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Excitons in anisotropic two-dimensional semiconducting crystals
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The excitonic behavior of anisotropic two-dimensional crystals is investigated using numerical methods. We
employ a screened potential arising due to the system polarizability to solve the central-potential problem using
the Numerov approach. The dependence of the exciton energies on the interaction strength and mass anisotropy
is demonstrated. We use our results to obtain the exciton binding energy in phosphorene as a function of the
substrate dielectric constant.
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I. INTRODUCTION

The field of two-dimensional (2D) crystals has been
undergoing a rapid development since the famous isolation of
graphene [1]. Over the years, new materials have been added to
the catalog of 2D systems, such as boron nitride, silicene, and
a variety of transition metal dichalcogenides. The most recent
addition to this growing family is black phosphorus. This
material is composed of individual phosphorene layers, held
together by the van der Waals force. The weak interlayer force
makes it possible to separate the bulk into few-layer structures
[2–8]. In addition, a recent study has been published demon-
strating a technique of obtaining monolayer phosphorene [9].

Despite being a fairly recent addition to the 2D library,
phosphorene exhibits a number of features that set it apart
from other members and make it attractive for the physics
community. First, with the exception of graphene, phospho-
rene is the only 2D system composed of a single type of atoms.
Unlike graphene, however, phosphorene has a gap which is
sensitive to the mechanical deformation of the lattice and the
number of layers [4,7,10–13]. Another trait that distinguishes
phosphorene is its high anisotropy, leading to a highly asym-
metric band structure. The existence of the tunable gap makes
phosphorene an interesting material in the context of excitons.
However, the complex electronic structure makes the study
rather difficult. Work has been done on determining the binding
energies of excitons in black phosphorus using first-principles
calculations [11] and variational methods [7]. However, there
have been no systematic studies of the excitonic behavior and
its dependence on the variable system parameters such as the
band structure and the strength of interaction. In this paper,
we address this problem using numerical methods. We begin
by deriving a general expression for the potential inside a
polarizable 2D system in the presence of a bulk dielectric.
Following this, we adopt several simplifications to reduce
the computation time. Finally, we obtain the dependence of
the excitonic energy levels on the system anisotropy and the
interaction strength. The results obtained here are applicable
for both direct- and indirect-gap systems as it is the curvature
of the bands which is important for determining the binding
energies. The consequence of the indirect gap is a longer
excitonic lifetime due to the momentum mismatch between
the conduction- and valence-band extrema. Therefore, our
analysis applies broadly to a variety of gapped 2D systems
and makes it attractive for basic science and applications.

II. DIELECTRIC SCREENING

It is known that the Coulomb interaction in thin dielectric
sheets has a nontrivial form due to screening [7,14–16]. Strictly
speaking, the Keldysh interaction [14] applies to thin layers of
finite thickness. Since the concept of thickness is ill-defined for
single layers, one should be careful when using this particular
result. Earlier work [15] has obtained the modified Coulomb
interaction for a 2D sheet in vacuum. Incidentally, it has the
same functional form as the Keldysh interaction, but the system
parameters have different origins. Here, we extend the earlier
result by adding a bulk dielectric positioned at distance h below
the 2D sheet to function as a substrate. Keeping h finite allows
one to study suspended samples.

Our system consists of a dielectric slab with susceptibility
χ located at z < 0 and a two-dimensional layer situated at
z = h. We position a charge q at ρ0 = (0,0,h) and calculate
the potential it creates within the layer. From the Poisson’s
equation, we have

−∇2�

4π
= qδ3(ρ − ρ0) + δ(z − h)σL(r) + δ(z)σB(r), (1)

where r is the planar coordinate, σL(r) is the charge density
in the 2D layer, σB(r) is the bound surface charge on the bulk
dielectric, and � is the total potential. It is convenient to take
the Fourier transform of this expression:

(p2 + k2)�̂

4π
= qeihk

(2π )3/2
+ Fz[δ(z − h)σ̃L + δ(z)σ̃B]. (2)

We use a hat to denote the 3D transform and a tilde for the
2D planar transform. p labels the in-plane momentum and k is
the momentun in the z direction. Using the fact that σB(r) =
χEz(r,z = 0), we write

σB(r) = −χ

1 + 2πχ

[
qδ2(r) + σL(r)

] ∗ h

(r2 + h2)3/2
, (3)

where the asterisk represents the convolution operation. Note
that Ez includes the contribution from the point charge, the
induced charge in the thin sheet, and the surface charge of the
bulk dielectric. Planar Fourier transform of σB(r) is obtained
from the convolution theorem:

σ̃B = − 2πχ

1 + 2πχ

[
q

2π
+ σ̃L

]
e−hp. (4)
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Next, we determine σL. The charge on the 2D sheet arises
as a response to the in-plane field. The polarization is given by

P = −
↔
ζ ∇p�(r,z = h) and σL = −∇ · P, yielding

σL = ζxx�xx + ζyy�yy + 2ζxy�xy |z=h, (5)

where the subscripts on � label the partial derivatives. We also
set ζxy = ζyx . This allows us to write

σ̃L = −R(p)
∫

�̂√
2π

e−ihk′
dk′

︸ ︷︷ ︸
�̃2D (p)

, (6)

R(p) = ζxxp
2
x + ζyyp

2
y + 2ζxypxpy. (7)

Plugging Eqs. (4) and (6) into Eq. (2), one obtains

�̃2D(p) = qS(p)

1 + 2πR(p)S(p)
, S = 1 − ε−1

ε+1e−2hp

p
, (8)

where we have used ε = 1 + 4πχ . To make the expression in
Eq. (8) more amenable to our calculations, we make several
simplifications. First, we position the 2D sheet on top of the
dielectric, setting h = 0. Next, we set ζxy = 0 and ζxx = ζyy =
ζ . Taking the inverse Fourier transform of the simplified Eq. (8)
gives

�2D(r) = πq

2κr0

[
H0

(
r

r0

)
− Y0

(
r

r0

)]
. (9)

Here, H0(r) and Y0(r) are Struve and Bessel functions,
respectively. We have introduced the length scale r0 = 2πζ/κ

with κ = (1 + ε)/2. This simplified result reduces to the one
obtained in Ref. [15] for κ = 1.

While it might appear that our ζxx = ζyy is rather crude, it
is possible to replace both by their average provided they do
not differ substantially. This will be addressed in the context
of phosphorene in a later section.

III. ANISOTROPIC MASSES

We now move on to the two-body problem with direction-
dependent masses. The center-of-mass Hamiltonian for an
anisotropic two-body system with an attractive central po-
tential is given by

H = p2
x

2μx

+ p2
y

2μy

− V

(
d
r0

)
, μx/y = mx/yMx/y

mx/y + Mx/y

, (10)

where d is the separation between the particles, m and M are
the masses of electrons and holes, and μx/y is the direction
specific reduced mass. It is more convenient to address this
problem by going from anisotropic masses to an anisotropic
potential by performing a change of variables,√

μx/y

2μ̄me

dx/y = rx/y, μ̄ = μxμy

μx + μy

1

me

. (11)

This results in

H = − �
2

4μ̄me

∇2 − V

(
r
√

1 + β cos 2φ

r0

)
, (12)

with β = (μy − μx)/(μy + μx) for μy > μx .

A problematic trait of our central potential is its singularity.
In addition, the wave functions change much more at small
r , so we need to emphasize them in the solution. Thus, we
perform a change of variables t = ln(r/r0):

H = − κ2Ha

4μ̄W 2

[
e−2t

(
∂2
t + ∂2

φ

) + GU (et
√

1 + β cos 2φ )
]

= Ha

GW
H, (13)

U (y) = π

2
[H0(y) − Y0(y)], G = 4

κ2
μ̄W, (14)

where W is 2πζ divided by the Bohr radius and Ha is the
Hartree energy. Strictly speaking, this transformation does
not entirely get rid of the singularity. Instead, it moves to
t = −∞. This, however, is not an issue because when one
performs numerical calculations, a finite range in t is chosen.
This means that the pathological point at t = −∞ does not
cause problems. The benefit of this transformation turns out to
be not only the removal of the singularity, but also of the first
derivative, bringing the equation to the appropriate form to be
solved by the Numerov method.

IV. NUMERICAL APPROACH

Having set up the problem, we proceed to the numeric
solution. From Eq. (13), we are trying to solve the reduced
Hamiltonian problem

H� = E�, � =
∑
m

am�m, (15)

where �m are the basis functions and am are their respective
coefficients. As expected for a central potential, the general
form of a basis function is

� =
∞∑
l=0

gl(t) cos lφ + hl(t) sin lφ. (16)

Plugging it into Eq. (15), we write

−
∞∑
l=0

[
e−2t

(
∂2
t − l2

) + GU (et
√

1 + β cos 2φ)
]

×[gl(t) cos lφ + hl(t) sin lφ]

= E
∞∑
l=0

[gl(t) cos lφ + hl(t) sin lφ]. (17)

Because of the cos 2φ term in the potential, it only couples
sines to sines and cosines to cosines. Moreover, it is clear
that not only do sines and cosines couple exclusively among
themselves, but also that even and odd angular momentum
coefficients do not mix. Thus, because of the harmonic mixing
introduced by the anisotropy, eigenstates now fall into one of
four classes: ce/o and se/o, where c and s label the harmonic
function and the superscript designates whether the angular
momenta are even or odd. For the isotropic case, ce includes s

and dx2−y2 orbitals, co contains px and fy3−3xy2 , se has dxy , and
so represents py and fx3−3yx2 . Once the anisotropy is turned on,
the orbitals in each class mix, but for small β they retain most of
their original shape. Therefore, for the sake of convenience, we
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will refer to the anisotropic wave functions using the isotropic
orbital names.

An important consequence of the harmonic mixing has to
do with the selection rules for the electric dipole transition
between the energy levels. The standard electric dipole
perturbation is given by H1 ∼ ε · r = r(εx cos φ + εy sin φ),
where ε is the field polarization vector. To determine whether
a transition is allowed, the matrix element of H1 for the
initial and the final states is computed. From the structure
of H1, it is known that the particle can move only between
energy levels whose angular momenta differ by 1. With the
introduction of the four anisotropic classes where each state
contains multiple angular harmonics this requirement changes.
Now the transitions are allowed between classes which contain
harmonics that differ by 1. In other words, the transitions
between even and odd classes are now allowed and those
within even and odd groups are prohibited. Of course, the rate
of the transition depends on the contribution of the “correct”
harmonics to the given states. Nonetheless, for large enough
β’s this mechanism can result in a higher rate than, say, electric
quadrupole transitions.

Following the discussion above, we set

�± =
∑

l

fl(t)trig
±(lφ), (18)

where l runs over the appropriate harmonic numbers and
trig± is cosine or sine, respectively, we multiply Eq. (17) by
trig±(nφ) and integrate to get

−e−2t
(
∂2
t − n2

)
fn(t) − G

∑
l

Unlfl(t) = Efn(t), (19)

Unl =
∮

dφ

2δn,0π
U (et

√
1 + β cos 2φ)trig±(nφ)trig±(lφ).

(20)

We define a vector function f(t) = [fn0 (t),fn0+2

(t) . . . fn0−2+2N (t),fn0+2N (t)] where each entry corresponds to
a particular angular harmonic. Naturally, one has to terminate
the sum at some harmonic number n0 + 2N , resulting in N + 1
terms in the vector function. Note that n0 can be 0, 1, or 2. These
choices of n0 correspond to the lowest nonvanishing harmonic
for each wave function family. In other words, n0 = 0 used
for even-n cosinelike wave functions states that the solution
will have an s-orbital-like component. Similarly, n0 = 1 for
odd cosine- and sinelike functions means that these functions
include p-orbital harmonics or higher. Finally, n0 = 2 applies
to even sinelike functions. In principle, we could set n0 = 0,
but sin(n0φ) would vanish, so we drop the unnecessary term.
We also introduce an angular momentum operator n2, where n
is a diagonal matrix of n, and the interaction operator U which
couples the harmonics in accordance with Eq. (20). Putting
everything together allows us to write

f′′(t) = M(t)f(t), M(t) = n2 − e2t (GU + E) . (21)

The form of Eq. (21) is precisely what is required for the matrix
Numerov method.

The Numerov method entails dividing the range of t into
Nt steps of size �t and using the following set of relations to

connect fj±1 (where the subscript labels the t position) to two
preceding steps:

Pj = 1 − �t2 Mj

12
, (22)

fj±1 = P−1
j±1[(12 − 10Pj )fj − Pj∓1fj∓1]. (23)

To use this method, one chooses the initial conditions at f0,
f1, fNt−1, and fNt

. Then, one designates a matching point tm,
located between t0 and tNt

, and uses Eq. (23) to approach this
matching point from the right and the left. As we are using
N + 1 harmonics in the expansion of the basis functions, we
need to have N + 1 basis functions. These are obtained by
setting up different initial conditions at the boundaries so that
all basis f’s are linearly independent at the edges.

One needs to be aware of a numerical problem that may
arise. As the integration goes forward, the component of
the vector f corresponding to the largest harmonic grows
exponentially faster than others because of the n2 term in
M. This causes the basis vector functions to lose their linear
independence by the time tm is reached. This can be remedied
by using the Riley regularization procedure [17]. Defining
Vn as a matrix containing all the vectors fk

tn
, where k labels

the basis vector, we transform all the already-computed V’s
by multiplying them by V−1

n . One needs to perform this
procedure regularly to prevent the exponentially growing
vector component from destroying the linear independence
of the basis vectors. In fact, if one is only interested in the
energies and not the actual wave function, it is possible to
apply the regularization procedure only to Vn and the previous
V as only two points are used in the Numerov integration. This
can substantially reduce the computation time.

Finally, since all harmonics have to be matched at tm
independently, we have∑

l

Clfl,R
tm

=
∑

l

Dlfl,L
tm

,
∑

l

Cl ḟl,R
tm

=
∑

l

Dl ḟl,L
tm

, (24)

where L and R denote left- and right-moving solutions, Cl

and Dl are the coefficients of the solutions originating from
different initial conditions. This can be rewritten as

det

(
f1,R
tm f2,R

tm . . . fN,R
tm f1,L

tm f2,L
tm . . . fN,L

tm

ḟ1,R
tm ḟ2,R

tm . . . ḟN,R
tm ḟ1,L

tm ḟ2,L
tm . . . ḟN,L

tm

)
= 0.

(25)

By varying the energy parameter E , one solves the determinant
equation using the bisection method.

V. RESULTS

One downside of the potential in Eq. (14) is its complexity
as it makes the integral in Eq. (20) rather slow. To speed up the
evaluation, we use an approximate form for the potential [15]:

Ū (y) = −
[

ln

(
y

y + 1

)
+ (γ − ln 2)e−y

]
. (26)

This potential, first presented in Ref. [15], is chosen because it
has the same asymptotic behavior as the original, more com-
plicated potential given in Eq. (14). To demonstrate the quality
of this simplification, we begin by computing the ground-state
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FIG. 1. (Color online) The ground-state energy as a function of
G for β = 0 using the original Eq. (14) potential (dashed line) and
the simplified version from Eq. (26) (solid line).

energies for the isotropic case as a function of G using the
original U and the simplified Ū . We use the β = 0 case as
it requires no harmonic integration and the 1s state can be
obtained directly by using a single l = 0 harmonic. We present
the results in Fig. 1. As one can see, the agreement is quite
good between the two potentials.

Even with the simplified potential, the solution to the prob-
lem is still computationally intensive. There are, nevertheless,
certain steps that one can take to reduce the time needed to
obtain the results. It is clear that the bound-state energies
depend on the interaction strength G and the anisotropic
parameter β. However, the coupling matrix U depends only
on β. This means that one can fix β and calculate U once
for a particular set of angular harmonics and t grid and then
reuse it to obtain energies for different G’s. This process can
then be repeated for other β’s and sets of harmonics. As
the computation of U requires a large number of numerical
integrals, doing it only once significantly cuts the computation
time.

We are now in the position to perform the necessary
calculations. The results for the first two levels of the s-like
orbital are given in Fig. 2. We plot the energies E for a range
of β’s to show its dependence on the interaction strength G. It
is immediately apparent that, while superlinear, E changes
more slowly than G2 as it does for the regular Coulomb
interaction. One can also see that the E changes more rapidly
with G for the second energy eigenstate. This means that
the relative energy-level separation varies with G and cannot
be determined from the quantum numbers. Moreover, it is
clear that the energy states with higher β change with G

more than the more isotropic ones. This makes the anisotropic
states much more sensitive to the dielectric constant of the
bulk dielectric. Comparing the 1s and 2s states reveals that
anisotropy plays a much greater role for the 2s orbital. This
can be seen by looking at the probability distributions at
β = 0.95. While for 1s such a high anisotropy results in a
fairly mild deformation from the circularly symmetric case,
2s manifests a qualitatively different behavior. The particle
cloud outside the orbital node becomes “folded” into two
lobes along the y axis. Analyzing the orbital composition
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−2
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(b)–2s
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−3

−2

−1

β

E
FIG. 2. (Color online) E vs G for (a) 1s and (b) 2s orbitals

for different β’s. The dashed lines are β = 0. Moving from the
dashed line down: β = 0.25, 0.5, 0.75, 0.9, and 0.95. The circles in
(b) are obtained for β = 0 case using the potential in Eq. (14). The
insets show E vs β for G = 5. Panels (c)–(f) show the probability
distribution obtained from the wave functions for β = 0 and β =
0.95. Panels (c) and (d) correspond to 1s; (e) and (f) portray 2s.

shows that the anisotropic 2s case gets its appearance from the
combination of the isotropic 2s and the dx2−y2 components.
The apparent difference between 1s and 2s, therefore, can be
understood in terms of the perturbation theory, regarding the
anisotropic portion of the potential as the perturbation. As 1s

is the deepest energy state, it is significantly separated from
other states with the correct parity in terms of energy. This
means that even at larger β, 1s does not pick up a substantial
amount of higher-level traits. In contrast, 2s is shallower and is
located closer to higher-harmonic states, resulting in a greater
modification of the wave function.

Next, we move to the 2p orbitals, Fig. 3. Here, a stark
difference is observed between the px and py orbitals. py

demonstrates an expected behavior with E becoming more
negative at larger β and G. On the other hand, px not only
does not depend very strongly on β, but it also exhibits a
nonmonotonic variation with the anisotropic parameter. This
nonmonotonicity has previously been observed in Ref. [18].
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FIG. 3. (Color online) E vs G for 2py (a) and 2px (b) orbitals for
the same β’s as in Fig. 2. In (a), lower curves correspond to higher
β. Circles show the β = 0 for the unsimplified potential. Note the
nonmonotonicity of E for 2px . The insets show the dependence of E
on β for G = 5. Panels (c) and (e) show the probability distributions
for 2py and 2px , respectively, at β = 0. Panels (d) and (f) show the
same for β = 0.95.

To understand this behavior, we need to look at the probability
distribution for both orbitals. For py , the lobes are located
along the y axis, which is the direction along which the
potential well diverges as β → 1. This means that as β gets
larger, more of the particle cloud experiences the enhanced
potential, making E more negative. In the case of px , the
lobes are perpendicular to the diverging direction and the wave
function actually vanishes along the y axis. Thus, a small
anisotropy does not lower the energy of the 2px orbital, but
instead raises it by coupling it to higher energy states. As β

approaches 1, the potential well gets deeper around the y axis,
lowering the energy of the state somewhat. However, since the
wave function is still zero along the diverging axis, the energy
remains finite.

An important feature of this modified potential is the lifting
of the accidental degeneracy. Unlike the standard Coulomb
problem, 2s, 2px , and 2py all have different energies at finite
β. Of course, px and py energies coincide at β = 0, but they are

still different from the s orbital. Thus, the energy-level picture
becomes much richer as the eigenstates of the Hamiltonian
separate in the energy space.

VI. PHOSPHORENE

Finally, we address the important case of phosphorene. This
phosphorus allotrope is known for its highly anisotropic crystal
structure. From the first-principles density functional theory
calculations, we obtain the effective electron and hole masses
in x and y directions. The band map for the conduction and
valence bands is shown in Fig. 4, along with the crystal lattice.

For the electrons, we get mx ≈ 0.18 ± 0.04 me and my ≈
1.23 ± 0.01me. For the holes, Mx ≈ 0.13 ± 0.04 me and My

is a very large number as the band is essentially flat. This
yields μx ≈ 0.075 ± 0.02 me and μy ≈ 1.23 me. Using these
reduced masses, we obtain β ≈ 0.89 ± 0.02 ≈ 0.9 and μ̄ ≈
0.07. To obtain the characteristic length r0, we need the
susceptibility of the material.

The 2D susceptibility is obtained following the method
proposed in Ref. [16], which is based on the calculation of the
dielectric permittivity ε as a function of the interlayer distance
(d),

εx,y = 1 + 4πζxx,yy

d
. (27)

The symmetry of the bulk black phosphorus unit cell
was preserved as the interlayer distance was increased up to
three times the lattice parameter along the x direction. The x

and y components of the dielectric constant were obtained
using the QUANTUM ESPRESSO code [19]. The exchange
correlation energy was described by the generalized gradient
approximation (GGA) using the PBE functional [20] The
Kohn-Sham orbitals were expanded in a plane-wave basis with

FIG. 4. (Color online) Phosphorene lattice and color maps of the
calculated valence and conduction bands. The valence-band top is set
to zero.
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FIG. 5. (Color online) Linear dependence of εx,y on the inverse
interlayer distance 1/d; see Eq. (27).

a cutoff energy of 70 Ry. The Kohn-Sham states corresponding
to the valence and conduction bands are shown in Fig. 4. For
the dielectric tensor calculation, a rigid “scissors operator”
shift of 0.72 eV was applied to the Kohn-Sham eigenvalues.
This corrects for the difference between the nearly vanishing
PBE band gap of bulk black phosphorus (80 meV) and
the value obtained by previous GW calculations [11]. The
Brillouin zone (BZ) was sampled using a Monkhorst-Pack
grid of 15 × 40 × 40 points along each of the primitive lattice
vectors [21]. In this way, we obtain a linear dependence of
εx,y on the inverse interlayer distance, with ζxx = 4.20 Å and
ζyy = 3.97 Å, Fig. 5. Since the values are fairly close, we
use the average and set ζ = 4.1 Å. This yields W ≈ 48.6 and
G ≈ 13.6/κ2.

It is now possible for us to determine the excitonic binding
energy in phosphorene. Since the dependence of the interaction
strength G on the dielectric constant of the substrate is rather
simple, we can obtain the binding energy as a function of κ .
To do so, we compute the lowest excitonic energy for β = 0.9
for a range of κ’s between 1 and 5, as shown in Fig. 6. For
the case of isolated phosphorene, given by κ = 1, the binding
energy is 0.76 eV. This value is close to the one obtained from
the first-principles calculations in an earlier work [11]. There,

1 2 3 4 5
−0.8

−0.6

−0.4

−0.2

κ

E
(e

V
)

FIG. 6. (Color online) Exciton binding energy as a function of κ .

FIG. 7. (Color online) Squared wave functions of phosphorene
orbitals. From left to right: 1s, 2s, 2py , and 2px . The size of each
frame is 100 × 100 Å.

the authors reported the binding energy to be 0.8 eV. With
increasing κ , the lowest bound state becomes more shallow
due to screening. In the case of phosphorene positioned on
SiO2, the exciton binding energy is close to 0.4 eV, similar to
the value reported in Ref. [7].

We can also compute the wave functions of phosphorene
excitons; see Fig. 7. At first glance, it might appear strange
that the wave functions are stretched in the x direction, in
contradiction to the results shown in Figs. 2 and 3. However,
one needs to keep in mind the change of variables in Eq. (11).
When we go back to the original real-space variables, the
orbitals become stretched in the x direction since the x mass
is much smaller than the y mass. From Fig. 7, we can see
that the excitons are fairly large, spanning tens of angstroms.
This provides additional validation to our approach of using
the continuum approximation in Eq. (10).

VII. CONCLUSIONS

Using a combination of the first-principles calculations, Nu-
merov method, and analytics, we study the general excitonic
behavior of anisotropic 2D systems. We employ a modified
electron-hole interaction which includes screening due to the
2D system itself, as well as due to the dielectric substrate.
Our results show the dependence of the excitonic energies
on both the interaction strength and the anisotropy parameter
arising from the direction-dependent effective masses. Unlike
the unscreened Coulomb case, the energy has a weaker,
subquadratic dependence on the interaction strength with
higher energy levels being more sensitive.

From our results, we compute the exciton binding energy
for phosphorene. We see that our solution for the isolated
monolayer agrees with the earlier GW calculations [11] and
phosphorene on silicon dioxide is congruent with the value
obtained using variational methods [7]. The main advantage
of our approach over the other two is the reduced requirement
for the computational power compared to the GW and
the applicability for higher energy levels where variational
methods lose accuracy.
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