for
the 8 × 8 cluster with open BC. Right: χ (k) for ν = 0.97, (top) and
ν = 0.69 (bottom), 12 × 12 cluster, λSO/t0 = 0.5, with open BC. The
color bar code is the same as in Fig. 3

the amplitude of χ (kpeak) is reduced as the RSOC is increased
from zero up to λSO/t0 = 1, and then it starts to increase again
until recovering its maximum value for λSO/t0 > 4.

At quarter filling, where the physics is dominated by the
kinetic energy, as a difference to half filling where it is
dominated by the effective AFM exchange interaction, the
results of Fig. 3(a) suggest an extension of the effective
double-exchange model [21],

H0,eff =
∑

l,m

(−t̃lm + λ̃l,m)a†
l am, (3)

where

t̃lm = t0 cos
θlm

2

λ̃l,m = λSO sin
θlm

2
. (4)

Here θlm is the angle between two localized spins at sites l and
m. Following Ref. [62] it is simple to derive this result at least
for the cases when θl − θm = 0, π or π/2 independently of
φl,φm.

It should also be noticed that most of the phase diagram is
dominated by magnetic states characterized by an off-diagonal
peak of χ (k), that is, kpeak,x �= kpeak,y . This behavior is shown
in Fig. 4, where the distance of kpeak to the diagonal, d =
|kpeak,x − kpeak,y |/

√
2 is plotted in the density-λSO/t0 plane.

It is apparent that this distance is maximal for intermediate
values of λSO/t0 and close to half filling. It is interesting also
to note that for these cases, the rotational invariance is broken,
that is, the PMC simulations are able to select states where
the magnetic structure factor is maximal only at two points
(kx,ky), and (−kx, − ky) as shown for two examples, ν = 0.97
(top right panel) and ν = 0.69 (bottom right panel), both for
λSO/t0 = 0.5, obtained on the 12 × 12 cluster with open BC.
This behavior of the magnetic structure factor indicates the
presence of a striped magnetic order as it was also previously
detected for the FKLM in the presence of a finite exchange
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J between localized spins or for smaller JH [29]. Although
the energies are slightly higher, there is in general a good
qualitative agreement between the momentum of the optimal
spiral state and the momentum of the peak of χ (k) obtained
by PMC at least for densities ν � 0.75.

To our knowledge, this is the first report of the influence
of the RSOC on the well-known FM-AFM phases in the 2D
FKLM.

B. Transport properties

The optical conductivity is defined as the real part of the
linear response to the electric field and can be written as [63]:

σ (ω) = Dδ(ω) + σ reg(ω)

= Dδ(ω) + π

L

∑

n�=0

|〈	n|j |	0〉|2
En − E0

δ(ω − (En − E0)),

(5)

where the paramagnetic current along the x direction is:

j = jhop + jSO

jhop = −iet0
∑

j,σ

(c†j+xσ cjσ − c
†
jσ cj+xσ ) (6)

jSO = ieλSO

∑

j

[(c†j+x↓cl↑ − c
†
l+x↑cl↓) − H.c.],

where jhop and jSO are the spin-conserving and spin-flipping
contributions respectively (the electron charge e = 1 in the
following). The Drude weight D is calculated from the f -sum
rule as:

D

2π
= −〈H0,x〉

2L
− 1

L

∑

n�=0

〈	n|j |	0〉|2
En − E0

, (7)

where Kx ≡ −〈H0,x〉 is the total kinetic energy of electrons
along the x direction.

In order to track the contribution from spin-conserving and
spin-flipping transport, from (5), (6), and (7), one can formally
define the corresponding quantities for the λSO = 0 and t0 = 0
limits,

σα(ω) = Dαδ(ω) + π

L

∑

n�=0

|〈	n|jα|	0〉|2
En − E0

δ(ω − (En − E0))

Dα

2π
= −〈H0,α 〉

2L
− 1

L

∑

n�=0

〈	n|jα|	0〉|2
En − E0

(8)

with α = hop,SO, respectively. Of course, for nonzero t0
and λSO , σ (ω) �= σhop(ω) + σSO (ω), D �= Dhop + DSO , unless
there is no excited state |	n〉 such that 〈	n|jhop|	0〉 �= 0 and
〈	n|jSO |	0〉 �= 0 simultaneously.

Results for the hopping and SO contributions to the kinetic
energy per site along the x direction are shown in Figs. 5(a)
and 5(c) respectively, and results for the corresponding contri-
butions to the Drude peak, with the above mentioned caveats,
in Figs. 5(d) and 5(b). These results present oscillations due
to various level crossings in spite of being averaged on the
8 × 8 cluster over periodic and strip BC, in this latter case
taking phases enclosing magnetic fluxes equal to 0, π/2 and π

(twisted BC). In Fig. 5(b) we include the error bars on one point
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FIG. 5. (Color online) Kinetic energy per site along x direction
for (a) the spin-conserving hopping, and (c) the spin flipping or RSOC
terms of the Hamiltonian as a function of electron density, for various
values of λSO/t0. Drude weight for (b) the spin-conserving hopping
and (d) the spin flipping or RSOC as a function of electron density,
for various values of λSO/t0. Symbols and colors are the same as in
Fig. 1. Results for the 8 × 8 cluster with periodic BC and strips with
twisted BC.

for λSO/t0 = 0.75 is indicative of the dispersion of the values
obtained for different BC. Results for the contributions to the
Drude peak are only plotted up to densities ν = 0.75, beyond
that the total Drude weight, computed according Eq. (7), starts
to appreciably deviate from Dhop + DSO . Up to this electron
filling, Dhop and DSO roughly follows the behavior of Khop,x

and KSO,x respectively.
The total kinetic energy along the x direction, and the total

Drude peak, calculated using Eq. (7), are shown in Fig. 6. The
total kinetic energy [Fig. 6(a)], for a given density, has very
small variation in the range 0 � λSO/t0 � 1. On the other
hand, the Drude peak is suppressed by increasing RSOC in a
monotonous way, within the dispersion of the data previously
noticed [Fig. 6(b)]. For λSO/t0 = 0, and for densities ν �
0.75, the Drude peak is approximately equal to half the kinetic
energy per site, Kx/N , that is, the contribution from the second
term in (7) is very small. It is interesting to notice a cusp in
Kx/N as a function of ν at ν ∼ 0.75 suggesting the presence of
a crossover in the transport behavior. For densities larger than
ν ∼ 0.75, the Drude peak starts to decrease in a rather abrupt
fashion, departing from the value of Kx/2N . By observing the
density of states (DOS), this crossover suggested by the cusp
in Kx/N vs ν, could be related to the Fermi level moving from
the bulk of the conduction band towards its high energy edge
as ν is increased, forming a pseudogap [28,34]. Close to ν = 1
this pseudogap separates the conduction band and a small peak
at slightly higher energies, which could be considered as an
impurity band and hence it gives support to a semiconductor
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FIG. 6. (Color online) (a) Total kinetic energy along the x direc-
tion, and (b) total Drude peak for various values of λSO/t0. Lines are
guides to the eye. Results for the 8 × 8 cluster averaged over periodic
BC and strips with twisted BC.

scenario. These features are well known in the pure FKLM [34]
and do not change significantly as the RSOC is turned on.

Another indication of the interplay between magnetic and
transport properties can be observed by computing the optical
conductivity in the presence of a magnetic field H along the
z-direction, which is imposed by adding to the Hamiltonian a
Zeeman term,

HZ = −H
∑

l

(
Sz

l + sz
l

)
, (9)

μB = � = 1, and the gyromagnetic factor has been included
in H . Results obtained for the 8 × 8 cluster with strip BC,
at quarter filling, and for various values of λSO/t0 are shown
in Fig. 7. In this figure we show the evolution with H of
the hopping and the RSO contributions to the Drude peak,
the total Drude weight, and the maximum value of the static
magnetic susceptibility. In Fig. 7(a), for λSO/t0 = 0.5, changes
in the Drude peaks can be observed around H ∼ 0.02, where
two consecutive crossovers in the peak of χ (q), first from
(0,π/4) to (0,π/2) and then to (0,0) also occur. Similarly for
λSO/t0 = 1.0 [Fig. 7(b)], changes in the Drude peak can be
observed near H ∼ 0.1 simultaneously with a change in kpeak

from (0,π/4) to (0,0). For λSO/t0 = 1.5 [Fig. 7(c)] Dhop, DSO ,
and D change at H ∼ 0.07 where kpeak changes from (π,π ) to
(π,0), and also at H ∼ 0.25 where kpeak changes from (π,0)
to (0,0). It is clear a general trend at each of those crossovers
of increasing (reducing) the hopping (SO) contribution to the
Drude peak, although it seems that in most cases the reduction
in the DSO is more important than the increase of Dhop. This
is understandable since the departure of the FM order due to
the RSOC is precisely opposed by the magnetic field trying to
restore the FM order. We would like to emphasize the fact that
the peak of the static magnetic structure factor does not exhaust
the richness of the magnetic state. In fact, there are in general
many other peaks competing with the one with largest weight.
This is the situation for λSO/t0 = 1.0, for 0.1 � H � 0.2
where the pair of peaks (0,π/4)/(0, − π/4) is competing with
the dominant one at (0,0).
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FIG. 7. (Color online) Drude weight D and maximum value of
the magnetic structure factor χ , for (a) λSO/t0 = 0.5, (b) 1.0, and (c)
1.5 at electron density ν = 0.5. The hopping and SO contribution to
D are plotted with circles (red) and diamonds (green) respectively. Up
triangles (black) and stars (blue) correspond to the total D and χmax

respectively. χ has been normalized in this plot in such a way that
χmax � 0.25. Vertical dotted and dashed lines correspond to changes
of the momentum of the peak of χ . Results for the 8 × 8 strip BC.

C. Phase separation

As emphasized in many previous studies on FKLM [29,34],
the behavior of magnetic and transport properties in the
high-density region can be understood by the presence of a
phase separated state between AFM and FM orders. These
two orders correspond to different stable electron fillings, one
smaller than ∼0.75 and the other equal to 1. The electron
filling stability is determined by computing the so-called
Maxwell construction, which is performed by adding a
chemical potential term to the Hamiltonian, −μNe, where Ne

is the number of electrons, and determining the electron filling
that minimizes the total energy of the resulting Hamiltonian
as a function of the chemical potential μ.

Results for the 8 × 8 cluster with open BC are shown in
Fig. 8 (left) for various values of λSO/t0 in the high electron
density region. For λSO = 0, that is, for the pure FKLM, we
recover the well-known phase separated (PS) state [29,34],
which extends between densities ν = 0.72 and 1. As λSO/t0 is
increased such PS state is gradually suppressed, for example
for λSO/t0 = 1, the largest PS state extends between ν = 0.82
and 0.94. This PS region is further reduced by increasing
λSO/t0. Qualitatively similar behavior is obtained for the 8 × 8
cluster with periodic and mixed BC, and for the 12 × 12 cluster
with open BC.

This suppression of the PS state can be understood by
the fact that the AFM effective exchange, which provides the
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FIG. 8. (Color online) Left: density-chemical potential stability
diagram for various values of λSO/t0. Right: snapshots of PMC
simulations of FM and AFM bonds (see text) for λSO = 0 (top) and
λSO/t0 = 1 (bottom) at ν = 0.875. Results for the 8 × 8 cluster with
open (left) and periodic (right) BC.

attractive force leading to PS, is suppressed by the RSOC, and
even at half filling, the AFM order disappears for λSO/t0 � 0.3
as shown in Fig. 3(a). In fact, the suppression of the PS state is
actually related to the substitution of the AFM order by some
stripe order with momentum close to (π,π ). This is illustrated
in the right panels of Fig. 8 where snapshots of the values of
Sl · Sm on each horizontal bond during the PMC simulations,
on the 8 × 8 with periodic BC are shown. This quantity is
normalized in such a way that it is equal to 1 (−1) for parallel
(antiparallel) spins on the bond. Fig. 8 (top panel) shows a neat
PS state between FM and AFM regions for λSO = 0, that is the
FKLM, consistently with previous studies. On the other hand,
for λSO/t0 = 1, Fig. 8 (bottom panel) shows a very different
picture, which illustrates the suppressed PS and the presence
of striped states previously discussed. In any case, by relating
the FM domains to conducting ones, and the close-to-AFM
domains to insulating ones, it becomes understandable that
the system behaves for ν � 0.75 as a semiconductor or a poor
conductor due to a pseudogap.

D. Spectral functions

Finally, we studied the spectral functions corresponding to
create or annihilate an electron with momentum k, A(±)(k,ω),
defined as:

A(+)(k,ω) =
∑

n,σ

∣∣〈	(+1)
n

∣∣c†kσ |	0〉
∣∣2

δ
(
ω − (

E(+1)
n − E0

))

A(−)(k,ω) =
∑

n,σ

∣∣〈	(−1)
n

∣∣ckσ |	0〉
∣∣2

δ
(
ω − (

E(−1)
n − E0

))
.

(10)

A(−)(k,ω) probes occupied states, and hence it describes pho-
toemission spectra (PES), while A(+)(k,ω) detects unoccupied
levels, and it is conventionally ascribed to inverse PES (IPES).
The δ peaks are usually considered after being broadened by
a Lorentzian function with width ε.

Figure 9 shows the lower or bonding band of the spectra
(there is another identical band shifted at higher energies
by JH ) at quarter filling along the line (0,0) → (π,0) →

-10 -8 -6 -4 -2 0
ω

(0,0)

(0,0)

(0,0)

(π,0)

(π,π)

(0,0)

(0,0)

(0,0)

(a)

(b)

(c)

(d)

(0,0)

(0,0)

(π,0)

(π,0)

(π,0)

(π,π)

(π,π)

(π,π)

FIG. 9. (Color online) Spectral functions A(±)(k,ω) for λSO/t0 =
0 (a), 0.75 (b), 4.0 (c), and ∞ (d), at density ν = 0.5 (bonding band).
The PES is plotted with full lines (black) and the IPES with dashed
lines (red). The Fermi level is indicated with vertical dotted lines.
The Lorentzian width employed is ε = 0.1. Results obtained for the
8 × 8 with periodic BC. Lines with dots in (a) and (d) correspond
to the 32 × 32 obtained with fixed FM and AFM order of localized
spins respectively.

(π,π ) → (0,0), obtained for the 8 × 8 cluster with periodic
BC. For the pure FKLM (λSO = 0), Fig. 9(a), the shoulder near
(π,0) is responsible for the large conductivity at this filling.
As λSO/t0 increases, the peak at (0,0) [(π,π )] is shifted to
higher (lower) energies thus reducing the number of states
at the Fermi level and consequently the conductivity. This
reduction of the DOS at the Fermi level could be thought as
the opening of a pseudogap, but as it is clear from Fig. 9 there
is a restructuring of the Fermi surface as a function of λSO . In
the limit of λSO/t0 = ∞, the Fermi surface only touches the
Fermi level at the high-symmetry points (0,0), (π,0), (0,π ),
and (π,π ) of the Brillouin zone (BZ).

For a better visualization of the Fermi surface in the limit
of λSO/t0 = ∞, we show in Fig. 10 the energy dispersion
E(±)(k) obtained from the first peak above the Fermi level for
A(+)(k,ω) (upper sheet) and the first peak below the Fermi level
for A(−)(k,ω) (lower sheet). Both PES and IPES sheets touch
the Fermi level at the �, X, Y , and M points, the time-reversal
invariant momenta of the square BZ [44], consistently with
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FIG. 10. (Color online) Energy dispersion for λSO = 1, t0 = 0,
at ν = 0.5, obtained from A(±)(k,ω). Results for the 32 × 32 cluster
with AFM fixed localized spin order, periodic BC.

Fig. 9(d). The behavior of E(k) at the �, X, Y , and M points,
resembles the features called Dirac cones, since the linear
dispersion is equivalent to two-dimensional massless Dirac
fermions, which are notably found in graphene [46] but also
in other compounds such as pnictides [47] and heavy element
compounds [48]. The cones touch the Fermi level, located
approximately at ω = −5.019, at their vertices. It is worth
to notice that the observed Dirac cones do not appear for
the noninteracting H0,SO term in Eq. (2), as it can be readily
checked by a simple tight-binding calculation.

The results in Figs. 9 and 10 were obtained for J = 0, as all
results in this work. Within MC errors, we found the presence
of Dirac cones down to λSO/t0 = 10 but so far we have not
study this issue systematically. In principle, an AFM J (J > 0)
should enhance the tendency to an AFM order in the localized
spins, and hence one would expect that the Dirac cones could
be realized for lower values of λSO/t0. Of course, what it really
matters is that the conduction electrons have an AFM order,
which implies then that also the Hund coupling JH should be
large enough. By imposing a fixed AFM order in the localized
spins, for λSO = 1, t0 = 0, we actually found that Dirac cones
with vertices at the Fermi level were present for JH as low as
3 (in the usual units), at quarter filling.

V. CONCLUSIONS

In this work we have analyzed the interplay between the
Rashba spin-orbit coupling on one side, and the hopping and
Hund couplings that characterizes the ferromagnetic Kondo
lattice model on the other. Near quarter filling, the RSOC
moves the system away from the ferromagnetic metallic state
that is present in the pure FKLM, leading to a rich variety of
magnetic states and to a loss of conductivity. Near half filling,
on the other hand, the mechanism that favors an antiferromag-
netic order in the pure FKLM is no longer fully acting in the
presence of the RSOC, and the system presents a tendency to-
wards striped magnetic orders. As a consequence the presence
of phase separation between antiferromagnetic and ferromag-
netic regions in the FKLM is suppressed by the RSOC. In some
studies of the effect of strong Rashba coupling on transition

metal oxides interfaces, it was reported a tendency towards a
phase separated state caused by the RSOC [12]. However in the
systems considered the RSOC is proportional to the electron
density, a situation that does not correspond to the model
studied in the present work. The system still has a very low con-
ductivity in the high-density region in the presence of a RSOC,
a characteristic of a semiconductor or a pseudogap, since the
DOS is not significantly changed upon switching on the RSOC.

Remarkably, in the limit of RSOC much larger that the
hopping integral, the nature of the magnetic states is reversed,
that is at quarter filling the system evolves towards an
AFM state, and exactly at half filling the system becomes a
perfect FM.

Here we report the influence of the Rashba spin-orbit
coupling on the well-known ferromagnetic-antiferromagnetic
phases in the 2D ferromagnetic Kondo lattice model, particu-
larly important when manganites are involved in interfaces.

The general relationship between conductivity and mag-
netic order becomes clear at ν = 0.5, particularly when a
magnetic field is applied through a Zeeman term. Here, it
is clear that a more realistic model for the orbitals involved in
the interface as well as more details on the interface are needed
to make a comparison with experiments.

The profound effects of the RSOC can also be noticed by
examining the spectral functions of creating and annihilating
electrons at ν = 0.5. For the pure FKLM, the spectral functions
along the main symmetry lines resemble that of a Fermi liquid.
On the other hand, in the opposite limit of λSO � t0 the Fermi
surface is reduced to Dirac points located at the �, X, Y , and M

points of the Brillouin zone of the square lattice. The observed
Dirac cones are a nontrivial feature of the RSOC connected to
an AFM background by the Hund coupling.

Future work along this direction includes the search of these
features for more realistic sets of parameters better describing
the complexity of TMOs surfaces and interfaces. The rich
physics of these interface systems, including superconductiv-
ity [10] and spin-Hall effect will also be addressed in future
work.
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APPENDIX A: HILBERT SPACE

The Rashba spin-orbit term, and actually also the Hund’s
term after the classical localized spins assumption leading
to (B1), makes the z projection of the total spin, Sz

total, no
longer a good quantum number.

In the noninteracting case, in real space, the single-particle
Hamiltonian has to be formulated in the space of spin up and
down electrons, thus becoming a 2N × 2N matrix (N is the
number of cluster sites).

In the interacting case, the Hilbert space has to include all
possible values of Sz

total, from −Ne/2 to Ne/2, thus increasing
the difficulty in reaching large cluster sizes. For example, in
the 4 × 4 cluster, at quarter filling, the dimension of the Hilbert
space is 10 518 300.
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APPENDIX B: VARIATION OF THE HAMILTONIAN

It is easy to prove that the Hund coupling between localized
and conduction electron spins can be written as:

Sl · slα = S

2
cos θl(nlα↑ − nlα↓)

+ S sin θl(e
iφl c

†
lα↓clα↑ + H.c.). (B1)

In the same way, the AFM coupling between localized spins
can be written as:

Sl · Sm = S2[sin θl sin θm cos(φl − φm) + cos θl cos θm].

(B2)

Then, the variation of the HH term results:

�HH (l) = JH S
∑

α

1

2
(cos θ ′

l − cos θl)(nlα↑ − nlα↓)

+ [(sin θ ′
l e

iφ′
l − sin θle

iφl )c†lα↓clα↑ + H.c.)].

(B3)

The variation of the HJ term is:

�HJ (l) = JS2
∑

m(l)

sin θm[sin θ ′
l cos(φm − φ′

l)

− sin θl cos(φm − φl)]

+ cos θm(cos θ ′
l − cos θm). (B4)
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