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The Casimir effect is a fascinating phenomenon where quantum fluctuations of the electromagnetic field give
rise to measurable forces between macroscopic systems. Here we propose that the Casimir effect can be used as a
tool to detect changes in electronic structures. In particular, we focus here on the Lifshitz transition—a topological
change in the Fermi surface—in a planar spin-orbit-coupled semiconductor in a magnetic field and calculate the
Casimir force between the semiconductor and another probe system across the magnetic-field-tuned transition.
We show that the Casimir force experiences a sharp kink at the topological transition and provide numerical
estimates indicating that the effect is well within experimental reach. The simplest experimental realization of
the proposed effect would involve a metal-coated sphere suspended from a microcantilever above a thin layer of
InSb (or another semiconductor with a large g factor).
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I. INTRODUCTION

In 1948, Casimir predicted attraction between two neu-
tral, perfectly conducting materials [1], and after nearly 50
years of theory [2], experimental evidence was presented by
Lamoreaux [3]. Following this discovery there was a flurry
of theory [4] and experiment [5] which led to an astounding
amount of theoretical and experimental machinery. With this
machinery, others have observed that the Casimir force can
have a nontrivial dependence on material parameters [6–9],
some of which may be tunable. We continue in this direction,
considering how the Casimir force changes as a parameter
tunes a system across a Lifshitz transition—an extreme case of
Fermi surface reconstruction in an electronic material. Unusual
for the Casimir effect, we find that, as the system goes through
this transition by tuning a magnetic field, the Casimir force
is both nonanalytic and nonmonotonic as a function of the
field. Our model involves a thin layer of indium antimonide
(or another semiconductor with a large g factor, as discussed
below) and could be experimentally realized in the common
experimental setup for Casimir measurements as shown in
Fig. 1.

The Casimir effect for real materials, as first developed
by Lifshitz [10], explicitly depends on the electromagnetic
response of a material. This response can be built into
the boundary conditions of the electromagnetic field itself.
Diagrammatically, the Casimir energy between two plates A

and B takes the schematic form

Ec =
A

B

+
A

B

A

B

· · · , (1)

where X = X (1 + X ) is the dressed current-

current correlation function for plate X while X is the usual

current-current correlator derived in linear response theory—a
material-dependent quantity related to conductivity. It enters

the expression in a crucial way and thus features in the
frequency-dependent conductivity which translates to features
in the Casimir force. Being able to tune the Casimir force
by modifying this frequency-dependent conductivity [11]
could have important applications for precision gravity ex-
periments [12] and applications to nanotechnology [13].

From the other direction, and importantly for the subject
of this paper, any change of the Casimir force would be an
indication of a change in the material’s properties. Special
geometries [14] and boundary conditions [15] can change
the Casimir force to be repulsive, though with symmetric
geometries without time-reversal symmetry breaking, one
cannot escape an attractive effect [16]. Just as a repulsive
effect would be a signature of some time-reversal symmetry
breaking (such as in the case of two quantum Hall plates [17]
or topological insulators with gapped surface states [18]),
other changes in the Casimir force can be attributed to other
material properties. For instance, Bimonte and coauthors
showed that one can in principle measure the change in Casimir
energy between a normal and a superconducting state [7].
Additionally, it has been demonstrated that both the Casimir
effect and the thermal Casimir effect [8] are capable of probing
phase transitions [9].

In this paper, we consider how the Casimir force changes
as we tune a two-dimensional spin-orbit-coupled material
through a Lifshitz transition. A Lifshitz transition occurs when
a material’s Fermi surface undergoes a topological change—
such as the emergence or collapse of an electron or hole
pocket [19]. Various models are suspected to undergo some
type of Lifshitz transition [20] including the cuprates [21],
and experimental evidence of a Lifshitz transition has been
recently observed in iron arsenic superconductors [22]. We
first define our model and show how it undergoes such a
transition. Introducing the expression for the Casimir energy,
we then find the current-current correlator in linear response
theory after minimally coupling our Hamiltonian to a vector
potential. Using this expression, we numerically integrate to
obtain the Casimir force as we tune our original Hamiltonian
through a Lifshitz transition. We end with some discussion of
this feature.
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FIG. 1. (Color online) The geometry typically used in experi-
mental measurements of the Casimir force is a gold-coated sphere
suspended above a planar plate from a cantilever. We consider a
lower plate of indium antimonide with an applied magnetic field.

II. THEORETICAL MODEL

Others have considered the consequences on the Casimir
effect of considering two-dimensional plates instead of
thick slabs [23,24], but similar to the particular case of
graphene [25], our model requires a more microscopic ap-
proach (see the Appendix). We consider the Casimir force at
zero temperature between two parallel plates where at least
one is modeled as a two-band spin-orbit-coupled material
(sufficiently thin to be considered quasi-two-dimensional) with
a fixed chemical potential and tunable Zeeman splitting due
to an external magnetic field. (When considering only one
spin-orbit-coupled plate, the other is a metallic plate, modeled
as a clean free electron gas.) The Zeeman field tunes a gap in
this two-band material and causes one of the Fermi surfaces to
form or collapse. This is the simplest realistic model exhibiting
a Lifshitz transition. At these transition points, the Casimir
force between the two plates experiences a kink, as seen in
Fig. 2.

This could be experimentally measured with the usual plate
and sphere geometry as seen in Fig. 1. The plate would be a thin
layer of InSb while the sphere would be the usual Au-coated
sphere. While we consider the parallel plate scenario, our
calculations can be generalized to the sphere-plate geometry by
using the proximity force approximation [4] without damage
to the nonanalyticity we observe in the Casimir force.

We consider the single-particle effective Hamiltonian for
the conduction bands of the semiconductor,

Ĥ = k2

2m∗ − μ + β(σ̂xkx − σ̂yky) + Vzσ̂z, (2)

which has eigenvalues

ξ±(k) = k2

2m∗ − μ ±
√

V 2
z + β2k2, (3)

where m∗ and μ are the conduction band effective mass of
the electron and chemical potential. The coefficient β is the
strength of the Dresselhaus spin-orbit coupling, and σi are the
Pauli matrices. The factor Vz is the induced Zeeman splitting,
given by Vz = μBg∗B, where μB is the Bohr magneton, g∗ is
the material’s g factor, and B is an applied magnetic field. For
all calculations we assume that this Hamiltonian is a simple
model of the relevant bands of the material indium antimonide,
for which m∗ = 0.014m0, where m0 is the free electron mass,

FIG. 2. (Color online) The Casimir force Fc normalized by the
ideal conductor value between one semiconductor plate and one
metallic plate separated by a = 50 nm as a function of applied
magnetic field. The red plot (left axis) corresponds to μ > 0, and
the blue plot (right axis) corresponds to μ < 0. The upper plot uses
μ = ±6 meV and the lower uses μ = ±10 meV. The insets show the
band structure above and below the transition point (marked with a
dashed line) along with the two fixed values of the Fermi energy.

and β = γ 〈k2
z 〉 � γ (π

d
)2 [26], where d is the thickness of

the plate and γ = 760.1 eV Å
3

is the intrinsic Dresselhaus
parameter for the material. We consider InSb plates that are
six lattice constants thick, d = 6 × 0.6479 nm = 3.89 nm. The
plates may still be considered effectively two-dimensional
(2D) as long as the energy needed to excite higher electron
modes in the confined direction is much larger than the
energy required to excite the two lowest bands modeled here.
Additionally, since the g factor of InSb is g∗ = −51.6 we can
also neglect the orbital coupling of the electrons directly to the
external magnetic field as well as the effect of the magnetic
field on the metallic plate when it is considered [27].

This model is a simplification since we neglect virtual
excitations in the confined direction as well as changes in bulk
parameters due to confining, band bending, and emergence
of other spin-orbit effects (e.g., Rashba spin-orbit coupling).
The parameters are at least of the same order of magnitude,
and other spin-orbit terms just modify the geometry of the
Fermi surface. At worst, these complications and effects due
to the crystalline structure of InSb should affect the quantitative
features but not the qualitative features we find.

For μ > |Vz| there are two bands crossing the Fermi energy.
With fixed μ, as |Vz| is increased the occupation of the upper
band decreases until the Fermi surface disappears entirely
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when |μ| = |Vz|—the electron pocket defined by that Fermi
surface disappears. Increasing the Zeeman splitting further,
the Fermi energy lies within the gap and only the lower band
crosses the Fermi level, giving a single Fermi surface. This
represents the Lifshitz transition for μ > 0 and is shown with
the red dashed line in the insets of Fig. 2.

If m∗β2 > |Vz| the lower band has a local maximum at
k = 0 and a similar scenario can be considered for εmin <

μ < −|Vz|, where εmin is the lowest energy of the lower band.
In this case, the lower band crosses the Fermi energy for
two distinct values of k, producing two Fermi surfaces—the
inner one enclosing a hole pocket. Again, increasing |Vz| for
fixed μ leads to a shrinking of the inner Fermi surface until it
disappears completely at the point when |μ| = |Vz|. For larger
Zeeman splitting, the Fermi energy again lies within the gap
and there is a single Fermi surface. This senario for μ < 0 is
shown with the blue dashed line in the insets of Fig. 2. The
disappearance of a Fermi surface by changing Vz in these two
scenarios are simple examples of a Zeeman-driven Lifshitz
transition.

Since these transitions occur at a specific value of |Vz|,
regardless of the sign of Vz, the direction of the applied
magnetic field is unimportant. For this reason, we always
assume Vz > 0 for simplicity. We also denote the magnetic
field strength needed to reach the Lifshitz transition point as
BL = |μ|

gμB
.

We use a microscopic quantum field theoretic method to
calculate the Casimir energy at zero temperature in terms of
the current-current correlation functions of the two electron
systems under consideration and virtual photons in the three-
dimensional (3D) vacuum between them. Summing up the
diagrams in Eq. (1), the Casimir energy at zero temperature
for parallel 2D plates separated by a distance a is given by

Ec(a) = 1

4π2

∫ ∞

0
dq⊥ q⊥

×
∫ q⊥

0
dω tr ln[1̂ − ˆ̃	A(q⊥,iω)D̂(q⊥,iω,a)

× ˆ̃	B(q⊥,iω)D̂(q⊥,iω,a)], (4)

where D̂ is the photon propagator and ˆ̃	i is the current-current
correlation function for plate i, dressed by interactions with
3D photons. We choose the gauge with no scalar potential,
φ = 0, so the relevant components of the photon propagator
have the form

D̂(q⊥,iω,z) = �

2

(
q⊥
ω2 0

0 1
q⊥

)
e−q⊥|z|.

The dressed current-current correlation function can be ex-
pressed in terms of the bare correlation function, 	̂, as

ˆ̃	 = [1̂ − 	̂D̂(z = 0)]−1	̂,

which accounts for dynamical screening of photons in the
random-phase approximation (RPA). A more thorough deriva-
tion of Eq. (4) is given in the Appendix for completeness.

We determine the bare correlation function using the
current operator, ji(x) = ψ†(x) ∂Ĥ [A]

∂Ai (x)ψ(x), where Ĥ [A] is the
Hamiltonian given in Eq. (2) after minimal coupling. The

correlation function is then expressed in terms of the current
as

	ij (x,x ′) = 〈−δ(x − x ′)δij ∂Ai
ji(x) + ji(x)jj (x ′)〉|A=0, (5)

where 〈· · · 〉 represents averaging over the ground state [28].
In the case of a weakly correlated system we can use the
approximation that the Casimir effect is determined by the
local current-current response functions; i.e., we need to
consider only the q = 0 limit of 	̂ since nonlocal behavior
is screened out. Equivalently, this is a simple extension of
the usual plasma model to a spin-orbit-coupled Hamiltonian,
which describes the plates. Furthermore, coupling of the spin
to the magnetic fluctuations of the vacuum field do not need
to be considered. In this limit, the correlation function for the
spin-orbit-coupled plates has the form

	̂(iω) = −e2

h

(
	L(iω) 	H (iω)

−	H (iω) 	L(iω)

)
, (6)

where e2/h is the quantum of conductance,

	H (iω) = Vz

[
cot−1

(
ω

2ε+

)
− cot−1

(
ω

2ε−

)]
, (7)

	L(iω) = μ[�(μ − |Vz|) + �(μ + |Vz|)]

+ ε+ − ε−

2
+ ω2 − 4V 2

z

4Vzω
	H (iω), (8)

and ε± are the positive square roots of

(ε±)2 = V 2
z + max

{
0,2m∗β2(μ + m∗β2)

×
[

1 ±
√

1 − μ2 − V 2
z

(μ + m∗β2)2

]}
. (9)

III. RESULTS

We take the derivative of Eq. (4) with respect to the plate
separation, a, to obtain an expression for the Casimir force. We
then integrate this expression numerically for fixed separation
a = 50 nm and Fermi energy μ, while varying |Vz|, i.e.,
varying the magnetic field in an actual experiment. We consider
two Fermi energies, μ = ±6 and ±10 meV, which give that
the magnetic fields needed to reach the transition are BL = 2
and 3.35 T. For all numerical results, we give the Casimir
force in our considered system, Fc, normalized by the Casimir
force between ideal conducting plates, F0 = −�cπ2/240a4,
calculated for the same plate separation. The dependence on
plate separation closely follows the usual dependence for the
Casimir force with the magnitude of the force increasing at
shorter separations. Furthermore, the qualitiative nature of the
effect we find is not affected by the plate separation.

For the simple system with no spin-orbit coupling (β = 0),
i.e., two metallic plates, the Casimir force as a function of
magnetic field is shown in Fig. 3. As the magnetic field is tuned
and the chemical potential is kept fixed, the Fermi surface
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FIG. 3. The Casimir force Fc normalized by the ideal conductor
value between two metallic plates at a fixed separation as a function of
the applied magnetic field. The insets show the band structure above
and below the transition along with the fixed value of the Fermi
energy. With a large Fermi energy and small electronic g factor (≈2),
a prohibitively large magnetic field is needed to reach the transition.

changes by the removal of an electron pocket:

B < BL
B < BL

B > BL

(10)

where the shaded circles represent filled electron states in the
2D k space. In Fig. 3, we see that for B < BL the Casimir
force is constant with varying B, since the carrier density of
the material, which in this case is the only free parameter
determining the value of 	̂ = − e2

h
[2μ�(μ − |Vz|) + (μ +

|Vz|) �(|Vz| − μ)], is constant in this region. As the upper band
is raised above the Fermi level, the closing of the upper-band
Fermi surface is indicated by a kink in the Casimir force,
above which the magnitude of the force increases with B,
consistent with the increase in the carrier density in this
region. Unlike spin-orbit-coupled materials—the subject of
this paper—this simple system has a critical field BL = |μ|

gμB

which is unreasonably large (on the order of 10 000 T) due
to large Fermi energies and small g factors. However, the
spin-orbit-coupled semiconductors have small Fermi energies
and large g factors, leading to a more reasonable value of BL.

For the semiconductors under consideration, the Casimir
force as a function of the magnetic field is presented in Fig. 2
for the case of one metallic plate and one InSb plate and in
Fig. 4 for the case of two InSb plates. Additionally, relevant
numerical quantities (chemical potential, value of the force,
change of force from the zero magnetic field value, and change
of the slope characterizing the kink) associated with these plots
are given in Tables I and II. As the Zeeman energy changes,
the value of the chemical potential has a strong influence on
the behavior of the Casimir force. For positive values of μ (red
curves), the Fermi surface sees behavior similar to that seen in
Eq. (10). The behavior of the Casimir force above and below
the transition is similar in both systems we consider, with the
force decreasing in magnitude as the magnetic field strength is
increased towards the transition and the force increasing above
the transition for sufficiently large values of B. This increase
at large B is irrespective of Fermi energy or case, and Vz 


0 1 2 3

5.13

5.14

5.15

5.16

B T

F c
F 0
10

3

4.360

4.362

4.364

4.366

4.368

F c
F 0
10

3

0 1 2 3 4 5 6

5.35

5.36

5.37

5.38

5.39

5.40

B T

F c
F 0
10

3
4.03

4.04

4.05

4.06

4.07

4.08

4.09

F c
F 0
10

3

FIG. 4. (Color online) The Casimir force Fc normalized by the
ideal conductor value F0 between two semiconductor plates separated
by a = 50 nm as a function of applied magnetic field. The red plot (left
axis) corresponds to μ > 0, and the blue plot (right axis) corresponds
to μ < 0. The upper plot uses μ = ±6 meV and the lower plot uses
μ = ±10 meV. The insets show the band structure above and below
the transition point along with the two fixed values of the Fermi
energy.

β
√

2m∗|μ|, leading to a suppression of the spin-orbit-coupling
term and a crossover to the simple metallic behavior.

For negative values of μ (blue curves), the InSb Fermi
surface changes begins with a hole pocket that disappears at
the critical magnetic field:

B < BL
B < BL

B > BL

(11)

TABLE I. Some important numerical results from the case of the
Casimir force between one metallic plate and one InSb plate, all in
units of F0 = −�cπ 2/240a4 × 10−3. The first column gives the value
of the force at the transition. The second column gives the change in
the force from B = 0 to the transition. The last column gives the jump
in the derivative of the force with respect to the applied magnetic field
across the transition, giving a measure of the severity of the kink.

μ (meV) Fc(BL)
F0

Fc(BL)−Fc(0)
F0

dFc

dB
|B=B+

L
− dFc

dB
|B=B−

L
(F0/T )

6 6.806 −0.02756 0.0212
10 7.054 −0.0589 0.0326
−6 5.896 0.0061 −0.0097
−10 5.516 0.0458 −0.0125
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TABLE II. The same as Table I but for the case of two identical
InSb plates.

μ (meV) Fc(BL)
F0

Fc(BL)−Fc(0)
F0

dFc

dB
|B=B+

L
− dFc

dB
|B=B−

L
(F0/T )

6 5.138 −0.0291 0.0200
10 5.346 −0.0619 0.0310
−6 4.367 −0.0020 −0.0056
−10 4.041 0.0192 −0.0035

where now the empty hole is the hole pocket. The behavior
of the Casimir force is different in the two systems. When
considering one InSb plate and one metallic plate, the force
increases with increasing B below the Lifshitz transition for all
values of μ considered and then increases above the transition
as well for a sufficiently strong magnetic field (again, in a
crossover to the simple metal case). In the system composed of
two InSb plates, there is no common trend seen in the Casimir
force for the negative values of the Fermi energy we consider,
except that, again, above a certain magnetic field strength the
force increases with increasing B. For the lowest of the Fermi
energies considered, we see that the Casimir force decreases
with B below the transition and then even more quickly directly
above the transition.

The main feature of all of these plots is the sharp kink
seen at the Lifshitz transition point, and this feature should be
discernible even considering the effects of temperature and a
substrate. We expect the features to remain for temperatures
much less than the energy of the gap at the transition point
(i.e., the chemical potential): 70 K and 116 K for chemical
potentials of 6 and 10 meV, respectively. Additionally, as long
as the substrate for either the InSb or Au is a poor conductor,
nonmagnetic, and does not experience an electronic transition
in the range of magnetic fields needed to reach the Lifshitz
transition, then we would expect it to have at most a small
effect on our results and not to change the nature of the features
we find.

IV. CONCLUSIONS

These features can be understood by examining the imag-
inary frequency ac conductivities of the InSb plates as a
function of magnetic field at a fixed nonzero frequency; since
the plates have no disorder there is no dissipation and the
longitudinal dc conductivity is infinite. Both the longitudinal
and Hall conductivities at finite frequency have a discontinuity
in their derivatives with respect to B at the point where
|μ| = Vz, just as we find with the Casimir force. The overall
trend in the longitudinal conductivity, shown in Fig. 5, mimicks
the behavior of the Casimir force we find for positive Fermi
energies—decreasing in magnitude below the transition, then
decreasing less drastically directly above the transition until
reaching a minimum and increasing with B. All of these
results taken together suggest that the Hall contribution to the
Casimir effect from interband spin-orbit interactions, which
are stronger when the bands are closer in energy (i.e., small
Vz), works to suppress the strength of the Casimir force. Since
the Lifshitz transition occurs precisely when Vz = |μ|, for
smaller values of the Fermi energy the transition occurs for

0 1 2 3 4 5 6

B T

xx
i

2i
a.
u.

FIG. 5. The imaginary frequency longitudinal conductivity of the
InSb plate at iω = 2iμ for μ = 10 meV as a function of the applied
magnetic field. The Lifshitz transition point is indicated with a dashed
line.

smaller values of Vz, meaning that the bands are not so far
removed from each other and interband effects are stronger.
Additionally, these effects are stronger in the system with two
InSb plates, as would be expected if they were the result of
spin-orbit coupling.

As we have shown, tuning through a Lifshitz transition
in this material causes a kink in the Casimir force while
the microscopics control the nature and severity of the kink.
We expect similar features to be found in other materials
with such transitions—particularly due to the change in the
carrier concentration across such a transition. This is one
way in which precision Casimir force experiments could
be used as a probe of nontrivial electronic properties or
transitions. This is not exclusive to the particular semicon-
ductor considered here; not only could the Casimir effect be
used to probe Lifshitz transitions in other materials, but it
could conceivably be used to detect other phenomena such
as the Fermi surface reconstruction and the superconducting
transition in cuprates and disorder-driven phenomena such as
localization.
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APPENDIX: DERIVATION OF THE CASIMIR ENERGY

We wish to derive an expression for the electromagnetic
Casimir energy between two parallel 2D plates in terms of
photon propagators and quantities that can be derived from
the microscopic description of the electrons in each plate.
We do this by calculating the free energy of the two-plate
system interacting with 3D photons and then subtracting off the
contribution for each isolated plate and the photon background,
leaving only the part coming from interactions between the
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plates:

Ec = F − F1 − F2

= − 1

β
(lnZ − lnZ1 − lnZ2)

= − 1

β

(
ln

∫
DAe−SEM−S1−S2 −

2∑
i=1

ln
∫
DAi e

−SEM−Si

)
.

Here, F and Z are the free energy and partition function of
the full system composed of two plates interacting with 3D
photons, while Fi and Zi are the free energy and partition
function of plate i interacting with 3D photons in isolation.
The partition functions are calculated as path integrals over the
photon field A, with the actions for the photon field given by

SEM [A] = −1

4

∫
d4x FμνF

μν,

where Fμν is the electromagnetic field tensor, and the action
for the electrons in plate i is given by

Si[A] = −1

2

∑
n

∫
d 2q

(2π )2
Aμ(q,zi)	μν,i(q)Aν(−q,zi).

Throughout we have also set � = c = 1, and we use the
shorthand ±q = (±�q, ωn). The two plates are located at
z = z1 and z = z2 with z2 − z1 = a, the distance between the
plates. This expression for Si is obtained from linear response
theory, with 	 given by Eq. (5). In principle, higher order
terms with internal photon lines and two external photon lines
could be included as well, but they would be higher order in
α = e2

4π
≈ 1

137 and therefore provide only small corrections.
Introducing the notation∫

DA (· · · )e−SEM [A] = 〈 · · · 〉A,

noting that the ln’s serve to keep only connected diagrams
and that we have subtracted off diagrams that involve only
single plates, we now have that the Casimir energy can be
written as

Ec = − 1

β
(ln〈e−S1[A]−S2[A]〉A − ln〈e−S1[A1]−S2[A2]〉A1,2 )

= − 1

β
〈e−S1[A]−S2[A]〉A, connected, both plates. (A1)

We are left with two types of connected diagrams, shown in
Fig. 6.

FIG. 6. Examples of the two types of diagrams we are left with.
In the first type, all photon lines connect one plate (in the form of 	̂1,
labeled here by A) to the other plate (in the form of 	̂2, labeled by B).
In the second type, there is at least a single photon line connecting a
plate to itself.

The second type of diagram demonstrated in Fig. 6 dresses
the interaction of the photons with the plates. Carefully
keeping track of the coefficients in the expansion of Eq. (A1)
calculating the symmetry factors of such diagrams, we find
that we may define the photon-dressed current-current corre-
lation function as

ˆ̃	 = 	̂ + 	̂D̂(z = 0)	̂ + · · · = [1̂ − 	̂D̂(0)]−1	̂ (A2)

and we are left with only the first type of diagram, but with 	̂

replaced with ˆ̃	. This is equivalent to considering the RPA for
the total current-current correlation. Using this definition and
calculating the appropriate coefficient for each diagram, we
can write a single expression that incorporates all connected
diagrams. Suppressing all frequency and momentum labels,
we can write

Ec(a) = − 1

β

∑
n

∫
d 2q

(2π )2
tr

[ ∞∑
k=1

1

2k
( ˆ̃	1D̂(a) ˆ̃	2D̂(a))k

]

= 1

2β

∑
n

∫
d 2q

(2π )2
tr ln[1̂ − ˆ̃	1D̂(a) ˆ̃	2D̂(a)]

T →0= 1

2

∫ ∞

−∞

dω

2π

∫
d 2q

(2π )2
tr ln[1̂ − ˆ̃	1D̂(a) ˆ̃	2D̂(a)].

In the limit T → 0, we have not performed the analytic
continuation iωn → ω + i0+, we simply make the discrete
Matsubara sum into a continuous integral over imaginary
frequency. Assuming that the integrand depends only on the
magnitude of �q and not its direction, we may perform the
angular integration. We now perform a convenient change of
variables, defining q⊥ =

√
ω2 + q2. This is simply a formal

change of variables that makes the expression simpler to
integrate numerically. With this change of variables and a
reordering of integrals we arrive at the final expression for
the Casimir energy given in Eq. (4).
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