
PHYSICAL REVIEW B 90, 075428 (2014)

Spontaneous strains and gap in graphene on boron nitride
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The interaction between a graphene layer and a hexagonal boron nitride (hBN) substrate induces lateral
displacements and strains in the graphene layer. The displacements lead to the appearance of commensurate
regions and the existence of an average gap in the electronic spectrum of graphene. We present a simple, but
realistic, model, with which the displacements, strains, and spectral gap can be derived analytically from the
adhesion forces between hBN and graphene. When the lattice axes of graphene and the substrate are aligned,
strains reach a value of the order of 2%, leading to effective magnetic fields above 100 T. The combination of
strains and induced scalar potential gives a sizable contribution to the electronic gap. Commensuration effects
are negligible due to the large stiffness of graphene.
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I. INTRODUCTION

Hexagonal boron nitride (hBN) has been demonstrated as
a promising insulating substrate for graphene. Both systems
share the same lattice structure, with a lattice mismatch of δ =
1.8%. hBN is an insulator with an ∼5.2-eV gap. The electronic
carriers in graphene on hBN exhibit very large mobilities
[1–5].

The electronic band structure of graphene placed over hBN
is being intensively studied, both theoretically [6–16] and
experimentally [17–21]. The earliest experiments on different
samples showed conflicting results regarding the existence of
an insulating state at the neutrality point. Some experiments
[22,23] suggested the existence of an electronic gap of about
∼30 meV [22], while others did not see any clear evidence
of it [2,3]. There is a growing consensus that inhomogeneous
strains in the graphene layer may be the underlying mechanism
for gap opening [14]. While an unstrained and flat graphene
monolayer on hBN is expected to be gapless, corrugations
and in-plane strains should open a spectral gap. The effects of
corrugations was recently studied in Ref. [24].

A recent experiment [21] strongly suggests the existence
of a correlation between the electronic gap and the formation
of a peculiar in-plane strain pattern on graphene, measured
both through conductive atomic force microscopy (AFM) and
through scanning tunnel microscopy (STM). In the absence
of strains (i.e., at large enough rotation angles between
the lattice axes, θ � 1◦), both imaging techniques yield a
smoothly varying signal across the sample, following the
moiré pattern corresponding to the mismatch δ and the angle
θ . As θ is decreased below 1◦, however, a sudden jump in
the AFM and STM patterns occurs. The new AFM pattern
is composed of uniform commensurate hexagonal regions,
surrounded by sharp boundaries. It is argued that the hBN
crystal creates a rapidly varying adhesion potential landscape
[7,13] to which graphene tries to adapt by deforming. At low
angles, within the commensurate hexagonal regions, graphene
is strained to locally compensate for the small rotation and
lattice mismatch, thus becoming in registry with the hBN
crystal. The accumulated strain is released at the sharp hexagon
boundaries. The locally averaged lattice constant, related to the
trace of the strain tensor, is measured directly by STM and is

found to differ between hexagonal regions and their boundaries
by around 2%.

We present here a description of the strains in graphene
induced by its adhesion to hBN. We provide an analytical
solution for the strains as a function of the twist angle.
Using known elastic constants for graphene and first-principles
results for the adhesion potential, we compute the graphene
distortion field that globally minimizes the sum of the elastic
energy and the adhesion energy. We obtain maximum values
for the local expansion of graphene in agreement with the
experiment in Ref. [21]. We also find associated pseudomag-
netic fields exceeding 200 T that are, however, nonmonotonous
in the twist angle and exhibit a global field inversion at a
particular angle around 1.5◦. We furthermore characterize the
adhesion energy density of the equilibrium graphene solution
and find spatial patterns similar to those in the experiment, with
uniform hexagonal regions surrounded by sharp boundaries.
Our description of this system provides a simple analytical and
quantitative description of most of the features in Ref. [21].
It may also be used as the basis for an electronic structure
computation, particularly for evaluating the electronic spectral
gap associated with these deformations.

This paper is organized as follows. In Sec. II, we set our
notation and characterize the geometric moiré pattern as a
function of lattice mismatch and twist angle. In Sec. III we
describe our model for the energetics of adhesion and strain and
write the equilibrium solution for the displacements. We also
obtain expressions for the associated pseudomagnetic field. In
Sec. IV we plot and discuss the results, including the spectral
gap caused by the deformations in Sec. V. Finally, we draw
our conclusions in Sec. VI.

II. MOIRÉ SUPERLATTICE

Graphene and hBN exhibit a δ ≈ 1.8% lattice mismatch,
a′

0 = (1 + δ)a0, where a0 = 0.246 nm and a′
0 = 0.251 nm are

the lattice parameters of graphene and hBN, respectively. Thus,
a graphene monolayer placed on an hBN crystal will not be in
perfect registry, even if their crystallographic axes are perfectly
aligned. If both crystals remain strain free when brought into
contact, this results in the formation of a smooth hexagonal
moiré pattern with period A0 ≈ 14 nm. If the two crystals are
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rotated by a relative angle θ , the moiré period is reduced. The
general form of A0 is

A0 = | �A1| = | �A2| = 1 + δ√
1 + (1 + δ)2 − 2(1 + δ) cos θ

a0,

(1)

where �Ai are the superlattice vectors and |θ | � 30◦. This
result, and also general expressions for �Ai , is derived as
follows. We write �Ai and the corresponding graphene and hBN
lattice vectors �ai and �a′

i as the columns of the 2 × 2 matrices
A = ( �A1, �A2) = G−1/2π , a = (�a1,�a2) = g−1/2π , and a′ =
(�a′

1,�a′
2) = g′−1/2π . By defining the mismatch-plus-rotation

transformation a′ = Ra between the two lattices,

R = (1 + δ)

(
cos θ − sin θ

sin θ cos θ

)
, (2)

and by noting that the conjugate momenta of the moiré pattern
(rows of matrix G) are defined as the mismatch between
lattice momenta G = g − g′ [25], we find A = aN = a′ N ′,
where N = a−1(1 − R−1)−1a and N ′ = a−1(R − 1)−1a.
Equation (1) follows.

Note that an atomically periodic (commensurate) minimal
superlattice is achieved for those values of δ and θ that result
in fully integer matrices N = 1 + N ′. The analysis of the
elastic properties that follows, however, is a continuum theory
that does not rely on precise commensuration and is generally
valid as long as A0 � a0.

For later convenience we define here �G0 ≡ 0, and the
momentum “first star,” which extends the basis �G1,2 to the six
integer combinations thereof that have equal modulus [26,27],

�G0 = 0,

�G1 = − �G−1 = (1,0)G,
(3)�G2 = − �G−2 = (0,1)G,

�G3 = − �G−3 = (−1, − 1)G.

We make similar definitions for �gj and �g′
j , where j =

0, ± 1, ± 2, ± 3. A sketch of the reciprocal lattice vectors
considered is shown in Fig. 1.

III. EQUILIBRIUM GRAPHENE DEFORMATION

The moiré superlattice defined in the absence of displace-
ments consists of a smooth spatial variation of the local
stacking pattern, which shifts continuously between AA type
(local alignment of both carbons in a unit cell to boron and
nitrogen), AB type (carbon on boron), and BA type (carbon
on nitrogen). Each of these configurations has a different
associated adhesion energy density. Ab initio calculations
[7,28] yield a lower energy for AB stacking, while BA and
AA are roughly similar. The difference between εAB , εBA, and
εAA adhesion energies in different regions is denoted by

�εAB = εAB − εAA,

�εBA = εBA − εAA.

These differences in adhesion create in-plane forces in the
two crystals. These forces induce distortions which maximize
the area of the favorable AB-stacked regions at the expense
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FIG. 1. (Color online) Sketch of the reciprocal lattice vectors �g′
j

of the hBN lattice (red) and of the graphene lattice �gj (blue). The
green vectors �Gj describe the moiré superlattice; see text. For clarity,
the mismatch between the lattice constants of hBN and graphene has
been multiplied by 5.

of the elastic energy. For a graphene monolayer placed on a
thick hBN crystal, it is reasonable to neglect the distortions of
hBN. We derive here expressions for the equilibrium graphene
displacement field �u(�r), defined as a minimum of the total
energy U = UE + US , where UE is the elastic energy and US

is the stacking energy (we neglect thermal effects).

A. Elastic energy

The elastic energy UE per unit cell of a graphene defor-
mation �u(�r) that is smooth on the atomic spacing is given by
continuum elasticity theory,

UE = 1

N

∫
A

1

2
[2μ Tr(u2) + λ (Tr u)2]d2r,

where the integral covers a deformation supercell, assumed to
be equal to the moiré supercell A, which contains N graphene
unit cells. Here u = uij = 1

2 (∂iuj + ∂jui) is the strain, and
λ ≈ 3.5 eV/Å2 and μ ≈ 7.8 eV/Å2 are the Lamé factors
for graphene. Next, we expand the deformation in harmonics
�u�q = �u∗

−�q ,

�u(�r) =
∑

�q
�u�qei �q�r . (4)

Note that, if we assume C3-symmetric deformations, the
deformation harmonics are related by 2π/3 rotations. Taking
this into account, we may write all possible distortions as
a combination of four pure classes (see Fig. 2). These are
either even or odd respect to a given origin �r0, depending
on whether �u(�r − �r0) = ∓�u(−[�r − �r0]) (imaginary or real
harmonics if �r0 = 0). They may also be purely longitudinal
or purely transverse, depending on whether �u�q is parallel or
perpendicular to �q. In Sec. IV we will analyze the equilibrium
distortions in terms of these components.
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FIG. 2. (Color online) Different types of C3-symmetric distor-
tions, depending on their longitudinal or transverse character and
their parity with respect to the origin.

In terms of the �u�q harmonics, we may diagonalize UE ,

UE = 1

2

∑
�q

�u−�q W �q �u�q . (5)

The dynamic matrices W �q read

W �q = (B det a)W ‖
�q + (μ det a)W⊥

�q ,

where det a is the area of the graphene unit cell, B = λ + 2μ ≈
21.6 eV/Å2 is graphene’s bulk modulus, and

W ‖
�q =

(
q2

x qxqy

qxqy q2
y

)
, W⊥

�q =
(

q2
y −qxqy

−qxqy q2
x

)
.

(6)

They satisfy W �q = W−�q = W T
�q . Note that purely transverse

(longitudinal) distortions have only elastic energy contribu-
tions from μW⊥

�q (BW ‖
�q).

B. Adhesion potential

We next consider the periodic adhesion potential created by
the hBN crystal on the graphene lattice. The simplest model
for this potential VS(�r) (first-star model) is parameterized by
�εAB and �εBA as defined above and is written, using the
definition (3) of the first-star hBN basis �g′

j , as

VS(�r) = 2Re
[
vS

(
ei �g′

1�r + ei �g′
2�r + ei(−�g′

1−�g′
2)�r)] + v0

=
±3∑

j=±1

vj e
i �g′

j �r + v0. (7)

Vector �r in Eq. (7) is the position, in the crystal plane, of the
center of any given graphene unit cell, so that �r = 0 corre-
sponds to AA stacking and �r = ∓(�a′

1 + �a′
2)/3 corresponds to

AB/BA stacking. The complex numbers vj are defined as

vj>0 = v∗
j<0 = vS = −�εAB + �εBA

18
+ i

�εAB − �εBA

6
√

3
,

so that the adhesion potential is a local extremum at these
points and their difference is, indeed, �εAB/BA. Note that the
constant energy offset in Eq. (7), v0 = (εAB + εBA + εAA)/3,
is irrelevant for the purpose of computing the equilibrium
deformations.

The total adhesion energy per graphene unit cell is the sum,
over all N graphene unit cells positions �R�n contained in a
moiré supercell, of the adhesion potential

US = 1

N

N∑
�n

VS( �R�n).

The positions �R�n above are

�R�n = �r�n + �u(�r�n),

where �r�n = �na are the unstrained unit cells positions and �n =
(n1,n2) is a vector of integers. Using the fact that ga = 2π ,
we have ei �g′

j �r�n = ei(�g′
j −�gj )�r�n = e−i �Gj �r�n , so that US reads

US = 1

det A

∫
A

d2rṼS[�r,�u(�r)],

(8)

ṼS[�r,�u(�r)] =
±3∑

j=±1

vj e
−i �Gj �rei �g′

j �u(�r),

where we have transformed the sum into an integral over the
moiré supercell of area det A since the form of the integrand
ṼS[�r,�u(�r)] is now smooth on the atomic scale. This last
step transforms our description into a continuum theory on
the moiré supercell, for which the AB/BA stacked regions
are located at �r = ±( �A1 + �A2)/3. Note, however, that the
large hBN momenta �g′

j are retained, associated with the
displacements �u(�r).

To minimize the total energy analytically we need to assume
that displacements �u are small compared to the hBN lattice
constant. This is the linear distortion regime and allows us to
expand ṼS to first order in �u(�r),

ṼS[�r,�u(�r)] ≈ ṼS[�r,0] + �u(�r)∂�uṼS[�r,�u(�r)]|�u=0. (9)

Using, once again, a harmonic decomposition for �u(�r),
Eq. (4), we arrive at an adhesion energy that depends only
on the harmonics �u�q for momenta �q = �Gj in the first star of
the moiré superlattice,

US = i

±3∑
j=±1

vj �g′
j �u �Gj

.

This is a generic feature of the linear distortion theory: if
the microscopic adhesion profile VS(�r) is composed of a set
of harmonics with momentum �qi = �mi g′ (integer �mi), the
linearized adhesion energy will depend only on distortion
harmonics with momentum �mi G.

The equilibrium values of distortion harmonics �u�q are
obtained by minimizing U = US + UE . Since UE is quadratic
on �u�q , all harmonics different from �u �Gj

in adhesion energy
will be zero in equilibrium. For the remaining six harmonics,
we obtain, by differentiating U ,

�u �Gj
= iv∗

j W−1
�Gj

�g′
j , (10)

This is the main analytical result of this section. At θ = 0,
�u �Gj

become �u �Gj
= i[(1 + δ)v∗

j /(2δ2πBa2
0)]�g′

j /|�g′
j |. We have

checked that quadratic terms in the displacements, which arise
from expanding the adhesion potential to second order, do not
significantly modify this estimate. Moreover, the quadratic
expansion confirms that the displacements in Eq. (10) are at
least a local minimum of the sum of elastic and adhesion
energies.

From Eq. (10) we can compute analytical expressions for
a number of observables. In particular, one may compute the
strain tensor u(�r) = uij (�r) = 1

2 [∂iuj (�r) + ∂jui(�r)] and other
important related observables, such as the relative expansion
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of the lattice at a given point 1
2 Tr u. Evaluating, e.g., the relative

lattice expansion at θ = 0, we find a simple expression for the
difference between the relative expansion in the center of the
AB region and in AA regions:

1

2
	i=x,y

[
uAB

i,i − uAA
i,i

] = εAA − εAB√
3δBa2

0

. (11)

This quantity has been measured to be greater than 2% [21,29].

C. Pseudogauge fields

A strain field in graphene is known to produce an effective
pseudogauge field due to the modulation of nearest-neighbor-
hopping amplitude t ≈ 2.78 eV with the displacements
[30–32] (not to be confused with interlayer pseudogauge
fields [33–35]). In terms of the dimensionless parameter
β = d log t/d log a0 ≈ 2, the pseudogauge potential is given
by

�A(�r) = ± βt

evF

(
uxx − uyy

−2uxy

)
, (12)

where the strain tensor u(�r) = uij (�r) is written in a coordinate
frame with the AB bond aligned along the y direction and the
± sign corresponds to the two valleys (we will focus on the +
sector in the following; the opposite one is trivially related by
time-reversal symmetry). In the next section we will analyze
the effect of this field on the low-energy electronic structure.

If we consider that, according to the solution Eq. (10),
only the first-star harmonics of �u(�r) are nonzero, we obtain
a pseudogauge potential that is likewise within the first star,
�A(�r) = ∑±3

j=±1
�Aj e

i �Gj �r , where the �Aj = �A∗
−j harmonics can

be written, following Eq. (10), as

�Aj = βt

evF

(
i �Gjσ z �uj

−i �Gjσ x �uj

)
, (13)

where σ i are Pauli matrices. The associated pseudomagnetic
field B(�r) = ∂xAy − ∂yAx = ∑±3

j=±1 Bj e
i �Gj �r has harmonics

Bj = B∗
−j = − �Gjσ y

�Aj .
It is interesting to note that while the typical equilibrium

distortions of Eq. (10) scale as A2
0 (since W �Gj

∼ A−2
0 ), the

pseudomagnetic field B contains two spatial derivatives that
cancel this scaling, so, unlike �u, it is not expected to vanish
as the angle θ increases. Its effect on the electronic structure,
however, will be diminished since the physically relevant ratio
of magnetic length to moiré period will increase.

For the case when the hBN and graphene axes are aligned,
we can use the estimate for the strain in Eq. (11), and we obtain
a typical value for the effective magnetic length �B = √

�/|eB|
in terms of the elastic properties of graphene and the adhesion
to the substrate,

�B = 3

4
√

π

√
�(1 + δ)Ba2

0

β|εAA − εAB |a0. (14)

IV. DISCUSSION

The different quantities computed in the preceding sec-
tion depend critically on the adhesion energy differences
�εAB/BA, compared to the typical elastic energy of graphene

FIG. 3. (Color online) Displacement field �u (scaled for visibility)
in real space for (left) rotation angle θ = 0, (middle) θ = 1.5◦, and
(right) θ = 4◦. Spatial positions are normalized to the moiré period
A0. Black scale bars correspond to 1 nm.

∼a2
0B ≈ 97 eV, multiplied by some power of δ ≈ 1.8% (recall

that λ ≈ 3.5 eV/Å2 and μ ≈ 7.8 eV/Å2). The adhesion
energies have been computed using different ab initio and
semiempirical approaches [7,13,28,36]. These calculations
give values in the range of tens of meV per unit cell for �εAB

and much lower values for �εBA. On the other hand, the
experiment of Ref. [21] showed a difference of at least 2%
in the local lattice parameter between AB and AA regions.
Using Eq. (11), we see that, if the elastic moduli of graphene
are not significantly modified by the presence of hBN, the
adhesion energy differences should be at least −60 meV/unit
cell to account for the observed deformation, with Refs. [28,36]
suggesting values even greater than −100 meV/unit cell when
taking into account the London dispersion forces. We use this
latter value for �εAB , with �εBA a tenth of that, which yields
results in good agreement with the experiment.

The solution for the strain field of Eq. (10) is plotted in
Fig. 3 for rotation angles θ = 0◦, θ = 1.5◦, and θ = 4◦. We
see that the magnitude of the displacements is indeed much
smaller than the lattice constant a′

0 = 0.251 nm, which justifies
our linear expansion in �g′

j �u(�r). We also see that, at θ = 0, the
solution approaches a pure longitudinal mode that is even with
respect to the AB point (see Fig. 2). This solution is thus
dominated by local expansion. As the angle is increased, we
see how the solution crosses over to an even-transverse mode
with respect to the AB point, which is dominated by local twists
and increased shear. The local expansion 1

2 Tr u associated with
these distortions is shown in Fig. 4. The equilibrium strain for
the adhesion and elasticity parameters used reaches very large

FIG. 4. (Color online) Relative local expansion 1
2 Tr u in real

space for (left) rotation angle θ = 0, (middle) θ = 1.5◦, and (right)
θ = 4◦. Large values of the strain are obtained for θ = 0. Black scale
bars correspond to 1 nm.
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FIG. 5. (Color online) Adhesion energy density ṼS[�r,�u(�r)] in
real space, relative to the average adhesion v0, for (left) rotation
angle θ = 0, (middle) θ = 1.5◦, and (right) θ = 4◦. Black scale bars
correspond to 1 nm.

values for θ = 0. In the AB region the lattice expands by da0,
so that a0 + da0 ≈ a′

0. The relative expansion da0/a0 = 1
2 Tr u

reaches its maximum value δ = 1.8%, which corresponds to
adhesion dominating the total energy. In the other regions the
lattice is compressed by a comparable, although somewhat
smaller, amount, so that the difference surpasses 2%, as found
experimentally [21].

The adhesion energy ṼS[�r,�u(�r)] of Eq. (9) is shown in
Fig. 5. The uniform blue regions around θ = 0 (left panel)
correspond to AB regions in near-perfect registry, where
the lattice locally expands by the effect of the adhesion.
Surrounding these uniform commensurate regions are sharp
hexagonal boundaries, with (different) local maxima at the AA
and BA points. It is clear that as the rotation angle θ increases
and the moiré period decreases, the adhesion energy loses to
the elastic energy, and the strain field is quickly suppressed.
One way to quantify this effect is to analyze the θ dependence
of the full width at half maximum (FWHM) of the adhesion
potential as one moves from one AB region to the next. This is
plotted in Fig. 6. A purely unstrained bilayer has a FWHM of
A0/2. We can see how this value decreases as A0 is increased.

The spatial patterns of the vertical Young’s modulus
recently measured with AFM by Woods et al. [21] are strongly
reminiscent of the adhesion potential profiles shown in Fig. 5,
including the small difference between AA and BA vertices
along the hexagonal boundary (which are due to the finite
�εBA < 0). It can be argued that the measured elastic modulus
should indeed reflect, to a certain extent, the spatial modulation

0 2 4 6 8 10 12 14
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0.3

0.4

0.5
0.0.51.1.52.2.5451030

A0 nm

F
W

H
M

A
0

θ º

FIG. 6. Normalized FWHM of the hexagonal boundaries in the
adhesion energy density (see Fig. 5, left) as a function of rotation
angle θ or moiré period A0.

FIG. 7. (Color online) Total energy (elastic plus adhesion) at θ =
0 beyond the linear approximation [using Eqs. (5) and (8)] as a
function of pure distortion amplitudes ueven/odd−L/T (see Fig. 2). Note
that the minimum (white dot), given by Eq. (10), is absolute and is
not destabilized by nonlinear corrections.

of the adhesion potential since a stronger adhesion should
correlate to a stiffer elastic modulus with respect to vertical
deformations. The FWHM of the experimental elastic modulus
also shows a strong decrease as the angle approaches zero.
However, the way this decrease happens is far more abrupt
in the experiment than in our model, apparently dropping
discontinuously at around A0 ≈ 10 nm (θ = 1◦). This suggests
effects beyond our present model, such as the possibility of
an additional contribution to the total energy, the formation
of ripples whereby the interlayer distance acquires a spatial
texture, or even a global commensurate-incommensurate
transition that is associated with a sudden jump in the area
of the graphene sample as the angle is decreased [37]. These
considerations remain beyond the scope of this work and
require numerical computation of a rather different kind. We
have evaluated within our analytical framework the effect of
including additional harmonics in the adhesion potential in
Eq. (7), such as those described in Ref. [13], but the results of
Fig. 6 do not change qualitatively. We have likewise excluded
the possibility of first- and second-order phase transitions as
a result of nonlinear terms in Eq. (9). This is clear from
the profile of the total energy U = US + UE around θ = 0,
computed using the unexpanded adhesion US of Eq. (8). U is
shown in Fig. 7 as a function of longitudinal/transverse and
even/odd distortion amplitudes, ueven/odd−L/T. Note that the
potential minimum in Eq. (10) (white dot in Fig. 7) remains
stable and is the true absolute minimum of the potential. This
remains valid even in the unrealistic extreme of vanishing shear
modulus (not shown).

Finally, the pseudomagnetic field associated with the strain
is shown in Fig. 8. The large strains involved in the equilibrium
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FIG. 8. (Color online) Pseudomagnetic field B(�r) in real space
for (left) rotation angle θ = 0, (middle) θ = 1.5◦, and (right) θ = 4◦.
Large fields above 200 T are produced by the strains. Black scale bars
correspond to 1 nm.

configuration produce very large pseudomagnetic fields up to
200 T. Surprisingly, however, the spatial pattern experiences
an inversion at a finite but small angle θB, around which the
pseudomagnetic field is suppressed and changes sign. The
range of spatial variation of B as a function of θ is shown in
Fig. 9, which reveals the inversion at θB ≈ 1.5◦. Analyzing the
vector potential �A(�r) at this particular rotation angle, we find
a similar pattern as that in Fig. 3 (left panel): while �A(�r) is
nonzero, it has a vanishing curl, so it is a pure gauge (purely
longitudinal field, odd with respect to AB; see Fig. 2). Its
vorticity, in fact, becomes inverted at this θB. This is shown in
Fig. 10. Apart from the field inversion, the typical magnitude
of the pseudomagnetic field is roughly in the range 100–200
T throughout all angles, although its physical effects on the
electronic structure should be stronger at small angles, where
the magnetic length is much smaller than the moiré period.

V. SPECTRAL GAP

The problem of assessing the spectral gap of graphene
coupled to the gapped hBN crystal can be analyzed assuming
that the hBN gap (�hBN ≈ 5.2 eV) is much larger than the
energy scales under consideration. In this limit, its effect
on graphene’s low-energy effective Dirac Hamiltonian is
the addition of a position-dependent SU(2) self-energy �(�r)
[14,38,39]. Its absolute magnitude is m0 = t2

⊥/(�hBN/2) ≈
35 meV, where t⊥ ∼ 0.3 eV is the graphene-hBN hopping
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FIG. 9. (Color online) Range of variation of magnetic field B
throughout the sample as a function of rotation angle θ or moiré
period A0. Note the large ∼200 T maximum fields, even for large
angles, and the zero at θB ≈ 1.5◦.

FIG. 10. (Color online) Pseudogauge potential �A(�r) in real space
for (left) rotation angle θ = 0, (middle) θ = 1.5◦, and (right) θ =
4◦. Note the vorticity inversion at θ = θB = 1.5◦. Black scale bars
correspond to 1 nm.

amplitude. The gap at the Dirac point can be approximated
to first order in m0 as the spatial average of the local gap
Tr[σ z�(�r)] in a supercell A of area detA:

�
(1)
eff = 1

detA

∫
A

d2rTr[σ z�(�r)] + O
(
m2

0

)
. (15)

In the absence of strains, it can be shown that the local
gap �

(1)
eff (�r) = Tr[σ z�

(0)(�r)] [where �(0)(�r) = �(�r)|�u=0] has
a zero spatial average. The AB and BA regions will have a
positive local gap �

(1)
eff (�rAB) = �

(1)
eff (�rBA) = m0, while the AA

region will have a negative local gap that, without strains,
exactly cancels the former, �

(1)
eff (�rAA) = −2m0, so that the

averaged gap �
(1)
eff is zero.

The effect of spontaneous strains, as we saw, is to expand
the AB regions at the expense of BA and AA. This breaks
the cancellation of the average �

(1)
eff (�r), and hence, strains will

create an integrated gap �
(1)
eff �= 0 at the Dirac point [38]. In

the extreme case where the effective AB-stacked area grows
from A/3 to cover most of the supercell area A, the average
gap will become m0 ≈ 35 meV. In the more realistic case
described here, the linear size of the AB region at θ = 0 is
around 70%–75% of the supercell diameter, which yields an
estimate for the gap of around 15 meV. A figure closer to
the maximum m0 would be obtained for stronger adhesion
parameters, which would result in a larger AB region (smaller
FWHM in Fig. 6).

Interestingly, it has been noted [40] that in the presence
of strains, there is another contribution beyond Eq. (15) that
further increases the effective gap by around 40% [actually
β/(

√
3π ), to be precise]. This comes about in the second order

of perturbation theory in the pseudogauge field �A(�r) and the
scalar potential σ 0�

(0)(�r). Specifically, the gap is corrected by

�
(2)
eff = −

∑
s,s ′=±

∑
�k

〈
ψs ′

0

∣∣vF e �A(�r)�σ ∣∣ψs
�k
〉〈
ψs

�k
∣∣σ 0�

(0)(�r)
∣∣ψs ′

0

〉
E0 − Es

�k

+ c.c. (16)

(see Ref. [38] for higher-order corrections). In the expression
above, E±

�k = ±vF |�k| are conduction and valence eigenener-
gies of the unperturbed Dirac Hamiltonian (Dirac point at the
origin E0 = 0), and |ψs

�k 〉 are the corresponding plane-wave

eigenstates, with pseudospin (1,(kx + isky)/|�k|)/√2. The sum
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FIG. 11. Effective spectral gap induced by hBN on graphene
under equilibrium strains as a function of relative angle θ . We assume
(top) an hBN gap centered around graphene’s neutrality point and
(bottom) a 1.3 eV offset between the two and decompose the gap into
its two leading contributions (dashed and dotted lines).

over �k in Eq. (16) is constrained to the first-star momenta of
Eq. (3), which are the harmonics of �A(�r) [see Eq. (13)]. For all
of these momenta, the denominator is E0 − E±

�k = ±vF | �G|.
Combining this with the solution in Eqs. (13) and (10) and the
corresponding form of the unperturbed σ 0�

(0)(�r) [38,39], we
can obtain closed expressions for �

(1)
eff and �

(2)
eff . Interestingly,

both contributions are parametrically equal in a systematic
expansion in the deformations �u and the inverse hBN gap
�−1

hBN. Specifically, �
(2)
eff = β√

3π
�

(1)
eff . For θ = 0 the total gap

reads

�eff = �
(1)
eff + �

(2)
eff = − 2

9
√

3

1 + δ

δ2

(
1 + β√

3π

)

×m+(�εAB + �εBA) + m−(�εAB − �εBA)

Ba2
0

.

(17)

The chosen sign corresponds to the K valley and is inverted in

the K ′ valley. The masses m± = t2
⊥
2 (ε−1

c ± ε−1
v ) are defined

in terms of the conduction- and valence-band edges εc,v

in hBN with respect to graphene’s neutrality point (if the
gap is centered, m− = m0 and m+ = 0). Recall also that
δ ≈ 1.8%, β ≈ 2, and that the bulk modulus of graphene

is B ≈ 19.1 meV/Å
2
. With our assumption for the adhe-

sion energies, the gap at θ = 0 is approximately �eff ≈
20 meV. This value for �eff is in qualitative agreement with
experimental observations [22]. The effective gap �eff as a
function of θ is shown in Fig. 11. Note that the gauge-scalar
contribution vanishes, as expected, at the special θB ∼ 1.5◦
angle, for which the pseudomagnetic field vanishes. Note
that a finite-energy offset between the Dirac point and the
gap center of hBN (m+ �= 0) can result in a further increase
of the induced gap. As an example, a shift of ∼1.3 eV
between the two yields a θ = 0 value of �eff ≈ 30 meV
(see Fig. 11, bottom panel), in quantitative agreement with
experiment.

VI. CONCLUSIONS

We have presented a model for the in-plane deformations
of a graphene layer on an hBN substrate. The deformations,
effective magnetic field, and average gap can be expressed
in terms of the elastic properties of graphene, the lattice
mismatch, and the adhesion energy between graphene and
hBN [see Eqs. (11), (14), and (17)]. The estimates presented
here give an electronic gap of a few tens of meV, in line with
experiments. The average strains near perfect alignment are
a few percent, ∼δ, and give rise to effective pseudomagnetic
fields of the order of 50–100 T. The pseudomagnetic length
is a few nanometers, about one order of magnitude smaller
than the dimensions of the superlattice unit cell, which should
therefore lead to strong effects in the electronic structure.

The different components of the potential induced by the
moiré superlattice include even and odd terms under spatial
inversion of similar magnitude, as expected from an hBN
substrate. The combination of a modulated scalar and a gauge
potential gives a contribution to the average gap which has
the same parametric dependence and order of magnitude as
the gap arising from the enlargement of the energetically
favorable AB regions.

The main results arise from a competition between the
rigidity of the graphene layer and the adhesion potential pro-
vided by the substrate. For realistic parameters, the graphene
deformations are small, and pinning and commensuration
effects are not important. In terms of an effective Frenkel-
Kontorova model [37], the results presented here are consistent
with a floating phase with gapless acoustic modes.
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and S. Barraza-Lopez, Phys. Rev. B 89, 121403(R) (2014).
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