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Anyon and loop braiding statistics in field theories with a topological � term
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We demonstrate that the anyon statistics and three-loop statistics of various 2d and 3d topological phases can
be derived using semiclassical nonlinear sigma model field theories with a topological � term. In our formalism,
the braiding statistics has a natural geometric meaning: The braiding process of anyons or loops leads to a
nontrivial field configuration in the space-time, which will contribute a braiding phase factor due to the � term.
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Introduction. One of the key properties of topological states
is that the gapped topological excitations above the ground
state can have nontrivial braiding statistics. In both 2d and 3d,
all discrete lattice gauge theories have a deconfined topological
phase [1]. 2d discrete gauge theories have point particle
topological excitations, while 3d discrete gauge theories have
both particle excitations and loop excitations which correspond
to gauge charge and gauge flux loop, respectively. The simplest
lattice discrete gauge theory (which we call “plain gauge
theory”) already has nontrivial braiding statistics [2]. More
exotic gauge theories can be constructed by coupling the plain
gauge theory to matter fields, and drive the matter fields into
certain nontrivial short range entangled (SRE) state or sym-
metry protected topological (SPT) phase [3,4]. For example,
once we couple a 2dp + ip topological superconductor to a
Z2 gauge field, then the vison of the gauge field would acquire
a Majorana fermion zero mode, which will grant the vison a
non-Abelian statistics [5,6]. Also, if we couple a 2d bosonic
SPT phase with Z2 symmetry to a Z2 lattice gauge theory,
the lattice gauge theory will have both semion and antisemion
excitations [7], which is different from a plain lattice gauge
theory.

Recently these results have been generalized to 3d systems.
It was demonstrated that once a 3d lattice discrete gauge theory
is coupled to a 3d SPT state, the loop excitations (fluctuating
gauge flux loops) would acquire nontrivial multiloop braiding
statistics [8–11], in addition to the standard particle-loop
statistics of the plain gauge theory. For example when loop
B and loop C are both linked to loop A, namely none of the
loops is contractible, the system wave function could acquire
a universal phase angle after braiding loop C through loop B
as shown in Fig. 1(a). These braiding statistics can be used as
a diagnostics for SPT phases [8].

Besides the standard group cohomology description of
SPT phases introduced in Refs. [3,4], it was pointed out
in Refs. [12–15] that the bosonic SPT phases can also be
described by semiclassical nonlinear sigma model (NLSM)
field theories with a topological �-term. In this theory all
the field variables are fluctuating Landau order parameters
that transform nontrivially under global symmetry. The goal
of this work is to demonstrate that the nontrivial statistics
between topological excitations after coupling the SPT phases
to a discrete gauge theory can also be described and calculated
using this NLSM field theory. Basically the braiding phase
factor comes from the � term in the field theory, as long as
we carefully analyze the field configuration in the space-time
which corresponds to the braiding process. The NLSM field

theory with a topological term can be viewed as the continuum
limit field theory description for these braiding statistics.

2d anyon statistics. We will first look at 2d systems, and as
an example let us start with the 2d SPT state with ZA

2 × ZB
2

symmetry, which can be described by the following (2 + 1)d
O(4) NLSM with a � term at � = 2π [15]:

S =
∫

d2xdτ
1

g
(∂μn)2 + i�

�3
εabcdn

a∂xn
b∂yn

c∂τn
d, (1)

where n is a four-component vector with unit length, and
�3 = 2π2 is the volume of a three-dimensional sphere with
unit radius. Under the ZA

2 × ZB
2 symmetry, the vector n

transforms as

ZA
2 : n1,n2 → −n1, − n2, n3,n4 → n3,n4;

ZB
2 : n1,n2 → n1,n2, n3,n4 → −n3, − n4. (2)

Now let us couple the vector n to a ZA
2 × ZB

2 gauge field.
The excitations that will have nontrivial braiding statistics are
the vison excitations (π -gauge flux) of gauge fields ZA

2 and
ZB

2 . Let us consider the following braiding process: one pair
of ZA

2 visons and one pair of ZB
2 visons are created in space

at one instance in time, then they are annihilated at another
later instance after braiding one ZA

2 vison with one ZB
2 vison.

In the (2 + 1)d space-time, this process corresponds to one
linking between ZA

2 and ZB
2 vison loops, as shown in Fig. 1(b).

Because theZ2 gauge fields are coupled to the four-component
vector n, the ZA

2 vison is bound with a ±1/2 vortex of (n1,n2),
while ZB

2 vison is bound with a ±1/2 vortex of (n3,n4). Then
the braiding process in the space-time can be viewed as a
linking configuration between the (n1,n2) half-vortex loop and
the (n3,n4) half-vortex loop. Due to the � term in Eq. (1),
this configuration will contribute a phase factor exp(±iπ/2) =
±i to the action, which implies the mutual braiding statistics
between the ZA

2 vison and ZB
2 vison.

To calculate this phase factor explicitly, let us first consider
a finite segment of the ZA

2 vison loop along the τ̂ direction.
A vison is always bound with either the 1/2 vortex or −1/2
vortex of (n1,n2). Around this segment, the O(4) vector n has
the following configuration with cylindrical coordinate (r,φ,τ )
[x = r cos φ, y = r sin φ; see Fig. 1(b) inset]:

n1 = sin α(r) cos f (φ),

n2 = sin α(r) sin f (φ),

n3 = cos α(r)N1(τ ),

n4 = cos α(r)N2(τ ),

(3)
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FIG. 1. (Color online) (a) Three-loop braiding process. The loops
A, B, and C are colored blue, red, and green, respectively. The braiding
path of loop C is indicated by the dotted arrow curve. (b) Two-loop
linking in the (2 + 1)d space-time, which corresponds to creating a
pair of ZA

2 and ZB
2 visons, and annihilating them after braiding one

ZA
2 and one ZB

2 vison. The time τ is along the vertical direction. The
inset shows the local cylindrical coordinate system around a segment
of the ZA

2 vison loop.

where N = (N1,N2) is an O(2) unit vector |N|2 = 1. N is a
function of τ only. α(r) is a nonnegative continuous function
that satisfies α(0) = 0, α(∞) = π/2. Along the τ̂ axis, i.e.,
r = 0, we have (n3,n4) = N . Using this configuration, we can
compute the � term:∫

d2xdτ
2πi

�3
εabcdn

a∂xn
b∂yn

c∂τn
d

=
∫ 2π

0
dφ ∂φf

∫
dτ

i

2π
εabN

a∂τN
b. (4)

If n1 and n2 form a full vortex line along the τ̂ axis, namely
f (φ) ∼ φ, the O(4) � term reduces to a 1d O(2) NLSM
with � = 2π . If there is a ZA

2 vison line along the τ̂ axis,
i.e., n1 and n2 form a ±1/2-vortex line along τ̂ axis, namely
f (φ) ∼ ±φ/2, then the (2 + 1)d O(4) NLSM reduces to a 1d

O(2) NLSM of vector N with � = ±π . Now let us consider
two linked vison loops, and in Eq. (4) τ becomes the parameter
along the ZA

2 vison loop. Since the two loops are linked, vector
N will have a ±1/2-vortex winding along the ZA

2 vison loop:∮
dτ εabN

a∂τN
b = ±π. (5)

Combining Eq. (4) and Eq. (5) together, we conclude that this
linking configuration (which corresponds to a braiding process
in the space-time) would contribute factor ±i to the action. In
other words, the linking configuration in Fig. 1(b) corresponds
to a ±1/4 instanton of the four-component vector n in the
(2 + 1)d space-time.

Now let us consider a 2d SPT state withZ2 global symmetry
only, and couple it to a Z2 gauge field. This SPT state can be
described by the same field theory Eq. (1), and under the
Z2 symmetry n → −n. A vison of this Z2 gauge field can
be viewed as a bound state between the ZA

2 vison and ZB
2

vison discussed previously. Then the linking configuration in
Fig. 1(b) can be interpreted as creating a pair of visons, self-
twisting one vison by 2π , then annihilating them. The phase
±i corresponds to topological spin-±1/4 of the vison, which
is consistent with the semion and antisemion statistics of the
vison proved in Ref. [7].

All the analysis above can be straightforwardly generalized
to ZN gauge theory coupled to a 2d ZN SPT state. The
2d ZN SPT state is described by the same field theory

Eq. (1) [15], where � = 2πk, k = 0,1, . . . ,N − 1. The same
analysis above leads to the result that the topological spin of the
2π/N flux excitations can be k/N2; namely self-twisting such
excitation will grant its wave function a phase exp(2πik/N2).

3d loop statistics. Now we consider 3d bosonic SPT states
withZA

2 × ZB
2 × ZC

2 symmetry. In terms of field theory, one of
these SPT states is described by the following (3 + 1)d O(5)
NLSM:

S =
∫

d3xdτ
1

g
(∂μn)2 + i�

�4
εabcden

a∂xn
b∂yn

c∂zn
d∂τn

e,

(6)

where �4 = 8π2/3 is the volume of a four-dimensional sphere
with unit radius. Under the ZA

2 × ZB
2 × ZC

2 symmetry, the
five-component vector n transforms as

ZA
2 : n1,n2 → −n1, − n2, n3,4,5 → n3,4,5;

ZB
2 : n2,n3 → −n2, − n3, n1,4,5 → n1,4,5;

ZC
2 : n4,n5 → −n4, − n5, n1,2,3 → n1,2,3. (7)

Now let us couple this SPT state to the ZA
2 × ZB

2 × ZC
2 gauge

field, and consider the statistics between the three loops in
Fig. 1(a), in which the base loop is a vison loop of the ZA

2
gauge field, and it is linked with vison loops of both ZB

2 and
ZC

2 gauge fields.
A vison loop can be bound with either a +1/2 vortex

or −1/2 vortex; both cases exist in the system, and they
correspond to different excitations. As an example let us study
the braiding statistics of vison loops bound with the +1/2
vortex. The choice of +1/2 vortex gives each vison loop an
orientation, as marked out in Fig. 1(a). Let us first look at
the ZB

2 vison loop. Following the same calculation as Eq. (4),
because the ZB

2 vison loop is bound with a half-vortex loop
of (n2,n3), the O(5) NLSM with � = 2π is reduced to an
O(3) NLSM with � = π in the (1 + 1)d world sheet of the
ZB

2 vison loop, and the three-component vector on this world
sheet is N ∼ (n1,n4,n5):

S1d,B =
∫

dxdτ
1

g
(∂μ N)2 + iπ

4π
εabcN

a∂xN
b∂τN

c. (8)

On the (1 + 1)d world sheet of the ZB
2 vison loop, the braiding

between the ZB
2 and ZC

2 vison loops corresponds to the space-
time configuration N(x,τ ) in Fig. 2, and this configuration
carries a 1/2 O(3) instanton number; thus it will contribute a
factor i to the action. This implies that the three-loop braiding
statistics angle is θBC,A = π/2. The statistics angle θAC,B can
be calculated in the same way after interchanging n1 and n3

in the O(5) vector, which will leads to factor −1 due to the
antisymmetrization in the � term in Eq. (6). Thus θAC,B =
−π/2.

The loop braiding statistics can also be understood in a
different way. Reference [16] pointed out that the three-loop
braiding in Fig. 1(a) can also be viewed as a link of the ZB

2 and
ZC

2 vison loops braiding with the ZA
2 vison loop, as illustrated

in Fig. 3(a). This link-loop braiding statistics can be described
by the NLSM as well. As the vison link braid through the vison
loop, the space-time configuration of the O(5) vector n around
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FIG. 2. (Color online) The space-time configuration of N ∼
(n1,n4,n5) on the world sheet of the ZB

2 vison loop (in red) as the
ZC

2 vison loop (in green) braiding around it. Each red line is a time
slice, at which moment the corresponding three-loop configuration is
shown below.

the vison link can be described as follows:

n1 = cos α(τ ),

n2 = sin α(τ )N1(x,y,z),

n3 = sin α(τ )N2(x,y,z),

n4 = sin α(τ )N3(x,y,z),

n5 = sin α(τ )N4(x,y,z),

(9)

where N = (N1,N2,N3,N4) is an O(4) unit vector |N|2 = 1
that describes the configuration of the (linked) half-vortex
loops bound to the vison loops of ZB

2 and ZC
2 . The time

τ (running from 0 to 1) parametrizes a full braiding of the
ZB

2 × ZC
2 vison link with the ZA

2 vison loop. Suppose the n1

component is energetically more favored, then the ZA
2 branch

cut disk bordered by the ZA
2 vison loop will be bound with

a n1 domain wall. Let the braiding of the ZB
2 × ZC

2 vison
link initiate from one side of the domain wall, and end up
at the other side of the domain wall, then α(τ ) will be a
continuous function satisfying α(0) = π , α(1) = 0. Plugging
the configuration Eq. (9) into the NLSM Eq. (6), the O(5) �

a

θBC,A

A

B

C

b

θAC,B

A
B

C

c

θAB,C

A B
C

FIG. 3. (Color online) (a) Braiding a link of the ZB
2 and ZC

2 vison
loops with the ZA

2 vison loop also accumulates the phase θBC,A. (b),
(c) The three-loop braiding process that corresponds to the statistic
angle θAC,B (θAB,C). The light blue torus indicates the surface traced
out by the ZA

2 vison loop through the braiding processes, which can
be considered as the Gaussian surface that measures the ZA

2 charge
enclosed. Small arrows on the loops mark out the loop orientation.

term of n is reduced to an O(4) � term of N at � = 2π :

−
∫ 1

0
dτ ∂τα sin3 α

∫
d3x

2πi

�4
εabcdN

a∂xN
b∂yN

c∂zN
d

=
∫

d3x
2πi

�3
εabcdN

a∂xN
b∂yN

c∂zN
d. (10)

According to our previous calculation, the linking config-
uration between the (N1,N2) half-vortex loop and (N3,N4)
half-vortex loop corresponds to the 1/4 O(4) soliton in the 3d

space, so the above O(4)� term in Eq. (10) will result in a
π/2 phase angle accumulated in the link-loop braiding, which
equals the three-loop braiding angle θBC,A calculated already
in this Rapid Communication.

The nontrivial link-loop braiding statistics implies that
the ZB

2 × ZC
2 vison link must carry the charge of the ZA

2
gauge field. Let us denote the ZA

2 charge carried by the
ZB

2 × ZC
2 vison link as qA

BC . It is related to the braiding angle
by θBC,A = −πqA

BC . The minus sign is due to the reversed
link-loop braiding direction as shown in Fig. 3(a) (which
corresponds to the positive three-loop braiding direction). As
shown in Fig. 3(b), the torus traced out by the ZA

2 vison loop
through braiding with the ZC

2 vison loop (in the linking with
theZB

2 vison loop) actually forms a Gaussian surface enclosing
the ZC

2 vison loop. So the three-loop braiding statistics angle
θAC,B measures the ZA

2 charge carried by the ZC
2 vison

loop in the ZB
2 × ZC

2 link, denoted qA
C , and θAC,B = πqA

C .
Similarly from Fig. 3(c), the three-loop braiding statistics angle
θAB,C measures the ZA

2 charge carried by the ZB
2 vison loop

in the same ZB
2 × ZC

2 link, denoted qA
B , and θAB,C = πqA

B .
Obviously, qA

BC = qA
B + qA

C ; thus

θAB,C + θBC,A + θAC,B = 0, (11)

which is precisely the cyclic relation [8,16], and it implies
that θAB,C = 0 (given θBC,A = π/2 and θAC,B = −π/2 as
previously calculated).

θAB,C can also be computed as follows: θAB,C corresponds
to braiding ZA

2 and ZB
2 vison loops, both of which are linked

to a ZC
2 vison loop. This process can be divided into two

steps: first moving the ZB
2 vison loop through the ZA

2 vison
loop, then moving the ZA

2 vison loop through the ZB
2 vison

loop. The first step (see Fig. 4) is equivalent to creating a
pair of ZB

2 vison-antivison (vison and antivison have semion
and antisemion statistics) at the 2d ZB

2 × ZC
2 SPT phase, then

braiding the ZB
2 vison (or antivison) around the ZC

2 vison, and
annihilating the vison-antivison pair. This step will contribute
a phase factor i to the action. The second step is equivalent

A A

B B

C C

FIG. 4. (Color online) Illustration of moving ZB
2 vison loop

through the ZA
2 vison loop. The ZA

2 vison loop borders a branch
cut disk, which can be viewed as a 2dZB

2 × ZC
2 SPT. When the ZB

2

vison loop pokes through this disk, a pair of ZB
2 semion-antisemion

are created, braided with the ZC
2 vison, and annihilated.
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to creating and annihilating a pair of ZA
2 visons at the 2d

ZA
2 × ZC

2 SPT phase, and braiding around the ZC
2 vison in

between, which will contribute factor −i. The two processes
together will lead to a trivial phase factor, namely θAB,C = 0.

More “conventionally,” θBC,A and θAC,B can be interpreted
in the “decorated domain wall” picture [17]. In our NLSM
Eq. (6), the ZA

2 vison loop is the boundary of a 2d disk of
branch cut of coupling between n1 components. According to
Ref. [18], after integrating out n1, the effective field theory on
this 2d disk is the same as Eq. (1) with � = 2π , except now the
O(4) vector is (n2,n3,n4,n5); i.e., this 2d disk can be viewed as
a 2d SPT state withZB

2 × ZC
2 symmetry, which is precisely the

decorated domain wall picture. Then after gauging the ZB
2 and

ZC
2 symmetry, the vison loop statistics reduces to the anyon

statistics of the 2d ZB
2 × ZC

2 topological order, which is what
we have already computed using Eq. (1).

We can also consider the 3d SPT state with ZA
2 × ZB

2
symmetry. There are in total three different nontrivial 3d

bosonic SPT states with this symmetry [3]. The first state can
be constructed using the previously discussed ZA

2 × ZB
2 × ZC

2
SPT state, and break its subgroupZB

2 × ZC
2 down to one diago-

nal Z2 symmetry; namely now the O(5) vector n transforms as

ZA
2 : n1,n2 → −n1, − n2, n3,4,5 → n3,4,5;

ZB
2 : n1 → n1, n2,3,4,5 → −n2,3,4,5. (12)

Now a ZB
2 vison loop corresponds to a bound state between

the ZC
2 and ZB

2 vison loops in the previous case. Thus [19]

θBB,A = 2θBC,A = π,

θAB,B = θAC,B + θAB,C = ±π/2. (13)

All the other braiding angles are zero. The second type of
3d SPT state corresponds to interchanging ZA

2 and ZB
2 sym-

metries; thus after gauging the symmetries, θAB,A = ±π/2,
θAA,B = π . The third type of SPT state is equivalent to the
two SPT states discussed above weakly coupled together;
thus

θAB,A = θAB,B = ±π/2, θAA,B = θBB,A = π. (14)

In summary, we have computed the anyon braiding statis-
tics, and three-loop statistics of 2d and 3d topological phases
constructed by coupling plain gauge theories to bosonic SPT
states. Our calculation is based on semiclassical field theories,
and all the braiding phases naturally come from the topological
� term in the field theory.

Acknowledgements. We acknowledge enlightening discus-
sion with Chao-Ming Jian and Meng Cheng. The authors are
supported by the the David and Lucile Packard Foundation
and NSF Grant No. DMR-1151208.

[1] A. M. Polyakov, Gauge Fields and Strings (Harwood Academic
Publishers, 1987).

[2] A. Y. Kitaev, Ann. Phys. 303, 2 (2003).
[3] X. Chen, Z.-C. Gu, Z.-X. Liu, and X.-G. Wen, Phys. Rev. B 87,

155114 (2013).
[4] X. Chen, Z.-C. Gu, Z.-X. Liu, and X.-G. Wen, Science 338,

1604 (2012).
[5] D. A. Ivanov, Phys. Rev. Lett. 86, 268 (2001).
[6] A. Y. Kitaev, Ann. Phys. 321, 2 (2006).
[7] M. Levin and Z.-C. Gu, Phys. Rev. B 86, 115109 (2012).
[8] C. Wang and M. Levin, arXiv:1403.7437.
[9] H. Moradi and X.-G. Wen, arXiv:1404.4618.

[10] J. Wang and X.-G. Wen, arXiv:1404.7854.

[11] S. Jiang, A. Mesaros, and Y. Ran, arXiv:1404.1062.
[12] A. Vishwanath and T. Senthil, Phys. Rev. X 3, 011016 (2013).
[13] C. Xu, Phys. Rev. B 87, 144421 (2013).
[14] C. Xu and T. Senthil, Phys. Rev. B 87, 174412 (2013).
[15] Z. Bi, A. Rasmussen, and C. Xu, arXiv:1309.0515.
[16] C.-M. Jian and X.-L. Qi, arXiv:1405.6688.
[17] X. Chen, Y.-M. Lu, and A. Vishwanath, Nat. Commun. 5, 3507

(2014).
[18] Z. Bi, A. Rasmussen, and C. Xu, Phys. Rev. B 89, 184424

(2014).
[19] Here θBB,A stands for the full braiding statistics angle between

two ZB
2 vison loops while they are both linked with a ZA

2 vison
loop.

081110-4

http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1103/PhysRevB.87.155114
http://dx.doi.org/10.1103/PhysRevB.87.155114
http://dx.doi.org/10.1103/PhysRevB.87.155114
http://dx.doi.org/10.1103/PhysRevB.87.155114
http://dx.doi.org/10.1126/science.1227224
http://dx.doi.org/10.1126/science.1227224
http://dx.doi.org/10.1126/science.1227224
http://dx.doi.org/10.1126/science.1227224
http://dx.doi.org/10.1103/PhysRevLett.86.268
http://dx.doi.org/10.1103/PhysRevLett.86.268
http://dx.doi.org/10.1103/PhysRevLett.86.268
http://dx.doi.org/10.1103/PhysRevLett.86.268
http://dx.doi.org/10.1016/j.aop.2005.10.005
http://dx.doi.org/10.1016/j.aop.2005.10.005
http://dx.doi.org/10.1016/j.aop.2005.10.005
http://dx.doi.org/10.1016/j.aop.2005.10.005
http://dx.doi.org/10.1103/PhysRevB.86.115109
http://dx.doi.org/10.1103/PhysRevB.86.115109
http://dx.doi.org/10.1103/PhysRevB.86.115109
http://dx.doi.org/10.1103/PhysRevB.86.115109
http://arxiv.org/abs/arXiv:1403.7437
http://arxiv.org/abs/arXiv:1404.4618
http://arxiv.org/abs/arXiv:1404.7854
http://arxiv.org/abs/arXiv:1404.1062
http://dx.doi.org/10.1103/PhysRevX.3.011016
http://dx.doi.org/10.1103/PhysRevX.3.011016
http://dx.doi.org/10.1103/PhysRevX.3.011016
http://dx.doi.org/10.1103/PhysRevX.3.011016
http://dx.doi.org/10.1103/PhysRevB.87.144421
http://dx.doi.org/10.1103/PhysRevB.87.144421
http://dx.doi.org/10.1103/PhysRevB.87.144421
http://dx.doi.org/10.1103/PhysRevB.87.144421
http://dx.doi.org/10.1103/PhysRevB.87.174412
http://dx.doi.org/10.1103/PhysRevB.87.174412
http://dx.doi.org/10.1103/PhysRevB.87.174412
http://dx.doi.org/10.1103/PhysRevB.87.174412
http://arxiv.org/abs/arXiv:1309.0515
http://arxiv.org/abs/arXiv:1405.6688
http://dx.doi.org/10.1038/ncomms4507
http://dx.doi.org/10.1038/ncomms4507
http://dx.doi.org/10.1038/ncomms4507
http://dx.doi.org/10.1038/ncomms4507
http://dx.doi.org/10.1103/PhysRevB.89.184424
http://dx.doi.org/10.1103/PhysRevB.89.184424
http://dx.doi.org/10.1103/PhysRevB.89.184424
http://dx.doi.org/10.1103/PhysRevB.89.184424



