Commensurate-incommensurate solid transition in the ⁴He monolayer on γ -graphyne

Jeonghwan Ahn, Hoonkyung Lee, and Yongkyung Kwon^{*}

Division of Quantum Phases and Devices, School of Physics, Konkuk University, Seoul 143-701, Korea (Received 27 May 2014; revised manuscript received 14 August 2014; published 27 August 2014)

Path-integral Monte Carlo calculations have been performed to study the ⁴He adsorption on γ -graphyne, a planar network of benzene rings connected by acetylene bonds. Assuming the ⁴He-substrate interaction described by a pairwise sum of empirical ⁴He-carbon interatomic potentials, we find that unlike α -graphyne, a single sheet of γ -graphyne is not permeable to ⁴He atoms in spite of its large surface area. One-dimensional density distributions computed as a function of the distance from the graphyne surface reveal a layer-by-layer growth of ⁴He atoms. A partially-filled ⁴He monolayer is found to exhibit different commensurate solid structures depending on the helium coverage; it shows a C_{2/3} commensurate structure at an areal density of 0.0491 Å⁻², a C_{3/3} structure at 0.0736 Å⁻², and a C_{4/3} structure at 0.0982 Å⁻². While the promotion to the second layer starts beyond the C_{4/3} helium coverage, the first ⁴He layer is found to form an incommensurate triangular solid when compressed with the development of the second layer.

DOI: 10.1103/PhysRevB.90.075433

PACS number(s): 67.25.bd, 67.25.bh, 67.80.B-, 75.10.-b

For the past few decades, a system of ⁴He atoms adsorbed on a substrate has been intensively studied to investigate physical properties of low-dimensional quantum fluids. Carbon allotropes have often been chosen as substrates for this purpose because they provide strong enough interactions for ⁴He adsorbates to show multiple distinct layered structures [1]. As a result of the interplay between ⁴He-⁴He and ⁴Hesubstrate interaction, these helium adlayers are known to exhibit rich phase diagrams including various commensurate and incommensurate solids. On the surface of graphite, a monolayer of ⁴He atoms was observed to be crystallized to a C_{1/3} commensurate solid at an areal density of 0.0636 Å⁻² and to go through various domain structures before freezing into an incommensurate triangular solid as the helium coverage increases [2,3]. Similar quantum phase transitions were predicted for the ⁴He monolayer on a single graphene sheet [4-6]. While no superfluidity has been observed in the first ⁴He layer, the second layer on graphite does show finite superfluid response at intermediate helium coverages as first revealed by torsional oscillator measurements of Crowell and Reppy [3]. These experimentally-identified quantum phases of the ⁴He layers on graphite were confirmed by path-integral Monte Carlo (PIMC) calculations performed first by Pierce and Manousakis [7–11] and later by Corboz et al. [12]. Whether the second-layer superfluid phenomenon is related to two-dimensional supersolidity, however, is still an ongoing issue pursued heavily by some experimentalists.

The ⁴He adsorption on the surface of a carbon allotrope other than graphite or graphene has recently been investigated. While ⁴He atoms adsorbed on the interstitials or the groves of carbon nanotube bundles showed characteristics of one-dimensional quantum fluid [13,14], a series of theoretical calculations predicted well-distinct layered structures for ⁴He atoms adsorbed on the outer surfaces of fullerene molecules with each near-spherical helium layer exhibiting various quantum states depending on the number of ⁴He adatoms [15–18]. More recently, graphynes, $sp - sp^2$ hybridized

two-dimensional networks of carbon atoms [19-21], have attracted much interest because of their intriguing electronic features such as both symmetric and asymmetric Dirac cones [22,23] and high carrier mobility [24]. Furthermore, they have much larger surface area than graphene, which has prompted intensive investigation of their possible applications as high-capacity hydrogen storage [25,26] and Li-ion battery anode materials [27]. Using the PIMC method, two of us recently studied the ⁴He adsorption on α -graphyne [28], a honeycomb structure of both sp^2 -bonded carbon atoms and *sp*-bonded ones. Due to the presence of much larger hexagons than those of graphene, in-plane adsorption of ⁴He atoms was observed on α -graphyne with a single ⁴He atom being embedded to the center of each hexagon. The first layer of ⁴He atoms adsorbed on the ⁴He-embedded α -graphyne was found to undergo a Mott-insulator to commensurate-solid transition which was interpreted as a transition from a spin liquid of frustrated antiferromagnets to a ferromagnetic phase with the introduction of Ising pseudospins based on the sublattice symmetry of the honeycomb structure [28].

Here we have performed the PIMC simulations to study the ⁴He adsorption on γ -graphyne, the most stable structure among graphynes [29]. With the increasing number of ⁴He adatoms, multiple distinct helium layers are observed on γ -graphyne. Because of larger hexagons of graphyne, these ⁴He adsorbates show a richer phase diagram than the corresponding ones on graphite or graphene. Unlike α -graphyne, however, even a single sheet of γ -graphyne is found to be impermeable to ⁴He atoms. It is found that the ⁴He monolayer exhibits various commensurate solid structures at different areal densities before crystallizing into an incommensurate triangular solid at its completion.

In this study, a single γ -graphyne sheet is fixed at z = 0and the helium-graphyne interaction is described by a sum of pair potentials between the carbon atoms and a ⁴He atom. For the ⁴He-C interatomic potential, we use an isotropic 6-12 Lennard-Jones potential proposed by Carlos and Cole [30] to fit helium scattering data from graphite surfaces. While Fig. 1(a) shows a contour plot of the minimum potential energy $V_{\min}(x, y)$ above each point (x, y) on the graphyne surface,

^{*}ykwon@konkuk.ac.kr

FIG. 1. (Color online) (a) A contour plot of the minimum ⁴Hegraphyne potential, $V_{\min}(x, y)$, above each point (x, y) on γ -graphyne and (b) the ⁴He-graphyne potential as a function of the distance z from the graphyne surface along different symmetry directions. The black dots in (a) represent the positions of carbon atoms on the γ -graphyne surface. In (b), the blue, the red, and the black line correspond to the threefold symmetry direction, the sixfold direction, and the direction of a saddle point [see white numbers and letter S in (a)], respectively. The length unit is Å and the potential energies are in units of Kelvin.

Fig. 1(b) presents our ⁴He-graphyne potential as a function of the distance z from graphyne along three different symmetry directions perpendicular to the graphyne surface. As seen in Fig. 1(a), there are three adsorption sites per graphyne unit cell: two global minima of the ⁴He-graphyne potential located at the centers of big irregular hexagons and one local minimum located at the center of a small regular hexagon (or a benzene ring). A bigger hexagon, which has much larger area than a smaller one, is expected to accommodate more than one ⁴He atom. Figure 1(b) shows that the global minima in the threefold symmetry directions are located closer to the graphyne surface by ~ 0.5 Å than the local minima in the sixfold symmetry directions, and the potential energy difference between them is as large as ~ 30 K. From this we conjecture that the ⁴He adatoms predominantly occupy the global minimum sites at low helium coverages, rather than the local minima. We here note that there is a strong repulsive potential barrier for ⁴He atoms as they approach the graphyne surface, i.e.,

 $z \rightarrow 0$, suggesting that ⁴He atoms cannot penetrate through a γ -graphyne sheet from one side to the other.

We here note that this approach of modeling ⁴He-substrate potential with a pairwise sum of the empirical ⁴He-C interatomic potentials has some limitation in describing the ⁴Hegraphyne interaction because graphyne involves sp-bonded C atoms as well as sp^2 -bonded ones. Without a more plausible ⁴He-graphyne potential, we tested the reliability of our PIMC results by varying the well depth of the ⁴He-C pair potential; little change was observed in the structural features of the ⁴He adlayers when the potential well between 4 He and sp carbon varied by $\pm 15\%$ from the ⁴He-C potential well for sp^2 carbon. From this we expect that the main PIMC results presented here will be preserved when more accurate ⁴He-graphyne potential is available. For the ⁴He-⁴He interaction, we use a well-known Aziz potential [31]. Since the exact form of thermal many-body density matrix is not known at a low temperature T, one can resort to the path-integral representation where the lowtemperature density matrix is expressed by a convolution of M high-temperature density matrices with an imaginary time step $\tau = 1/(Mk_BT)$. Both ⁴He-⁴He and ⁴He-C pair potentials are used to derive the exact two-body density matrices at the high temperature MT [32,33], which was found to provide an accurate description of the ⁴He-graphyne interaction as well as the ⁴He-⁴He interaction with an imaginary time step of $(\tau k_B)^{-1} = 40$ K. We employ the multilevel Metropolis algorithm described in Ref. [32] to sample the imaginary time paths as well as the permutations among ⁴He atoms. To minimize finite size effects, periodic boundary conditions are applied to a fixed 3×2 rectangular simulation cell with dimensions of 20.58×23.76 Å². All PIMC simulations presented here started from random initial configurations of ⁴He atoms.

Here we consider the ⁴He adsorption only on one side of the graphyne sheet, i.e., z > 0. Figure 2 presents one-dimensional ⁴He density distributions as a function of distance z from the

FIG. 2. (Color online) One-dimensional density of ⁴He atoms adsorbed on a single γ -graphyne sheet as a function of the distance *z* (in Å) from the graphyne surface. Here *N* represents the number of ⁴He adatoms per 3 × 2 rectangular simulation cell with dimensions of 20.58 × 23.76 Å², and the computations were done at a temperature of 0.5 K.

FIG. 3. (Color online) Energy per ⁴He atom of the first ⁴He layer on γ -graphyne as a function of the helium coverage. The letters (a), (b), (c), and (d) correspond to the areal densities of 0.0491, 0.0736, 0.0859, and 0.0982 Å⁻², respectively, for which two-dimensional ⁴He density plots are shown in Fig. 4. The energies were computed at a temperature of 0.5 K.

graphyne surface for different numbers of ⁴He adatoms N per 3×2 rectangular simulation cell. These density distributions confirm the above assertion that ⁴He atoms cannot penetrate to the other side of z < 0 through a single graphyne sheet because of the presence of the strong repulsive potential barrier. As more ⁴He atoms are adsorbed, one can see the development of layered structures as evidenced by well-distinct density peaks in Fig. 2. The first sharp peak is located at $z \sim 2.7$ Å and the second peak at $z \sim 5.8$ Å, similar to the case of ⁴He on graphene [5]. We observe the emergence of the 4 He second layer when the number of ⁴He adatoms per 3×2 simulation cell increases beyond N = 48 (an areal density of 0.0982 $Å^{-2}$). With further development of the second helium layer, more ⁴He atoms are found to be squeezed into the first layer. From this we conjecture that the completed first layer would be a compressible incommensurate solid like the corresponding layer on graphene [5] or graphite [2,12]. It is found that the first layer is completed at an areal density of $\sim 0.115 \text{ Å}^{-2}$ while the corresponding value on graphene was predicted to be $\sim 0.12 \text{ Å}^{-2}$ [5]. This small (about 4%) difference suggests that the ⁴He-graphene potential is more attractive than the ⁴He-graphyne potential and graphene may accommodate more ⁴He atoms in its immediate vicinity than graphyne.

Now we discuss the energetics of the ⁴He-graphyne system, which provides some insight into the growth of the ⁴He adlayers on γ -graphyne and their different quantum phases. Figure 3 shows the energy per ⁴He atom as a function of an areal density σ . Since the energies presented here were computed at a low temperature of 0.5 K, they are close to the ground-state energies, the zero-temperature free energies, allowing us to use them to conjecture different quantum phases depending on the helium coverage. At low densities of $\sigma < 0.0736 \text{ Å}^{-2}$, the energy per ⁴He atom changes very little, indicating that each ⁴He atom occupies one of the adsorption sites, i.e., the ⁴He-graphyne potential minima. It is found that the energy per atom has the lowest value at $\sigma = 0.0491$ Å⁻² which corresponds to two ⁴He atoms per the graphyne unit cell. Noting that there are two global minima of the ⁴He-graphyne potential per the unit cell [see Fig. 1(a)], we conjecture that in the lowest energy state at $\sigma = 0.0491 \text{ Å}^{-2}$ each global minimum site is occupied by a single ⁴He atom. After filling all global minima, additional ⁴He atoms are expected to occupy the local minima located above the centers of the small hexagons, which is consistent with a slight increase in the energy per atom for 0.0491 Å⁻² < σ < 0.0736 Å⁻². Since the distances between the adsorption sites on the graphyne surface are long enough (~ 4 Å), the ⁴He-⁴He interaction is understood to have minimal effects while ⁴He atoms are filling these adsorption sites. Each adsorption site, whether it is a global minimum or a local minimum, is occupied by a single ⁴He atom at an areal density of $\sigma = 0.0736$ Å⁻². three ⁴He atoms per the graphyne unit cell, beyond which one can observe a sudden increase in the energy per atom in Fig. 3. The continuous increase of the energy per atom for $\sigma > 0.0736 \text{ Å}^{-2}$ suggests that the ⁴He-⁴He interaction as well as the ⁴He-substrate interaction plays a critical role in determining quantum states of the ⁴He monolayer at high helium coverages. One can observe a significant jump in the energy per atom at an areal density of $\sigma = 0.0982$ Å⁻², which reflects the start of the second-layer promotion concluded in the analysis of the one-dimensional density distributions of Fig. 2.

For further analysis of different phases of the ⁴He monolayer, we computed two-dimensional density distributions of ⁴He adatoms on γ -graphyne at various areal densities. In all four density plots presented in Fig. 4, a distinct density peak represents the occupancy of a single first-layer ⁴He atom. At an areal density of 0.0491 Å⁻², which corresponds to the lowest energy state, each of the irregular hexagons is seen in Fig. 4(a) to accommodate one ⁴He atom at its center, confirming our conjecture made from the energetic analysis. These ⁴He atoms form a honeycomb structure with the same primitive vectors as those of the underlying graphyne triangular lattice, which is therefore a 1×1 registered phase in the Wood's notation. It is also a C_{2/3} commensurate solid with two out of every three adsorption sites being occupied by ⁴He atoms. The lowest-energy state for the ⁴He monolayer on graphene is a $C_{1/3}$ commensurate solid [4]. We note that the $C_{2/3}$ commensurate solid on graphyne is realized at an areal density significantly lower than the $C_{1/3}$ commensurate helium coverage of 0.0636 Å⁻² on graphene. Furthermore, vacancies created in this C2/3 solid on graphyne are found to be immobile and very weakly, if ever, interacting with each other, which could be understood by high potential barrier and long distances between the neighboring adsorption sites.

As conjectured above, the local minima located at the centers of the small regular hexagons accommodate additional ⁴He atoms beyond the C_{2/3} commensurate coverage. Figure 4(b) shows another commensurate structure at an areal density of $\sigma = 0.0736$ Å⁻², where each of the adsorption sites, both global minima and local minima, is occupied by a single ⁴He atom. In this C_{3/3} commensurate structure,

FIG. 4. (Color online) Two-dimensional density distributions of the first-layer ⁴He atoms adsorbed on a single γ -graphyne sheet at areal densities of (a) 0.0491, (b) 0.0736, (c) 0.0859, and (d) 0.0982 Å⁻². The black dots represent the positions of the carbon atoms of graphyne. The length unit is Å and all contour plots are in the same color scale denoted by the color table in the upper right hand corner. The yellow dotted lines in (c) separate two different domains from each other. The PIMC calculations were done at a temperature of 0.5 K.

the ⁴He adatoms form a triangular solid structure registered by $\frac{1}{\sqrt{3}} \times \frac{1}{\sqrt{3}}$ to the graphyne triangular lattice. With further increase of the helium coverage beyond the $C_{3/3}$ solid, where the energy per ⁴He atom increases monotonically as shown in Fig. 3, the ⁴He monolayer enters a regime of various domain structures. At higher ⁴He coverages, the ⁴He-⁴He interaction as well as the ⁴He-substrate interaction is expected to affect the structure of the ⁴He monolayer. At an areal density of 0.0859 $Å^{-2}$, one can observe two different domains separated by the yellow dotted lines in Fig. 4(c); one domain involves some irregular hexagons accommodating three ⁴He atoms while the other consists of the ⁴He atoms in the $C_{3/3}$ commensurate order. Another homogeneous phase of the ⁴He monolayer is observed at an areal density of 0.0982 $Å^{-2}$, where all ⁴He atoms are accommodated by irregular hexagons and no small hexagon includes a ⁴He atom. In this phase, some irregular hexagons accommodate three ⁴He atoms and the neighboring ones include only one ⁴He atom. With an alternating order of the three-atom and the single-atom irregular hexagons, the ⁴He atoms constitute another perfect triangular solid whose primitive vectors are one half of those of the underlying graphyne structure. This $\frac{1}{2} \times \frac{1}{2}$ registered phase is a C_{4/3} commensurate solid with 4 ⁴He atoms being accommodated by a graphyne unit cell. We note that Li atoms attached to γ -graphyne could constitute an in-plane structure similar to this C_{4/3} solid as reported in Ref. [27]. As discussed above, additional ⁴He atoms beyond the C_{4/3} commensurate coverage of 0.0982 Å⁻² are promoted to the second layer that is a fluid at a low areal density like the corresponding layer on graphite. With further development of the second ⁴He layer, more ⁴He atoms are found to be squeezed into the first layer. The fully-compressed first layer shows an incommensurate triangular lattice structure like the corresponding layer on graphite.

The structural features of the helium monolayer on γ graphyne described above were also observed in the PIMC calculations for a larger system. Figure 5 shows the peak values of the static structure factors divided by the number

FIG. 5. The peak values of the static structure factor divided by the number of ⁴He atoms in the first helium layer on γ -graphyne, at three different commensurate helium coverages. Here G_1 represents the primitive vector of the reciprocal lattice of the corresponding commensurate solid. The solid (open) diamonds represent the PIMC data for the 3 × 2 (4 × 3) rectangular simulation cell, and the statistical errors are smaller than the symbol sizes.

of ⁴He adatoms at three different commensurate helium coverages, which were computed for both 3×2 and 4×3 simulation cells. For all helium coverages considered here the structure factors are found to be peaked at the reciprocal primitive vectors of the corresponding commensurate solids, whose magnitudes are 1.0576 Å⁻¹ at an areal density of $\sigma = 0.0491$ Å⁻² (C_{2/3} solid), 1.8318 Å⁻¹ at $\sigma = 0.0736$ Å⁻² (C_{3/3} solid), and 2.1152 Å⁻¹ at $\sigma = 0.0982$ Å⁻² (C_{4/3} solid). Little difference between the results for the two different system sizes suggests that the main structural features, especially three different commensurate solid structures, are not affected by the finite sizes of our systems while the shapes of the domain walls as shown in Fig. 4(c) might depend on the geometry of the simulation cell.

Our PIMC calculations have shown multiple distinct ⁴He layers on a single sheet of γ -graphyne which is not permeable to ⁴He atoms unlike α -graphyne. As in the case of ⁴He on graphite, the first ⁴He layer on γ -graphyne exhibits a commensurate-incommensurate solid transition after going through some domain-wall phases. It is compressed by the development of the second layer to become an incommensurate triangular solid when filled completely. However, the ⁴He monolayer on graphyne can be crystallized into three different commensurate solid structures at different partial helium coverages such as a 1 × 1, a $\frac{1}{\sqrt{3}}$ × $\frac{1}{\sqrt{3}}$, and a $\frac{1}{2}$ × $\frac{1}{2}$ registered phase, while the corresponding helium layer on graphite shows only one commensurate structure of a $\sqrt{3} \times \sqrt{3}$ phase. A richer phase diagram shown by the ⁴He layer on graphyne can be attributed to the fact that graphyne is more porous than graphite, and a larger hexagonal cell of graphyne can accommodate more than one ⁴He atom (see Fig. 1). While some theoretical calculations predicted that zero-point vacancies would not be thermodynamically stable in bulk solid ⁴He [34–36], a substrate potential could stabilize the vacancy formation in a commensurate ⁴He solid on a substrate. Therefore the existence of a stable commensurate structure is understood to be critical in realizing the vacancy-based supersolidity proposed originally by Andreev and Lifshitz [37]. Unlike the $C_{1/3}$ commensurate solid of ⁴He atoms on graphite where no superfluidity was observed [9], one of the three commensurate structures found in the ⁴He monolayer on γ -graphyne could manifest the superfluid response induced by vacancies, which is now under our investigation.

This work was supported by the Basic Science Research Program (2012R1A1A2006887) through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology. We also acknowledge the support from the Supercomputing Center/Korea Institute of Science and Technology Information with supercomputing resources including technical support (KSC-2014-C3-001).

- G. Zimmerli, G. Mistura, and M. H. W. Chan, Phys. Rev. Lett. 68, 60 (1992).
- [2] D. S. Greywall, Phys. Rev. B 47, 309 (1993).
- [3] P. A. Crowell and J. D. Reppy, Phys. Rev. B 53, 2701 (1996).
- [4] M. C. Gordillo and J. Boronat, Phys. Rev. Lett. 102, 085303 (2009).
- [5] Y. Kwon and D. M. Ceperley, Phys. Rev. B **85**, 224501 (2012).
- [6] J. Happacher, P. Corboz, M. Boninsegni, and L. Pollet, Phys. Rev. B 87, 094514 (2013).
- [7] M. Pierce and E. Manousakis, Phys. Rev. Lett. 81, 156 (1998).
- [8] M. Pierce and E. Manousakis, Phys. Rev. B 59, 3802 (1999).
- [9] M. E. Pierce and E. Manousakis, Phys. Rev. Lett. 83, 5314 (1999).
- [10] M. E. Pierce and E. Manousakis, Phys. Rev. B 62, 5228 (2000).
- [11] D. M. Ceperley and E. Manousakis, J. Chem. Phys. 115, 10111 (2001).

- [12] P. Corboz, M. Boninsegni, L. Pollet, and M. Troyer, Phys. Rev. B 78, 245414 (2008).
- [13] M. W. Cole, V. H. Crespi, G. Stan, C. Ebner, J. M. Hartman, S. Moroni, and M. Boninsegni, Phys. Rev. Lett. 84, 3883 (2000).
- [14] M. C. Gordillo, Phys. Rev. Lett. 101, 046102 (2008).
- [15] Y. Kwon and H. Shin, Phys. Rev. B 82, 172506 (2010).
- [16] H. Shin and Y. Kwon, J. Chem. Phys. 136, 064514 (2012).
- [17] H. Shin and Y. Kwon, J. Chem. Phys. 138, 064307 (2013).
- [18] S. Park and Y. Kwon, Phys. Rev. E. 89, 042118 (2014).
- [19] R. H. Baughman, H. Eckhardt, and M. Kertesz, J. Chem. Phys. 87, 6687 (1987).
- [20] V. R. Coluci, S. F. Braga, S. B. Legoas, D. S. Galvão, and R. H. Baughman, Phys. Rev. B 68, 035430 (2003).
- [21] V. R. Coluci, S. F. Braga, S. B. Legoas, D. S. Galvão, and R. H. Baughman, Nanotechnology 15, S142 (2004).
- [22] D. Malko, C. Neiss, F. Viñes, and A. Görling, Phys. Rev. Lett. 108, 086804 (2012).

- [23] B. G. Kim and H. J. Choi, Phys. Rev. B 86, 115435 (2012).
- [24] J. Chen, J. Xi, D. Wang, and Z. Shuai, J. Phys. Chem. Lett. 4, 1443 (2013).
- [25] H. Hwang, Y. Kwon, and H. Lee, J. Phys. Chem. C 116, 20220 (2012).
- [26] J. Koo, H. Hwang, B. Huang, H. Lee, H. Lee, M. Park, Y. Kwon, S.-H. Wei, and H. Lee, J. Phys. Chem. C 117, 11960 (2013).
- [27] H. Hwang, J. Koo, M. Park, N. Park, Y. Kwon, and H. Lee, J. Phys. Chem. C 117, 6919 (2013).
- [28] Y. Kwon, H. Shin, and H. Lee, Phys. Rev. B 88, 201403(R) (2013).
- [29] H. Shin, S. Kang, J. Koo, H. Lee, J. Kim, and Y. Kwon, J. Chem. Phys. 140, 114702 (2014).

- [30] W. E. Carlos and M. W. Cole, Surf. Sci. 91, 339 (1980).
- [31] R. A. Aziz, M. J. Slaman, A. Koide, A. R. Allnatt, and W. J. Meath, Mol. Phys. 77, 321 (1992).
- [32] D. M. Ceperley, Rev. Mod. Phys. 67, 279 (1995).
- [33] R. E. Zillich, F. Paesani, Y. Kwon, and K. B. Whaley, J. Chem. Phys. 123, 114301 (2005).
- [34] D. M. Ceperley and B. Bernu, Phys. Rev. Lett. **93**, 155303 (2004).
- [35] B. K. Clark and D. M. Ceperley, Phys. Rev. Lett. 96, 105302 (2006).
- [36] M. Boninsegni, A. B. Kuklov, L. Pollet, N. V. Prokof'ev, B. V. Svistunov, and M. Troyer, Phys. Rev. Lett. 97, 080401 (2006).
- [37] A. F. Andreev and I. M. Lifshitz, Sov. Phys. JETP 29, 1107 (1969).