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Photoinduced valley currents in strained graphene
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The theoretical results are presented showing that strain-induced anisotropy of graphene spectrum gives rise
to the valley currents under the illumination by normally incident light. The currents of the two graphene valleys
are mutually compensated providing zero net electric current. The magnitude and direction of the valley currents
are determined by the parameters of strain and light polarization. For not too high photon energy strain-induced
valley current exceeds that due to intrinsic warping of the graphene spectrum which suggests feasibility of
strain-mediated valleytronics.
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I. INTRODUCTION

Although importance of the valley structure of the carrier
spectrum in crystals has been recognized since the early age
of solid-state physics, the idea to employ a valley degree of
freedom as an internal characteristic independent of electric
charge and spin was formulated only recently [1]. The related
theoretical concepts and first successful experiments suggest
an emergence of a direction called valleytronics. It assumes
that in multivalley crystals nonzero currents in individual
valleys can be generated keeping zero total electric current.
In experiments, the valley control is realized with the use
of carrier photoexcitation in a two-valley MoS2 monolayer
[2–4] and six-valley Si-based structure [5]. Moreover, valley
Hall effect was observed recently for MoS2 under the valley-
selective optical excitation [6]. As a graphene band structure
has two inequivalent valleys, this material is a potential
candidate for development of valleytronics. Although no
experimental indication of valley currents in graphene is
present so far, various approaches of their generation as well
as valley filtering were proposed. The activity was started
by the papers [7,8] where the specific valley-dependent edge
states of graphene nanoribbons are proposed to be used for the
valley filtering. Another approach explores valley Hall effect in
graphene with lifted sublattice equivalence [9–11]. After that, a
number of various approaches were suggested [12–26]. One of
them [23] employs warping of the graphene spectrum, which
is essential at high carrier energies, above 1 eV. Such warping
gives rise to valley currents under the optical excitation with
light propagating normally to the graphene layer. It is important
that anisotropy of the graphene energy spectrum can be not
only due to its intrinsic properties (warping), but also under
application of the external strain [27–29]. In this paper we
analyze the valley currents of illuminated strained graphene. It
is known that application of strain to graphene conserves the
Dirac form of its spectrum, but leads to essential anisotropy
of the Fermi velocity. Theoretical and experimental analysis
suggest that such a behavior is sustained for strain magnitude
as high as 10% [30–33]. According to our results, application
of strain gives rise to greater photoinduced valley currents
for midinfrared or softer illumination, compared to that due

*linnik1971@hotmail.com

to natural warping. In addition, it allows external control of
the valley currents in graphene structures with tunable strain
parameters.

It is worth mentioning that other materials of the graphene
family can also possess strain-induced spectrum asymmetry
(see, for example, [34], where the spectrum of strained
bigraphene was addressed), which suggests their perspectives
for strain-controlled valleytronics.

II. SPECTRUM OF GRAPHENE UNDER
UNIFORM STRAIN

The honeycomb crystal lattice of unstrained graphene and
the corresponding first Brillouin zone are shown in Figs. 1(a)
and 1(b), respectively. The Brillouin zone extrema are at two
inequivalent corners of the hexagon, K and K ′. The effect
of the uniform strain on the energy spectrum of graphene
was initially explored within the tight-binding approach and
first-principles calculations [27,35–42]. The main results were
that the opening of a gap in the energy spectrum requires very
high values of strain, of the order of 20%. This means that the
energy spectrum remains gapless and conelike for moderate
uniform strains. However, the Dirac points in strained graphene
no longer coincide with the edges of the Brillouin zone K

and K ′. Moreover, the strong strain-induced anisotropy of
Fermi velocity appears [27–29,35,37]. On the other hand, the
properties of intrinsic graphene [43,44] and graphene subject
to various fields [21,28,45–50], can be addressed based on the
symmetry considerations. In particular, the k · p Hamiltonian
H of strained graphene can be developed [21,28,47] and has
a form

H = Hk + Hε + Hεk,

Hk = �vF [(k̂x − ik̂y)σ+ + (k̂x + ik̂y)σ−],

Hε = Ed1ε̄I + Ed2[(ε� + 2iεxy)σ+ + (ε� − 2iεxy)σ−],

Hεk = �vF {a2[(k̂x + ik̂y)(ε� + 2iεxy)

+ (k̂x − ik̂y)(ε� − 2iεxy)]I + (2d2 − 1)ε̄[(k̂x − ik̂y)σ+

+ (k̂x + ik̂y)σ−]/2 + (2g2 − 1)[(k̂x + ik̂y)

× (ε� − 2iεxy)σ+ + (k̂x − ik̂y)(ε� + 2iεxy)σ−]/2},
(1)
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FIG. 1. (a) The honeycomb lattice of graphene. The carbon sites
belonging to the two equivalent sublattices are denoted by solid and
hollow circles. The dashed line marks the primitive cell. (b) The first
Brillouin zone of graphene; the Dirac points of the graphene spectrum
are at the K and K ′ valleys.

where Fermi velocity in unstrained graphene is vF = 106 m/s,
and Ed1 and Ed2 are the deformation potentials [51].
The coefficients a2 ≈ 0.2, d̃2 ≈ −1.25, and g̃2 ≈ −2.14 are
responsible for the anisotropy of the Fermi velocity and
were determined in [28] by the comparison with the first-
principles calculations; σ± = σx ± iσy are the combinations
of Pauli matrices, I is a 2 × 2 unity matrix, k± = kx ± iky ,
and we introduce the uniaxial ε� = εxx − εyy , hydrostatic
ε̄ = εxx + εyy , and shear εxy components of strain.

It results in the Dirac-like electron and hole spectra E
(c,v)
k

with anisotropic electron and hole Fermi velocities:

E
(c,υ)
k = �[±v0(ϕ) + δv(ϕ)]k. (2)

Here k and ϕ are the absolute value and polar angle of
momentum k, + and − signs correspond to the conduction and
valence bands, and we dropped the inessential for our problem
strain-related momentum and energy shift of the Dirac point,
the velocities are determined by

v0(ϕ) = vF (1 + ε̄d̃2/2 + ε�g̃2cos2ϕ/2 + εxyg̃2sin2ϕ),

δv(ϕ) = 2vF a2(ε�cosϕ − 2εxysinϕ). (3)

As we see, the energy spectrum of strained graphene
is essentially anisotropic and strain breaks not only the
equivalence of k and −k directions but also the symmetry
of electron and hole spectra as it is shown in Fig. 2. The
corresponding solution for the wave function is

�
(c,v)
k (ϕ) = 1√

2

(
1

±C(ϕ)

)
eik·r,

C(ϕ) = eiϕ 1 + d̃2ε̄/2 + g̃2(ε�/2 + iεxy)e−i2ϕ√
1 + d̃2ε̄ + g̃2ε�cos2ϕ + 2g̃2εxysin2ϕ

,

(4)

where, as in (2), + and − signs mark the carrier bands. The
provided spectra and wave functions are for the K valley.
For the K ′ valley, the expressions for the spectrum and wave
functions can be obtained by the substitution of x → −x for
momentum and strain components, or, explicitly, ϕ → π − ϕ

and εxy → −εxy .

III. LIGHT-INDUCED VALLEY CURRENTS

A. Photogeneration valley currents

Before proceeding to rigorous analysis of the valley cur-
rents, let us discuss qualitatively its physical origin. In general,
the valley current can appear due to anisotropy of the carrier
group velocity and photon-induced transition probabilities. In
Fig. 2 we plot the spectra of unstrained (red line) and strained
(black line) graphene along the ky direction for the case of
pure shear strain εxy . The vertical arrows show light-induced
electron transitions from the valence to the conduction bands
in the K and K ′ valleys. The arrows correspond to the y

components of the photogenerated electron and hole group
velocities. As we see, in unstrained graphene the resulting
current in each valley is exactly zero. In the presence of strain
this is still true if the probabilities of transitions at positive and
negative ky are equal. However, as we will see below, this is
not the case (in the figure this is illustrated by the different
vertical arrow thicknesses). As a result, each valley possesses
nonzero current. These currents in the K and K ′ valleys are
antiparallel, and there is no total current in the system.

The quantitative consideration of both effects can be done
with the use of the steady state quasiclassical kinetic equation:

J (i){f } + J
(i)
R {f } + G(i){f } = 0, (5)

where f is the carrier distribution function, J (i) is the scattering
integral, J

(i)
R and G(i) are recombination and interband photo-

generation rates, and index i marks the valley. We concentrate
on the case of moderate temperatures and excitation photon
energy below the doubled intervalley (about 157 meV, zone-
edge transverse optical phonon mode) energy [52]. In this
case we can neglect the intervalley scattering, and the kinetic
equations for each valley are decoupled. In the following we
analyze a kinetic equation for the K valley and drop the valley
index for all values discussing the results for the K ′ valley at the
end of the section. We assume also that actual carrier energies
are less than that of optical phonon (about 200 meV). Thus, we
can also neglect the optical phonon scattering and take J {f } =
JLA{f } + Jee{f } + Jim{f }, considering scattering due to the
longitudinal acoustic phonons (LA), impurity scattering (im),
and electron-electron scattering (ee). Below we consider both
intrinsic and doped graphene. However, we always assume
that optical excitation generates carriers away from the Fermi
energy level and we deal with a fully populated initial carrier
state and empty finite state. Formally, this means that G does
not depend on the distribution function. In the presence of
strain both wave functions and the light-electron interaction
Hamiltonian [23] are modified, and we have

G = Ceff

∑
k′

∣∣〈�(c)
k′

∣∣(σ · u + δHεu)
∣∣�(v)

k

〉∣∣2

× δ
(
E

(c)
k′ − E

(v)
k − �ω

)
, Ceff = 16π2v2

F αIot
2/ω2,

(6)

where σi(i = x,y) are the Pauli matrices, α = e2/4πε0�c ≈
1/137 is a dimensionless fine structure constant, and I0, u,
and ω are the intensity, polarization, and the frequency of
the incident light, respectively. We also introduce here the
electric field amplitude transmission coefficient t = 2/(n + 1)
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FIG. 2. (Color online) Comparison of the strained (solid line) with εxy �= 0 and unstrained (dotted line) cross section of the graphene energy
spectrum at kx = 0. The light-induced transitions are marked by vertical arrows, with thicknesses reflecting the magnitude of the transition
probability. The solid arrows of different lengths indicate the anisotropy of the group velocity.

assuming the graphene sheet is placed at the substrate with
the refractive index n. �

(c,v)
k are the wave functions of the

conduction and valence bands which are determined by Eq. (4).
The strain-induced contribution to the light-electron interac-
tion δHεu is analogous to the Hεk terms in the Hamiltonian of
strained graphene given by Eq. (1) and is determined by the
same constants:

δHεu = a2[(ux + iuy)(ε� + 2iεxy)

+ (ux − iuy)(ε� − 2iεxy)]I + d̃2ε̄[(ux − iuy)σ+
+ (ux + iuy)σ−]/2 + g̃2[(ux + iuy)(ε� − 2iεxy)σ+
+ (ux − iuy)(ε� + 2iεxy)σ−]/2. (7)

In the linear strain approximation δHεu makes no contri-
bution to the valley currents. Therefore, to avoid dealing with
cumbersome expressions, we omit below the corresponding
terms.

To solve Eq. (5) we use the standard approach [53],
introducing as independent variables the distribution function
energy E and ϕ, and expanding f into the Fourier series:

f (E,ϕ) = f0(E) +
∞∑

n=1

[
f (c)

n (E)cos(nϕ) + f (s)
n (E)sin(nϕ)

]
.

(8)

In these variables the generation term is

G = sgn(E)
Ceff

4

[
1 + (

u2
y − u2

x

)
cos(2ϕ) − 2uxuysin(2ϕ)

]
× δ{|E|[1 − sgn(E)δυ(ϕ)/υF ] − �ω/2}. (9)

In the following we assume that elastic scattering on various
kinds of defects is the most efficient one. For the elastic
scattering integral calculated assuming no strain effect on
the carrier scattering probabilities J (0)

im , we have J (0)
im {f } =

−∑∞
n=1 [f (c)

n (E)cos(nϕ) + f (s)
n (E)sin(nϕ)]/τn(E), where τn

are determined by the elastic scattering probabilities [53].
Since J (0)

im {f } contains no zero harmonic, f0 is controlled by
the other, less efficient, scattering mechanisms and we may
assume that f0 � fn�=0.

Then, we introduce expansions G = ∑∞
n=0[G(c)

n

(E)cos(nϕ) + G(s)
n (E)sin(nϕ)], Jν{f0} = ∑∞

n=0[J (ν,c)
n (E)cos

(nϕ) + J (ν,s)
n (E)sin(nϕ)], where ν marks the scattering

mechanisms, including recombination. Note that for elastic
scattering Jim{f0} = 0. As a result, for fn�=0 we have an
approximate equation

f (c,s)
n (E) = τn(E)

[
G(c,s)

n (E) +
∑

ν

J [ν,(c,s)]
n (E)

]
. (10)

Note that J [ν,(c,s)]
n for n �= 0 appears only due to strain-

induced anisotropy. In the following we disregard this effect
for the phonon, impurity, and electron-electron scattering. In
general, it leads to the corresponding contributions of f (c,s)

n

and, consequently, to the valley current. Those contributions
are difficult to analyze quantitatively since they depend, in
particular, on the microscopic details of the phonon scattering
and peculiarities of many-electron effects under the electron-
electron scattering. Thus, we assume

f (c,s)
n (E) = τn(E)

[
G(c,s)

n (E) + J [R,(c,s)]
n (E)

]
, (11)

and the corresponding valley current could be treated as a
lower estimate.

Using the E,ϕ variables, the expression for the valley
current is

ji = e

2π2�2

∫
dEdϕ

Esgn(E)v(g)
i f (E,ϕ)

v2
E(ϕ)

, i = x,y, (12)

where v(g) = �
−1∇kE is the carrier group velocity and

vE(ϕ) = sgn(E)v0(ϕ) + δv(ϕ). According to (11), we can split
the valley current into generation and recombination contribu-
tions j

(G)
i and j

(R)
i calculated by (12) for the corresponding

contributions of the distribution functions τn(E)G(c,s)
n (E) and

τn(E)J [R,(c,s)]
n (E). Since in our model G does not depend on

f0(E), it is straightforward to obtain explicit expression for
j

(G)
i which are valid for both intrinsic and doped graphene.

This is not true for j
(R)
i . We postpone the related analysis of

f0(E) and j
(R)
i till the next section, concentrating here on the

calculation of j
(G)
i .

The nonzero contribution to j
(G)
i is provided by the zero

harmonic of the factor f (E,ϕ)v(g)
i (E,ϕ)/v2

E(ϕ). Restricting
ourselves to the first-order contribution with respect to the
magnitude of strain, we conclude that there are two inputs to
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the valley current. The first one is due to f
(c,s)
1 , which appears

under the expansion of the δ function in (9). The second one
is the first harmonic of v−2

E . Both these contributions are
stipulated by the strain-induced asymmetry of the electron

and hole spectra, manifested in the anisotropy of the transition
probability and effective density of states under the photon-
induced transitions. As a result, we obtain for the electron part
of j

(G)
i ,

j (G)
x = πea2υF αIot

2

E2
ω

{[
ε�

(
u2

y − u2
x

) + 2ε� + 4εxyuxuy

] d

dE
{E2τ1(E)}|E=Eω

+ 2Eωτ2(Eω)
[
ε�

(
u2

y − u2
x

) + 4εxyuxuy

]}
,

j (G)
y = 2πea2υF αIot

2

E2
ω

{[
εxy

(
u2

y − u2
x

) − 2εxy − ε�uxuy

] d

dE
{E2τ1(E)}|E=Eω

+ 2Eωτ2(Eω)
[
εxy

(
u2

y − u2
x

) − ε�uxuy

]}
, (13)

where Eω = �ω/2. For the hole part, we have analogous
expressions but with the minus sign and substitution Eω →
−Eω. To obtain the expression for the photocurrent in the K ′
valley we must change the sign of all x components for all
vectors (j(G) and u) and εxy . This means that the partial valley
currents of the two valleys have opposite signs being equal
in magnitude, which results in a zero net electric current in
accordance with the symmetry arguments.

Let us proceed with some quantitative estimates. First of
all, it is worth comparing the strain-induced valley current and
that due to natural warping of the graphene spectrum [23]. To
be specific, we assume elastic scattering by the unscreened
Coulomb impurities in intrinsic graphene, where τ1 ∼ E and
τ2 = 3τ1 [23]. Taking parameters of warping from [23], for
light polarized along the y direction and εxy = 0, the ratio of
the warping j (w)

x and strain-induced valley currents is

j (w)
x

j
(G)
x

= 1

96a2ε�

�ω

E∗ , (14)

where E∗ ≈ 17.5 eV denotes the energy where characteristic
warping and Dirac contributions to the spectrum are compa-
rable [23]. Thus, for realistic strain ε� = 1% strain-induced
valley current exceeds the warping one for �ω < 1 eV. This
means that for long-wavelength radiation, starting from the
midinfrared band, it is feasible to deal with strain-controlled
valley current. Taking �ω = 0.4 eV and τ1ω = 10−14 s [54],
for the provided above strain, light intensity I0 = 102 W/m2

and the substrate refractive index n = 2.6, corresponding to
SiC we estimate jx

(G) = 2 × 10−3 pA/μm.

B. Recombination-induced valley currents

In analogy to the above considered photogenerated valley
currents the strain-induced anisotropy of the energy spectrum
leads also to the appearance of the valley currents due to
the inverse recombination processes. In general, a number of
recombination processes are possible in graphene, including
radiative, phonon-assisted, and Auger process [55]. For the
considered excitation energy optical-phonon-assisted recom-
bination is suppressed, while the Auger recombination is
inefficient (see [56]). Thus, we concentrate on the former

mechanism where spontaneous and thermal radiation-induced
interband transitions take place. To estimate this effect we
use the collision integral for the thermal radiation interband
transitions given in Ref. [57]. So, for positive energies
corresponding to the conduction band, an explicit expression
for JR is

JR{f (E,ϕ)} = ν
(R)
E {Nph(E,ϕ)[1 − f (E,ϕ)]f (E′,ϕ)

− [Nph(E,ϕ) + 1][1 − f (E′,ϕ)]f (E,ϕ)},
ν

(R)
E = vr

�vF

E [1 − δυ(ϕ)/υF ] ,

E′ = −E + 2Eδυ(ϕ)/υF , (15)

and for negative energies, corresponding to the valence band,
JR can be written in an analogous way. Here Nph(E,ϕ) =
(exp {2E [1 − δυ(ϕ)/υF ] /T } − 1)−1 is the Plank distribu-
tion function, T is temperature in energy units, and vr =
8αnvF (vF /c)2 /3 is the characteristic radiative velocity.

As we mentioned above, to analyze the recombination
current, we need to determine the isotropic component of the
distribution function f0(E). Restricting ourselves to the linear
in strain magnitude contributions to the valley current, we
should address this problem assuming no presence of strain.
Even in this case this is a complicated problem, requiring, in
general, extensive numerical simulations. Below we consider
two limiting cases, which allow an approximate solution: the
cases of intrinsic and heavily doped graphene.

1. Intrinsic graphene

At low temperatures the concentration of carriers of the
intrinsic graphene is small and as a result one can neglect
the carrier-carrier interaction. This case was thoroughly
analyzed in [57]. The distribution function at low pump-
ing is split as f0(E) = f (eq)(E) + sgn(E)�f (|E|), where
f (eq)(E) = [exp(E/T ) + 1]−1 is the equilibrium distribution
and the small nonequilibrium correction �f (E) is determined
by the interplay between the thermal radiation generation-
recombination processes and the quasielastic energy relaxation
due to the acoustic phonon scattering.
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After some algebra for the first order in strain contribution
to the recombination scattering integral we obtain

JR {f0} = υr

�υ2
F

δυ(ϕ)E
d

dE

[
E�f (E)

sinh(E/T )

]
, (16)

which provides the following expression for the recombination
valley current:{

j (R)
x

j (R)
y

}
= e

π2�3

υra2

υ2
F

{
−ε�

2εxy

}

×
∫ ∞

0
dE

E�f (E)

sinh(E/T )

d

dE
[E2τ1(E)]. (17)

Naturally, if carrier relaxation due to acoustic phonon scat-
tering is weak, �f is concentrated near E = Eω and the
absolute value of the recombination current is of the same
order as generation one, leading to its partial compensation.
However, this is typically not the case [57], and �f (E) is
localized in the region E ∼ T . To analyze the importance
of the recombination current we have to take into account
that particle conservation under the generation-recombination
process requires that

∫ ∞
0 dEE2�f (E)sinh−1(E/T ) = const

[57]. For elastic scattering by the unscreened Coulomb
impurities τ1 ∼ E. Therefore, presence of the extra energy
power in the expression for the recombination valley current
with respect to the normalization integral suggests that it is
considerably less than the generation one. For example, for
the same parameters used under calculation of the generation
current and T = 50 K we obtain that the recombination
valley current is directed opposite to generation one, and its
absolute value j (R) ∼ 10−5 pA/μm is about two orders of
magnitude smaller than j (G). Here we take the same parameters
characterizing acoustic phonon scattering as that used in
[57,58], namely, the deformation potential constant D =
12 eV, density ρS = 7.6 × 10−7 kg/m−2, and sound velocity
s = 7.3 × 103 m/s.

2. Doped graphene

Another case which allows explicit estimate of the recom-
bination valley current is the case of doped graphene. For high
enough carrier concentration electron-electron interaction is
more efficient than phonon scattering. On the other hand,
electron-electron scattering can still be less efficient than
elastic scattering by impurities. So, for the Fermi energy
EF = 34 meV, which corresponds at low temperatures to the
electron concentration ne = 1015 m−2, the charged impurity
scattering time can be estimated as τ2 = 5 × 10−14 s [54].
For electrons at the chosen excitation energy the electron-
electron scattering time is of the order of 0.3–0.1 ps and is
much shorter than the acoustic-phonon scattering times of
the order of 5–1 ps [59]. For this relaxation times hierarchy
it is reasonable to assume that f0(E) is close to the Fermi
distribution function but with temperature Te higher than the
lattice and photon temperature T due to the light-induced
heating of the electron gas. Naturally, at equilibrium with
�T = Te − T = 0, the recombination valley current is zero,
and for low excitation power we expect it to be proportional
to the ratio �T/T . It should be determined from the energy
balance which equates the energy input rate due to optical

excitation and energy relaxation rate, which in our case is due
to acoustic phonon scattering. Note that in the following we
disregard the light-induced variation of EF since for weak
excitation power it provides no contribution to the valley
current. As in the previous subsection, the distribution func-
tion splits as f0(E) = f (eq)(E) + �f (E), where f (eq)(E) =
{exp [(E − EF )/T ] + 1}−1 is the equilibrium distribution and
the small nonequilibrium correction �f (E) = ∂f (eq)

∂T
�T . For

high enough doping with EF /T � 1 we obtain the following
expressions for the recombination-induced valley current
components:{

j (R)
x

j (R)
y

}
∼= 216

π

eυra2T
4

�3υ2
F

{
−ε�

2εxy

}
τ1ω

Eω

�T

T
e−EF /T . (18)

As we mentioned above, the light-induced heating �T is
determined from the energy balance equation:∫

E2 [JLA {f0(E)} + JR {f0(E)} + G] dEdϕ = 0. (19)

Using the explicit form of the collision integral JLA [57]:

JLA {f0(E)} =
(

s

υF

)2
υac

�υF T

1

E

d

dE

[
E4 df (eq)(E)

dE

]
�T,

(20)

we arrive at the following expression for the light-induced
heating:

�T

T
= απ2(�υF )3I0t

2

2E4
F υac

(υF

s

)2
, (21)

where υac = D2T/(4�
2ρSυF s2) is the characteristic acoustic-

phonon scattering velocity. The contribution of recombination
to the energy balance is negligibly small and the corresponding
term is omitted in Eq. (21). Note that in some actual
setups lattice and photon temperatures could be different
and this changes the energy balance conditions [60]. Finally,
using Eqs. (18) and (21) we obtain an expression for the
ratio of the recombination and generation-induced valley
currents:

j (R)/j (G) ≈ 36

5

υr

υac

(υF

s

)2
(

T

EF

)4

e−EF /T . (22)

For the above chosen parameters we have vac = 1424 m/s,
vr = 0.34 m/s, �T/T ∼ 0.02, and the current ratio is
j (R)/j (G) ∼ 10−6. So one can make the conclusion
that the recombination-induced valley currents in doped
graphene are negligibly small compared to the generation
ones.

IV. CONCLUSIONS

To conclude, we analyzed the appearance of the valley
current in strained graphene under monochromatic optical
excitation. The valley current is possible due to the strain-
induced electron-hole spectrum anisotropy. Under midinfrared
and softer irradiation for realistic strain magnitudes the
considered mechanism of the valley current generation is
considerably more efficient than that related to the warping
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natural graphene spectrum, proposed previously. It is shown
that the reverse process of carrier recombination is inessential
for valley current formation for both intrinsic and doped
graphene due to efficient carrier energy relaxation. The feasible
valley current magnitude is about 10−3 pA/μm and potentially
it can be governed in strain-controlled structures.
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