
PHYSICAL REVIEW B 90, 075431 (2014)

Plasmons in a superlattice of fullerenes or metallic shells
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A theory for the collective plasma excitations in a linear periodic array of spherical two-dimensional electron
gases (S2DEGs) is presented. This is a simple model for an ultra thin and narrow microribbon of fullerenes
or metallic shells. Coulomb coupling between electrons located on the same sphere and on different spheres is
included in the random-phase approximation. Electron hopping between spheres is neglected in these calculations.
The resulting plasmon-dispersion equation is solved numerically. Results are presented for a superlattice of
single-wall S2DEGs as a function of the wave vector. The plasmon dispersions are obtained for different
spherical separations. We show that the one-dimensional translational symmetry of the lattice is maintained in
the plasmon spectrum. Additionally, we compare the plasmon dispersion when the superlatice direction is parallel
or perpendicular to the axis of quantization. However, because of anisotropy in the Coulomb matrix elements,
there is anticrossing in the plasmon dispersion only in the direction perpendicular to the quantization axis. The
S2DEG may serve as a simple model for fullerenes, when their energy bands are far apart.
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I. INTRODUCTION

Research on the properties of carbon-based materials has
soared over the years mainly because it may be found in a
variety of allotropic forms. These include graphite, graphene,
carbon nanotubes, and nanoscrolls as well as fullerenes. In
particular, the discovery of fullerenes [1–7] has led to several
impressive advances in the study of carbon nanoparticles [8].
The optical properties of fullerenes have been investigated
from both an experimental and a theoretical point of view
[9–12]. Since optical measurements are a noninvasive probe of
samples, they provide reliable information about the electronic
properties of fullerenes.

As a result of the recent advances in techniques such as
solvent-assisted self-assembly [13], fullerenes can now be
produced in abundant quantities even to form thin films of
fullerene-like MoS nanoparticles [14] and have stimulated
renewed interest in these materials. Additionally, the ability
to control optical fields has now made it feasible to ascertain
the plasmon excitations in prearranged arrays of fullerenes
[13–15]. We consider a simple model for an ultranarrow
and ultrathin film of fullerenes forming a microribbon by
employing a one-dimensional (1D) superlattice. In this work,
we investigate the photoexcitation of plasmons in a regular
periodic array of fullerenes shown schematically in Fig. 1. Our
goal is to thoroughly analyze the dependence of the plasma
frequency on the relative orientation of the electromagnetic
probe field with respect to the axis along which the periodicity
occurs.

We demonstrate that the optical absorption spectra of such
nanospheres exhibit a rich dependence on the magnitude and
direction of the transfer momentum. The wave functions have
spatial symmetry originating from those of the individual
fullerenes. Therefore, the natural first step is to specify the
model which we employ for each buckyball. For simplicity
and ease of mathematical analysis, but at the same time
retaining the essential geometrical characteristics, we assume
that an electron gas is confined to the surface of a sphere
of chosen radius [16–18]. This spherical two-dimensional

electron gas (S2DEG) is characterized by the electron effective
mass m∗ and the number NF of occupied energy levels.
Our model enables us to exploit the spherical symmetry of
the particulates in the Bloch-Floquet theorem for generating
wave functions in a linear array [20]. This effective mass
model is suitable for “small” nanospheres, i.e., when the
separation between energy levels is large. Additionally, the
energy band structure may be included in our formalism
through form factors for the Coulomb matrix elements and
the polarization function. In this regard, we note that electron
energy loss spectroscopy (EELS) has been used to probe the
plasmon excitations for concentric-shell fullerenes embedded
in a film [9]. Furthermore, perfectly spherical shells were used
in the theoretical modeling of EELS data and the agreement
was good. The model of Lucas et al. [21] was shown to
be qualitatively adequate for understanding the optical data
on multishell fullerenes. In that work [21], the ultraviolet
dielectric tensor of monolayer graphene is adapted to the
spherical geometry of a fullerene by averaging over the three
possible orientations of the c axis. Thus, a continuum model
was used by Lucas et al. [21] starting from the planar local
dielectric function of planar monolayer graphene.

The rest of this paper is organized as follows. Section II
reports our theoretical framework, and Sec. III, the results
based on it. Illustrative comparisons with data sets are given
there as well. The last section, Sec. IV, is devoted to a short
summary and relevant comments.

II. GENERAL FORMULATION OF THE PROBLEM

Let us consider a linear array of S2DEGs, with their
centers located on the x axis. The center of each shell
is at x = na (n = 0,±1,±2, . . . ). Each “ball” consists of
N concentric shells with radii R1 < R2 < · · · < RN , where
a > 2RN . For simplicity, we assume that each spherical shell is
infinitesimally thin. We construct the electron wave functions
in the form of Bloch combinations as described by Huang and
Gumbs for an array of rings [19] and by Gumbs and Aizin for
an array of cylinders [20]. In the absence of tunneling between
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FIG. 1. (Color online) Schematic of a superlattice of spherical
two-dimensional electron gases (a) perpendicular to and (b) along the
axis of quantization.

the shells, the single-particle Bloch wave functions for an array
with the periodicity of a lattice are given by

〈r|ν〉 = 1

Nx

Nx
2∑

j=− Nx
2

eikxja�lm(�r − jaêx),

(1)
�lm(�r − jaêx) = Rj (r)

R
Ylm(�),

where ν = {kx,l,m} is a composite index for the electron
eigenstates, �lm(�r) is the wave function for an electron,
with angular momentum quantum numbers l = 0,1,2, . . . ,
and |m| � l,R2

j (r) = δ(r − Rj ). Additionally, kx = 2π
Lx

n, with

n = 0,±1,±2, . . . ,±Nx

2 . Here, Nx = Lx/a is the number of
nanoballs in the array with periodic boundary conditions.
Electron motion in the azimuthal direction around the shells
is quantized and characterized by the angular momentum
quantum number l. The electron spectrum in each shell is
discrete and given by εν = �

2l(l + 1)/2μ∗R2. The spectrum
does not depend on m and kx .

Plasmons may be obtained from the solution of the density
matrix equation, as described above. We have

i�
∂ρ̂

∂t
= [Ĥ,ρ̂]

[20]. For Ĥ = Ĥ0 − eϕ̃ and ρ̂ = ρ̂0 + δρ̂, with 〈iν|Ĥ0|i ′ν ′〉 =
εiνδνν ′δii ′ , 〈iν|ρ̂0|i ′ν ′〉 = 2f0(εiν)δνν ′δii ′ , we obtain, in the
lowest order of perturbation theory,

〈iν|δρ̂|i ′ν ′〉 = 2e
f0(εν) − f0(εν ′)

�ω − εν + εν ′
〈iν|ϕ̃(r)|i ′ν ′〉, (2)

where f0(ε) is the Fermi function and ϕ̃(r) is the induced
potential. The potential ϕ̃(r) satisfies Poisson’s equation,

∇2ϕ̃(r) = 4πe

εs

δn(r,ω), (3)

where δn(r,ω) is the fluctuation of the electron density. Making
use of the relation

δn(r,ω) =
∑
ii ′

∑
ν,ν ′

〈r|iν〉〈iν|δρ̂|i ′ν ′〉〈i ′ν ′|r〉 (4)

and Eq. (2), we may write in Fourier representation

δn(q,ω) = 2e

V

∑
ν,ν ′

f0(εν) − f0(εν ′)

�ω − εν + εν ′
〈i ′ν ′|e−iq·r|iν〉

×
∑

q′
ϕ̃(q′)〈iν|eiq′ ·r|i ′ν ′〉, (5)

where δn(q,ω) and ϕ̃(q) are 3D Fourier transforms of δn(r,ω)
and ϕ̃(r), respectively, and q = (qx,qy,qz). The matrix ele-
ments 〈iν|eiq·r|i ′ν ′〉 with wave functions 〈r|ν〉 given in Eq. (1)
may be evaluated as

〈iν|eiq·r|i ′ν ′〉 = 4π δii ′δk′
x ,kx−qx+GN

∑
L,M

iLjL(qRi)Y
∗
LM (q̂)

×
∫

d� Y ∗
lm(�)YLM (�) Yl′m′ (�), (6)

where GN = 2πN/a with N = 0,±1,±2, . . . . Substituting
Eq. (6) into Eq. (5), we obtain, after some straightforward
algebra,

δn(q) = 8πe

V

Lx

a

∑
i

∑
L

∑
l,l′

f0(εl) − f0(εl′)

�ω + εl′ − εl

(2l + 1)

× (2l′ + 1)

(
l l′ L

0 0 0

)2 ∑
M

jL(qRi)YLM (q̂)

×
∞∑

N=−∞

∑
q ′

y ,q
′
z

ϕ̃(qx + GN,q ′
y,q

′
z)YLM (q̂′

N )jL

× (√
(qx + GN )2 + q ′ 2

y + q ′ 2
z

)
. (7)

The potential ϕ̃(q) may be written in terms of δn(q,ω) as
ϕ̃(q) = −4πeδn(q,ω)/εsq

2. Using this relation in Eq. (7), we
obtain

δn(q,ω) = −32π2e2

a2εs

∑
L,M

�L(ω)YLM (q̂)jL(qR) UL,M (qx),

(8)

where �L(ω) is the susceptibility function in a single spherical
shell of radius R given by

�L(ω) =
∑
l,l′

f0(εl) − f0(εl′)

�ω + εl′ − εl

(2l + 1)(2l′ + 1)

(
l l′ L

0 0 0

)2

(9)

and

UL,M (qx) = 1

LyLz

∞∑
N=−∞

∑
qy ,qz

δn(qx + GN,qy,qz,ω)

(qx + GN )2 + q2
y + q2

z

jL

× (√
(qx + GN )2 + q2

y + q2
z R

)

×Y ∗
LM

⎛
⎝ (qx + GN,qy,qz)√

(qx + GN )2 + q2
y + q2

z

⎞
⎠ . (10)

Substituting the expression for δn(q) given in Eq. (8) into
Eq. (10), we obtain a set of linear equations which have

075431-2



PLASMONS IN A SUPERLATTICE OF FULLERENES OR . . . PHYSICAL REVIEW B 90, 075431 (2014)

nontrivial solutions provided their determinant is 0,

∑
L,M

[
δLL′δMM ′ + 8e2

aεs

�L(ω)VL′M ′,LM (qx,a)

]
ULM (qx,ω)

= 0, (11)

with L,L′ = 1,2,3, . . . and M,M ′ = 0,±1,±2, . . . ,±L.
Also, we have that

VL′M ′,LM (qx,a) =
∞∑

N=−∞
V

(N)
L′M ′,LM (qx,a), (12)

is the matrix for the Fourier transform of the Coulomb
interaction potential between electrons on the spherical shells
and

V
(N)
L′M ′,LM (qx,a) =

∫ ∞

−∞
dqy

∫ ∞

−∞
dqz

jL(qNR)jL′(qNR)

q2
N

×Y ∗
L′M ′(q̂N )YLM (q̂N ), (13)

qN =
(

qx + N
2π

a

)
i + qyj + qzk. (14)

It follows that VL′M ′,LM (qx,a) = V ∗
LM,L′M ′(qx,a) and therefore

we have only six independent matrix elements for the Coulomb
interaction. Equation (12) gives the Coulomb interaction
matrix elements between two electron states with quantum
numbers {L,M} and {L′,M ′}. In the case where the external
probe uses circularly polarized light, only L = L′ = 1 and
M,M ′ = 0,±1 are included in the dispersion equation.

Equation (11) determines the dispersion equation for the
collective plasmon excitations. The frequencies of these
excitations are dispersive, unlike the case for a single shell,
a pair of concentric shells, or a pair of nonoverlapping shells
not sharing a common center. Additionally, a new feature is
that for the superlattice, the plasmon modes depend not only
on L but also on M . At T = 0 K, it is a straightforward
matter to evaluate numerically the susceptibility function
�L(ω). Equation (11) shows that the symmetry of the lattice
is maintained in the dispersion equation and that the plasmon
excitations depend on the wave vector qx in the x direction
with period G = 2π/a as well as the wave vector qy . At this
point, it should be clear that there is no change in the formal
expression for the dispersion equation arising from (11) by
interchanging qx and qz. However, the numerical values for
the Coulomb matrix elements are not equal and they depend
on the direction of the axis of quantization.

In the limit a → ∞, the sum over reciprocal lattice
vectors in Eq. (11) gets transformed into an integral, and
the determinantal matrix in Eq. (11) becomes diagonal in the
indices L and L′ by using the result

∫
d3q
q2

YLM (q̂)jL(qR)YL′M ′ (q̂)jL′(qR)

= π

2(2L + 1)R
δLL′δMM ′ . (15)

In this limit, we obtain the following equation to solve for
plasmons, i.e.,

∏
L=1,2,···

Det

[
1 + 2e2

εs

1

(2L + 1)R
�L(ω)

]
δLL′ = 0, (16)

by making use of the orthogonality of spherical harmonics and
the relation

∫ ∞
0 dx j 2

L(x) = π/2(2L + 1) for spherical Bessel
functions. Equation (16) shows that the angular momentum
quantum numbers are completely decoupled and the plasmon
equation for a single S2DEG depends on the angular momen-
tum quantum number L and not on its projection M on the axis
of quantization [16–18]. Furthermore, these angular momenta
are decoupled from one another so that L is a good quantum
number for labeling plasmons on isolated shells.

Whereas the authors of Ref. [26] use a point dipole array
coupled by an electromagnetic field analogous to an antenna
array, our model of localized plasmons coupled by intersphere
Coulomb interaction between electrons leads to a dispersion
equation involving a dynamical polarization function which is
nonzero only when the angular momentum is finite. Both the
on-sphere and the intersphere Coulomb interactions are dy-
namically screened in this self-consistent field approximation
as we have presented, starting with Poisson’s equation.

In the next section, we solve Eq. (11) numerically for
L,L′ = 1 and M,M ′ = 0,±1. This would correspond to an
external perturbation using circularly polarized light. The
higher angular momentum with L > 1 may be achieved by
a special light beam, such as a helical light beam. However,
when two S2DEGs have their centers well separated so that
the Coulomb coupling is negligible, a non–circularly polarized
light source may excite several modes.

III. NUMERICAL RESULTS

We now present our numerical results for the cases where
the microribbon lies parallel either to the z axis or to the x

axis. All calculations were carried out at zero temperature.
The radius of each spherical shell was taken to be R = 10 nm
and the angular momentum quantum number for the highest
occupied state at the Fermi level for each S2DEG was chosen
as lF = 10. The corresponding Fermi energy is 0.168 eV.

In Fig. 2, we plot the nonzero elements of the Coulomb
interaction matrix as functions of the dimensionless wave
vector qxa/2π for a linear chain of shells that lie along the z

direction. Only the diagonal matrix elements corresponding to
M ′ = M = 0,±1 are finite. The off-diagonal matrix elements
are 0 so there is no Coulomb interaction between electrons
of different azimuthal quantum number. We note that there
are crossings for the interaction matrix elements at the points
qxα/2π = 0.23 and 0.77.

We plot in Fig. 3 our results for the plasmon dispersion
relation in the first Brillouin zone for a periodic array of
S2DEGs extended along the z axis. We see that there are
two plasmon branches, one corresponding to M ′ = M = 0
and a degenerate one which corresponds to the case where
M ′ = M = ±1. The two branches cross at the same points
where the crossing occurs in Fig. 2. There is no interaction
between them due to the 0 value of the of-diagonal matrix
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FIG. 2. Nonzero Coulomb interaction matrix elements for a linear
chain of spherical shells along the z axis when the separation between
the centers of consecutive spheres is chosen as a = 3R, and L = L′ =
1 with M,M ′ = 0,±1.

elements. The solid horizontal line in the figure shows the
energy of the single-shell plasmon for L = 1.

Figure 4 displays the variation of the plasmon frequencies
with the separation a along the z direction. The wave vector is
fixed, given by qzR = 2. We note that we have oscillations
of the plasmon energies, with decaying amplitude as the
separation increases. The dashed horizontal line indicates
the single-shell plasmon energy for L = 1. The oscillatory
behavior of the plasmon branches shows that for some
range of separation between shells the repulsive Coulomb
interaction dominates over the negative exchange energy,
thereby resulting in a plasmon energy higher than that for
a single S2DEG. In other ranges of separation a, it is the
exchange interaction which makes the dominant contribution,
resulting in the plasmon oscillations.

In Fig. 5, we plot the five nonzero Coulomb interaction
matrix elements as functions of the dimensionless wave vector

FIG. 3. (Color online) Plasmon dispersion relation in the first
Brillouin zone for a periodic array of S2DEGs along the z axis with
period a = 3R. The radius of each sphere is R = 10 nm, and lF = 10
is the angular momentum quantum number for the highest occupied
electron state on each sphere. The dashed horizontal line corresponds
to the plasmon energy for a single shell with L = 1.

FIG. 4. (Color online) Plasmon variation for fixed qzR = 2 as a
function of the separation a of the shells along the z axis. The dashed
horizontal line gives the single-shell plasmon energy for L = 1.

qxa/2π for a periodic array of S2DEGs whose centers lie
on the x axis. Contrary to the case of fullerenes along the
z axis there are now nonzero off-diagonal matrix elements
for M ′ 
= M . Comparing Figs. 4 and 5 we conclude that
there is anisotropy in the Coulomb interaction energy between
electrons based in the orientation of the fullereness.

We present in Fig. 6 the results of our calculations for
the plasmon excitation energy for a superlattice of S2DEGs
extending along the x axis. There are now three plasmon
branches instead of the two which we obtained in Fig. 3, due
to the lifting of the degeneracy by the off-diagonal Coulomb
matrix elements. The extra plasmon mode originates from
the interaction between electrons with M ′ = −1, M = 1 or
M ′ = 1, M = −1. We see in the same figure that there is
a strong interaction between plasmon modes at the points
qxα/2π = 0.23 and 0.77, which leads to the opening of a
gap in the plasmon energies. This effect of anticrossing of
the branches is more clearly presented in Figs. 7(a) and 7(b).
The dependence of the plasmon energies on the separation
between the centers of adjacent S2DEGs on a linear chain
along the x axis is shown in Fig. 8. The oscillations in the

FIG. 5. Coulomb interaction matrix elements for a linear array of
shells along the x axis for the case where L = L′ = 1 and M,M ′ =
0,±1. The radius of each sphere is R = 10 nm.
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FIG. 6. (Color online) Plasmon dispersion relation for a linear
array of spherical shells of radius R = 10 nm separated by a distance
a = 3R along the x axis.

plasmon branches exhibited in Fig. 8 arise as a consequence
of the competition between the direct Coulomb interaction and
the exchange interaction between spheres, as we explained for
the results in Fig. 4. The anticrossings appear at several values
of the intersphere separation and are due to the presence of
the Coulomb interaction between shells. Furthermore, these
results show the significance of the Coulomb interaction for a

FIG. 7. Anticrossing of the plasmon modes shown in Fig. 6 in the
vicinity of the points (a) qxa/2π = 0.23 and (b) qxa/2π = 0.77.

FIG. 8. (Color online) Variation of plasmon excitation energies
with separation between adjacent S2DEGs on a linear chain on the x

axis for the chosen qxR = 2. The dashed horizontal line corresponds
to the plasmon mode frequency for an S2DEG in isolation.

superlattice compared with the plasma mode frequencies for a
single shell for the chosen range. We note that the anticrossings
in Fig. 8 occur at the single-shell plasmon energy. This is where
the repulsive Coulomb and attractive exchange interactions
between shells for two plasmon branches cancel each other.
We chose qxR = 2 in these calculations but the described
characteristics are not restricted to our choice of wave vector.

IV. CONCLUDING REMARKS

This paper is devoted to a model calculation of the plasmon
dispersion relation for a narrow microribbon of fullerene atoms
or metallic shells which we simulate by a linear periodic
array of S2DEGs. The neglect of the width of the ribbon
means that our study does not investigate edge effects. The
work explores the coupling between plasmon excitations
in 2D electron gases occupying the surfaces of an infinite
number of spheres. By adopting the quantization axis to be
perpendicular to the interparticle axis of the chain, we were
able to calculate the Coulomb matrix elements, resulting in a
strong anisotropy in the plasmon coupling with respect to the
direction of the probe field. When light with a specified finite
orbital or spin angular momentum is incident on the array, the
magnetic field generated from an induced oscillating electric
dipole on any sphere may couple to an induced magnetic
dipole on another sphere of the array in a way which is
determined by the orientational direction of the superlattice
parallel or perpendicular to the probe E field. This leads to
dimerization of pairs of S2DEGs confined on two displaced
spheres. Therefore, the spectra of the plasma excitations are
different when the quantization axis is parallel or perpendicular
to the array axis.

While the applications to fullerenes have been emphasized,
we believe that the results also have broader implications to
metallic particulates. The data we obtained reveal significant
new information for the area of plasmonics. Our result on the
spatial correlation may be experimentally observable. In this
connection, there have already been some experimental reports
pointing to a similar effect in nanoparticles [22]. Additionally,
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it seems that there exists a relation between this work and
the theory of hybridization for surface plasmons in metallic
dimers [23,24] with regard to whether the quantization axis is
parallel or perpendicular to the interparticle axis.

Longitudinal and transverse plasmon-polariton modes have
been observed in chains of gold nanoparticles by employing
far-field polarization spectroscopy [25] and the results were
explained with the use of a point-dipole model [26] in
which only nearest-neighbor dipole interactions through an
electromagnetic field are assumed dominant. Additionally, the
dipoles are assumed to point in a chosen direction (similar to
an antenna array), which implies that only one component of
the angular momentum is employed; e.g., if L = 1, then only
one of M = 0,±1 plays a role. This makes our model distinctly
different from that in Ref. [26], both because we include
dynamically screened long-range Coulomb interactions and
because the orbital angular momenta and their projections
onto the axis of quantization are coupled. In other words,
we are using localized plasmons coupled by the intersphere
Coulomb interaction between electrons. In summary, the
important difference between these models is as follows.
The electromagnetic field generated by time-varying charge
distributions or current is retarded, whereas in our model
the coupling is electrostatic (ω � q||c). Since the polarization
function vanishes for L = 0, there are no plasmon excitations
for L = 0 [16]. This is quite unlike the model in Ref. [25],
which yields plasmons when the dipoles have a fixed direction,

i.e., which corresponds to a chosen projection for an an
unspecified angular momentum. Furthermore, our formalism
has yielded a method for probing modes of oscillation
observable by employing circularly polarized light or a helical
light beam for incidence.

There have been several examples of the demonstration
of anisotropic properties of condensed matter systems.
Among these, we mention the electrical, thermal, mechanical,
and chemical properties of graphite along the a, b, and c

directions [27] as well as the elastic properties of carbon
nanotube bundles [28]. In addition, the dispersion relation
of the high energy optical π -plasmons for graphite was
calculated by Chiu et al., [29] who showed that the plasmon
frequency depends on whether the momentum transfer is
parallel or perpendicular to the hexagonal plane within the
Brillouin zone. The anisotropic conductivity of epitaxial
graphene on SiC was presented in Ref. [30]. There have been
attempts to exploit the anisotropy of these properties to device
applications. For example, the authors of Ref. [31] explored
the possibility of employing the tuning of surface plasmon
frequencies to more efficient optical sensors.
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