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Plasmonic surface lattice resonances on arrays of different lattice symmetry
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Arrays of metallic particles may exhibit optical collective excitations known as surface lattice resonances
(SLRs). These SLRs occur near the diffraction edge of the array and can be sharper than the plasmon resonance
associated with the isolated single particle response. We have fabricated and modeled arrays of silver nanoparticles
of different geometries. We show that square, hexagonal, and honeycomb arrays show similar SLRs; no one
geometry shows a clear advantage over the others in terms of resonance linewidth. We investigate the nature
of the coupling between the particles by looking at rectangular arrays. Our results combine experiment and
modeling based on a simple coupled-dipole model.
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I. INTRODUCTION

Particle plasmons are collective oscillations typically in-
volving the free conduction electrons of a subwavelength
metallic particle. These charge density oscillations can be
excited by the application of an oscillating external electric
field (light), displacing the electrons from their equilibrium
positions. The resulting electron motion leads to resonant
absorption and scattering of the incident light and high
electric field enhancements on the surface of the particle [1].
The spectral position of these resonances depends on the
material from which the particle is made, the size, and the
shape of the particles [2,3] and on the surrounding dielectric
environment [4].

When metallic nanoparticles are placed in a wavelength-
scale array for which the array period matches the wavelength
of the particle plasmon resonance, an additional resonance
may arise, known as a surface lattice resonance (SLR).
Reports predicting SLRs go back nearly 30 years [5–8]. Early
experiments to see this effect were met with only limited
success [9–11], but sharp extinction features arising from SLRs
associated with square arrays were eventually reported in 2008
[12–14].

Since these initial experimental reports, interest in ex-
ploring the optical response of arrays of plasmonic particles
has increased. Investigations have explored, for example, the
effect of disorder on the SLRs [15]. More recent work has
involved looking at the effect that the number of particles
that comprise an array has on the SLR [16], while Zhou and
Odom explored out-of-plane resonances [17]. SLRs associated
with metal nanoparticle arrays are also interesting due to
the way their modes interact with emissive species such as
fluorescent molecules, both with regard to light emission [18],
and with regard to strong coupling between lattice resonances
and quantum emitters [19,20]. Metal nanoparticle arrays are
important in plasmonic metamaterials [21], and SLRs have
been explored in the context of topological metamaterials [22].

One aspect of surface lattice resonances that has seen little
investigation is the role of lattice symmetry. In this paper
we compare the SLRs of square, rectangular, hexagonal, and
honeycomb arrays. We use electron-beam lithography (EBL)
to fabricate arrays of metallic nanoparticles and characterize
them by measuring normal incidence optical transmittance,

thereby allowing us to determine the extinction of the arrays.
In addition, we use a coupled dipole model to simulate
the extinction. Comparison of the results of experiment and
simulation allow us to better understand the nature of the SLRs
these structures support.

The optical response of a metallic nanoparticle may be
usefully considered from the perspective of the particle’s
polarizability, in particular the extinction cross section is
easily derived from the polarizability [23,24]. The typical
size of the particles in the work reported here was too large
(size/λ ∼ 0.1) to allow the simplest approximation for the
polarizability, i.e., the quasistatic polarizability, to be used.
The quasistatic approach does not include any retardation
effects, it is thus only valid for particlesizes �λ. For the
particles considered here retardation needs to be taken into
account. A complete solution to the problem makes use of
the full Maxwell equations in what is known as Mie theory
[25]. The disadvantage of Mie theory is that it does not lend
itself easily to constructing a simple model for the response of
arrays of particles. A convenient and often adopted alternative
is the modified long-wavelength approximation (MLWA). The
MLWA approach builds on the quasistatic polarizability by
adding two extra terms, one for dynamic depolarization [26]
and one for radiation damping [27]. Dynamic depolarization
arises from the fact that the electric field produced by the
charge distribution on one part of a particle is retarded with
respect to that produced on another part. Radiation damping
arises because the accelerating charges associated with the
dipole moment of the particles produces electromagnetic
radiation. The polarizability in the MLWA is given by [28]

αMLWA = αstatic

1 − 2
3 ik3αstatic − k2

a
αstatic

, (1)

where k is the wave vector in the medium, a is the semiaxis of
the particle parallel to the incident electric field, and αstatic is
the electrostatic polarizability which is given by [23]

αstatic = abc
εm − εs

3εs + 3L(εm − εs)
, (2)

where a, b, and c are the semiaxes of the particle, εs is the
relative permittivity of the surrounding medium, εm is the
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relative permittivity of the material from which the particle is
made, and L is a shape factor.

When identical particles are placed in an array their
polarizability is modified; the modification arises because
incident radiation scattered by one particle may act to drive
another. Particles thus experience driving fields due to the
incident light and due to light scattered by all of the other
particles in the array. We may write the modified susceptibility
α∗ as [13,16,29]

α∗ = 1

1/α − S
, (3)

where S is an array factor that depends on the particle
separation and arrangement. The array factor S is given by

S =
∑

j

exp (ikrj )

[
(1 − ikrj )(3 cos2 θj − 1)

r3
j

+k2 sin2 θj

rj

]
,

(4)

where rj is the distance from the central particle to particle j

and θj is the angle between �rj and the dipole moment of particle
j . Once the polarizability has been calculated, the absorption
Cabs and scattering Cscat cross sections can be found using [23]

Cabs = 4πkIm(α) (5)

and

Cscat = 8
3πk4|α|2, (6)

from which the extinction cross section can be calculated:

Cext = Cabs + Cscat. (7)

Figure 1 shows the calculated extinction cross sections
of a single isolated particle and of a particle in a 480 nm
pitch square array. The particles are silver disks (modeled
as spheroids) with a diameter of 120 nm and a height of
30 nm immersed in a homogenous medium of refractive index
n = 1.515, with the electric field in the plane of the particles.
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FIG. 1. (Color online) Calculated extinction cross section per
particle (μm2) vs wavelength (nm) of a single isolated particle
and a particle in a 480 nm square lattice. The particles are silver
disks (spheroids) with a diameter of 120 nm and a height of
30 nm embedded in a homogeneous medium with refractive index
n = 1.515. The electric field is in the plane of the particles.

(a) Square lattice (b) Rectangular lattice

(c) Hexagonal lattice (d) Honeycomb lattice

FIG. 2. Scanning electron micrographs (SEMs) of different
arrays of silver disks (d = 120 nm, h = 30 nm). (a) Square lattice with
480 nm pitch; (b) rectangular lattice with 370 and 480 nm pitches;
(c) hexagonal lattice with 555 nm nearest neighbor separation; and
(d) honeycomb lattice with 320 nm nearest neighbor separation. Each
of the structures has a lattice period of 480 nm.

The isolated particle extinction cross section was calculated
using Eqs. (1), (2), (5), and (7), with optical constants for silver
taken from the literature [30]. The extinction cross section of
a particle in an array was calculated by additionally making
use of Eqs. (1) and (4). Figure 1 shows that the single isolated
particle has an optical response dominated by a resonance at
∼725 nm. When placed in the array the response changes
dramatically, a sharp spectral feature appearing at ∼770 nm.

In this work we look at how the optical response (transmis-
sion/extinction as a function of wavelength) of arrays based on
square, hexagonal, honeycomb, and rectangular lattices differ
from each other. Scanning electron micrographs (SEMs) of the
different particle arrangements fabricated are shown in Fig. 2.
The lattices were designed so that the spectral position of the
diffraction edge of each of the structures was the same. Each
of the structures had a period of 480 nm so that the diffraction
edge was at 727 nm (the array is index matched in oil with
n = 1.515).

II. FABRICATION

Array fabrication was based on EBL, with silver nanopar-
ticle arrays (50 μm × 50 μm) being made on glass substrates
[there was no conductive (ITO) layer under the particles]. The
substrates were first cleaned with acetone and propan-2-ol.
They were then dried in a nitrogen stream, spin coated
with 950k A4 poly(methyl methacrylate) (PMMA) resist at
4000 rpm, and baked for 20 min at 160 ◦C. EBL was then
used to expose the resist to various array patterns, and the
resist was then processed by chemical development to leave
holes in the resist where exposure to the electron beam had
taken place. Silver was then deposited by thermal evaporation
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at 2 × 10−6 mbar and a rate of 2 Å s−1. The mass of silver
deposited was monitored with a quartz crystal microbalance
from which the deposited thickness was calculated—a film
thickness of 30 nm was used. Finally, lift off was achieved by
placing the sample in warm acetone for 2–10 min, followed by
a rinse in propan-2-ol, and dried in a nitrogen stream. This pro-
cedure produced particles of 120 nm ± 10% in diameter and
30 nm ±10% in height.

III. CHARACTERIZATION

The optical extinction was calculated from 1 − T , where T

is the measured transmittance and is given by

T = signal − background

reference − background
, (8)

where the signal is the measured transmission of the array
and substrate, the background is the dark counts of the CCD,
and the reference is the transmission of a blank portion of the
substrate. Extinction measurements were made with a Nikon
ECLIPSE TE2000-U inverted microscope coupled to an Acton
Research Corporation Spectra Pro-2500i spectrometer with
a spectral resolution of 1 nm. A halogen lamp source (λ =
400–1000 nm) with a linear polarizer was used. The beam spot
on the sample was reduced to a diameter of 30 μm by inserting
a pinhole aperture between the light source and the condenser,
thereby giving a beam divergence of less than 1 deg. The arrays
were then index matched with oil (n = 1.515) [31,32] and the
transmitted light collected with an oil immersion lens (NA of
1.25). A long-pass filter (cutoff 500 nm) was inserted in the
optical path after the collection objective to remove higher
diffracted orders.

IV. RESULTS AND DISCUSSION

Let us first look at the data from the square array. Figure 3
shows (a) the measured extinction, (b) the calculated extinction
cross section per particle, and (c) the calculated real and
imaginary parts of the array factor S of a 480 nm pitch square
array of silver disks (d = 120 nm, h = 30 nm). The inverse
polarizability of a single disk is shown on the same plot as
the array factor. The electric field is linearly polarized and
is parallel to the y axis, see Fig. 2(a). It should be noted
that the array factor has been smoothed using a cubic spline
approach [33]. Dashed lines in Figs. 3(a) and 3(b) indicate the
intersection of the real parts of 1/α and S. In the measured
extinction for a square lattice of silver particles, see Fig. 3(a),
two peaks dominate the extinction spectrum, one at ∼650 nm,
the other at ∼755 nm, we attribute these peaks to SLRs. The dip
at ∼520 nm is due to the 〈1,1〉 diffracted order and the small
peak at ∼720 nm is usually attributed to divergence of the
illumination beam [16]. From the calculations, see Fig. 3(b),
two SLRs are apparent, occurring at ∼660 and ∼770 nm,
with the single isolated particle resonance at ∼725 nm. These
SLRs correspond to the spectral positions for which the real
part of 1/α intersects the real part of S [7], see Eq. (3).
Provided the difference between the imaginary parts of 1/α

and S are small, the intersection of the real parts corresponds
closely to the calculated extinction maximum, this is the case
for the SLR at ∼770 nm. When the difference between the

(a) Measured extinction spectrum
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(b) Calculated extinction cross-section per
particle
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(c) 1/α and S
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FIG. 3. (Color online) (a) Measured extinction; (b) calculated
extinction cross section per particle; and (c) array factor for a square
array (480 nm pitch) of silver disks (d = 120 nm, h = 30 nm).
The particles are illuminated with linearly polarized light at normal
incidence with the electric field parallel to the y axis of the array,
see Fig. 2(a). The array is index matched using immersion oil with
n = 1.515, meaning that the diffraction edge is at 727 nm. Dashed
lines in (a) and (b) indicate the intersection of the real parts of 1/α

and S.
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imaginary parts of 1/α and S are not small, the calculated
extinction peak will, in general, be somewhat shifted from
the position at which the real parts intersect, this is the case
for the SLR at 690 nm. There is a third crossing point at
∼720 nm but no resonance is seen at this spectral position due
to the significant difference between the imaginary parts of
1/α and S [8,34]. We also observe that the SLR at ∼755 nm
is much stronger and narrower than the SLR at ∼660 nm
due to the smaller difference between the imaginary parts
of 1/α and of S.

Let us now turn to the hexagonal array. Figure 4 shows
(a) the measured extinction, (b) the calculated extinction per
particle, and (c) the array factor for a hexagonal lattice, see
Fig. 2(c), of silver disks (d = 120 nm, h = 30 nm), together
with the inverse polarizability of an isolated particle with the
same dimensions. The hexagonal lattice has a nearest neighbor
separation of 555 nm and is illuminated with an electric field
parallel to the y axis of the array, see Fig. 2(c). As for the
square array, two SLRs at ∼635 and ∼760 nm can be seen
in the measured extinction spectrum of the hexagonal array,
Fig. 4(a). Two SLRs can also be seen in the calculated spectra,
Fig. 4(b), but these occur at somewhat different wavelengths
(∼645 and ∼778 nm, respectively). Again, the SLRs occur
when the real part of 1/α intersects the real part of S, this can
be seen in Fig. 4(c) (679 nm, 779 nm). The calculations in Figs.
4(b) and 4(c) are performed following the same procedure
adopted for the square lattice. Similar results for hexagonal
arrays have been predicted by Zou et al. [8] and experimentally
obtained by Haynes et al. [34].

Figure 5 shows the extinction and array factors for a
honeycomb lattice with a 320 nm nearest neighbor separation
shown in Fig. 2(d). The particles are silver disks (d = 120 nm,
h = 30 nm) and are index matched with n = 1.515 immersion
oil. Figure 5(a) is the measured extinction, Fig. 5(b) is the
calculated extinction, and Fig. 5(c) is the array factor with
the calculated inverse polarizability for a single isolated
particle. From Fig. 5(a) we see that there are two main peaks
present in the spectrum. These peaks occur at ∼650 and
∼743 nm and are the SLRs associated with the array. These
SLRs can also be seen in the calculated spectrum, Fig. 5(b),
but occurring at somewhat different wavelengths (∼665 and
∼753 nm, respectively). Again, these SLRs occur when the
real part of S intersects the real part of 1/α, see Fig. 5(c)
(684 nm, 753 nm).

In Fig. 6 we compare the measured extinction and the
real parts of the array factors for square, hexagonal, and
honeycomb arrays. Each of the arrays consist of silver disks
(120 nm diameter and 30 nm height) surrounded by a refractive
index n = 1.515. Figure 6(a) shows the measured extinction
while Fig. 6(b) shows the real part of the corresponding array
factors with the real part of 1/α of a silver disk (d = 120
nm, h = 30 nm) also included. We see from Fig. 6(a) that
even though all three lattice types have their diffraction edge
in the same position, the strongest SLR of the arrays occurs
at slightly different spectral positions for each: ∼743 nm for
honeycomb, ∼755 nm for square, and ∼760 nm for hexagonal.
These differences can be understood by looking at the real parts
of S and 1/α shown in Fig. 6(b). Here one sees that the real
part of 1/α intersects the real part of S for the different lattice
types at slightly different positions: ∼753 nm for honeycomb,

(a) Measured extinction spectrum
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(b) Calculated extinction cross-section per
particle
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(c) 1/α and S
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FIG. 4. (Color online) (a) Measured extinction; (b) calculated
extinction cross section per particle; and (c) array factor for a
hexagonal array (555 nm nearest neighbor separation) of silver disks
(d = 120 nm, h = 30 nm). The particles were illuminated with
linearly polarized light at normal incidence with an electric field
parallel to the y axis of the array, see Fig. 2(c).

∼770 nm for square, and ∼779 nm for hexagonal. The real part
of S for each of these arrays is different because S [Eq. (4)] is
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(a) Measured extinction spectrum
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(b) Calculated extinction cross-section per
particle
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(c) 1/α and S
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FIG. 5. (Color online) (a) Measured extinction; (b) calculated
extinction cross section per particle; and (c) array factor for a
honeycomb lattice (320 nm nearest neighbor separation) of silver
disks (d = 120 nm, h = 30 nm). The particles are illuminated with
linearly polarized light at normal incidence with the electric field
parallel to the y axis of the array, see Fig. 2(d).
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(a) Measured extinction
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FIG. 6. (Color online) (a) Measured extinction of square lattice
[see Fig. 2(a)], hexagonal lattice [see Fig. 2(c)], and honeycomb
lattice [see Fig. 2(d)] with corresponding real parts of 1/α and S

shown in (b).

different for each of the lattice types; it depends on the position
of the particles in the lattice. In Fig. 6(a) the honeycomb lattice
has the greatest extinction, due to this array having a greater
number of particles per unit area than the two other array types.
In Fig. 6(b) the square lattice has an additional feature due to
the 〈1,1〉 diffraction edge.

The square, hexagonal, and honeycomb lattices all have
a high degree of symmetry. As a consequence we expect
their optical response (extinction) to be independent of the
orientation (polarization) of the incident electric field. To check
this, extinction spectra are plotted as a function of wavelength,
see Fig. 7, for the three particle array types. In each case, the
orientation of the electric field is swept in 15 deg increments
from 0 deg (parallel to the x axis of the arrays) to 90 deg
(parallel to the y axis). The response of all three lattices are
found to be insensitive to the orientation of the incident electric
field, as expected from their high degree of symmetry.

To investigate further how the particles in an array couple
together it is instructive to look at a lower symmetry lattice;
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(a) Square
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(b) Hexagonal
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(c) Honeycomb

FIG. 7. (Color online) Measured extinction vs wavelength (nm)
of the three different geometries: (a) square, (b) hexagonal, and
(c) honeycomb. In each case, the electric field polarization is swept
in 15 deg increments from 0 deg (parallel to the x axis of the arrays)
to 90 deg (parallel to the y axis).

500 600 700 800 900
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Wavelength [nm]

E
xt

in
ct

io
n

x pol
y pol

(a) Measured extinction spectrum
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(b) Calculated extinction cross-section per
particle

500 600 700 800 900
−4000

−2000

0

2000

4000

6000

8000

10000

Wavelength [nm]

S
 [μ

m
−

3 ]

Re(S) xpol
Im(S) xpol
Re(S) ypol
Im(S) ypol
Re(1/α)
Im(1/α)

(c) 1/α and S

FIG. 8. (Color online) (a) Measured extinction; (b) calculated
extinction cross section per particle; and (c) array factor for a
rectangular lattice (370 nm × 480 nm pitches) of silver disks
(d = 120 nm, h = 30 nm), together with the calculated inverse
polarizability of an isolated particle. The particles were illuminated
with linearly polarized light at normal incidence with the electric field
parallel to either the x axis or y axis of the array, see Fig. 2(b). The
array is index matched using immersion oil with n = 1.515. The two
diffraction edges occur at 561 nm (red dashed line) and 727 nm (blue
dashed line).
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FIG. 9. (Color online) Measured extinction as a function of
wavelength of a 370 nm × 480 nm rectangular lattice, 480 nm pitch
square lattice, and 520 nm × 480 nm rectangular lattice. All the
lattices consist of silver disks with a diameter of 120 nm and height
of 30 nm. The top panel is with electric field parallel to the x axis of
the array and middle panel the y axis. The diffraction edges relating to
the y period of the three lattices are shown as dashed lines at 561 nm
(red), 727 nm (blue), and 788 nm (green).

the rectangular lattice. Figure 8 shows data for a rectangular
array (370 nm × 480 nm pitches) of silver disks (d = 120 nm,
h = 30 nm) with n = 1.515, see Fig. 2(b). Figure 8(a) shows
the measured extinction for the electric field parallel to the x

axis and for the electric field parallel to the y axis; Fig. 8(b)

for the calculated extinction; and Fig. 8(c) for the calculated
array factor, together with the calculated inverse polarizability
of an isolated particle. When the electric field is parallel to the
x axis we see two SLRs in the measured extinction at ∼620
and ∼758 nm, Fig. 8(a). A very different response is obtained
when the electric field is parallel to the y axis, giving just
one SLR at ∼701 nm. In the calculated extinction, Fig. 8(b),
the positions of the SLRs occur at ∼640 and ∼774 nm when
the electric field is parallel to the x axis and at ∼730 nm for the
electric field parallel to the y axis. The calculated position of
these SLRs correspond to the crossing of the real part of 1/α

with the real part of S, as seen in Fig. 8(c). As for the square,
hexagonal, and honeycomb arrays, the calculated position of
the extinction maximum best matches the crossing point of the
real part of 1/α and S when the difference in the imaginary
parts is small. The key observation we can make from the
data shown in Fig. 8(a) is that the response is dramatically
different for the two illumination polarizations. To explore
this further we investigated the response from a number of
different rectangular arrays.

Figure 9 shows the measured extinction vs wavelength of
two rectangular arrays and a square array. In all three arrays the
y period has been kept constant at 480 nm while the x period
has been changed. The x period of the arrays are 370 nm (red),
480 nm (blue), and 520 nm (green). The top panel of the figure
is for the electric field parallel to the x axis and the middle panel
for the electric field parallel to the y axis. When the electric
field is parallel to the x axis, a very similar response is obtained
for the three arrays with their SLRs at ∼748, ∼753, and
∼756 nm. If the polarization is now changed to be along
the y axis (bottom panel), three very different spectra are seen
(middle panel). As the diffraction edge is moved to longer
wavelengths, this pushes the SLR to longer wavelengths. For
the 370 nm y pitch the SLR occurs at ∼685 nm; for the 480 nm
y pitch the SLR occurs at ∼755 nm; and for the ∼520 nm y

pitch the SLR occurs at ∼798 nm. The difference in response
for the two different polarizations of the incident field can be
understood by considering the nature of the coupling between
neighboring particles. This coupling, for the particle separa-
tions considered here, is far field in character [35]. The dipolar
far field is strongest in the direction perpendicular to the dipole
moment, the important distance is thus the particle separation
in the direction perpendicular to the incident electric field.

V. CONCLUSION

In summary, arrays of silver nanoparticles have been
fabricated by electron-beam lithography. We have shown that
the optical response (transmission) of an array of particles,
whose array period is similar to the particle plasmon resonance
wavelength, differs dramatically from that of an isolated
single particle of the same material and dimensions. We have
shown that square, rectangular, hexagonal, and honeycomb
arrays all show strong surface lattice resonances, and that
the main SLRs occur at slightly different spectral positions
with different strengths, even though all of the lattices have
the same diffraction edge. These differences can be explained
by looking at the different array factors that apply in each
case, i.e., by looking at how the net field at the site of any
given particle depends on the arrangement of particles around
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it. For the arrays considered here, we find that the period
of the structure is more important than the nearest neighbor
separation in determining the response of the array. The exact
position of the SLR is determined by the point of intersection of
the real part of the inverse single particle polarizability 1/α and
the real part of the array factor S. The strength and the width
of the SLR depends on the difference between the imaginary
part of α and the imaginary part of S and the angle of intercept
between the real part of α and the real part of S. From the results
presented here there is not much to choose between the array
types when looking to see which array type gives the narrower
SLR. Finally, by studying rectangular arrays we demonstrated
that particles in wavelength-scale arrays couple together in the
direction perpendicular to the applied electric field.

We hope that our findings may be useful to those seeking to
exploit wavelength-scale plasmonic particle arrays in a number
of areas, for example, sensing [36] and lasers [37]. Finally, we
note that the SLRs might also arise as a result of exciton rather
than plasmonic resonances [24].

ACKNOWLEDGMENTS

A.D.H. would like to thank Dr. N. Meinzer for help
with fabrication and for useful discussions, and N. Cole for
technical help. This work was supported in part by the Royal
Society through their International Exchange Scheme, and by
The Leverhulme Trust.

[1] S. Zou and G. C. Schatz, Chem. Phys. Lett. 403, 62 (2005).
[2] J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz,

J. Chem. Phys. 116, 6755 (2002).
[3] W. A. Murray and W. L. Barnes, Adv. Mater. 19, 3771 (2007).
[4] W. A. Murray, J. R. Suckling, and W. L. Barnes, Nano Lett. 6,

1772 (2006).
[5] K. T. Carron, W. Fluhr, M. Meier, A. Wokaun, and H. W.

Lehmann, J. Opt. Soc. Am. B 3, 430 (1986).
[6] V. A. Markel, J. Mod. Opt. 40, 2281 (1993).
[7] V. A. Markel, J. Phys. B: At. Mol. Opt. Phys. 38, L115 (2005).
[8] S. Zou and G. C. Schatz, J. Chem. Phys. 121, 12606 (2004).
[9] B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R.

Krenn, A. Leitner, and F. R. Aussenegg, Phys. Rev. Lett. 84,
4721 (2000).

[10] E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P.
Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and
M. Käll, Nano Lett. 5, 1065 (2005).

[11] J. Sung, E. M. Hicks, R. P. Van Duyne, and K. G. Spears, J.
Phys. Chem. C 112, 4091 (2008).

[12] V. G. Kravets, F. Schedin, and A. N. Grigorenko, Phys. Rev.
Lett. 101, 087403 (2008).
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