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Projective versus weak measurement of charge in a mesoscopic conductor
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We study the charge dynamics of a quantum dot as measured by a nearby quantum point contact probing the dot
via individual single-particle wave packets. We contrast the two limiting cases of weak and strong system-detector
coupling exerting vanishing and strong backaction on the system and analyze the resulting differences in the
charge-charge correlator. Extending the study to multiple projective measurements modeling a continuous strong
measurement, we identify a transition from a charge dynamics dominated by the system’s properties to a universal
dynamics governed by the measurement.
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I. INTRODUCTION

Discussions on quantum measurement [1–3] usually rely
on two fundamental elements, the Born rule [4], telling us
how to extract information from the quantum mechanical
wave function, and the von Neumann [5] projection postulate,
stating that measuring a system observable generates a collapse
of the wave function and telling us how to restart the
system’s unitary evolution after the measurement. A third
most important element is that of the detector’s backaction
on the system which is at the heart of the projection process
when viewed from a microscopic perspective; much effort
has gone into the understanding of the phenomenological
von Neumann projection in terms of a unitary evolution of
the entangled system-detector dynamics. Here, we take a
step back and study the charge dynamics, specifically the
charge-charge correlator, of a quantum dot (QD) as measured
by a quantum point contact (QPC) in order to understand the
impact of the detector’s backaction on the time evolution of
the correlator. We study the impact of the backaction in two
limiting cases: (i) a weak detector-system coupling which we
treat perturbatively describing the limit of no backaction and
(ii) an intermediate/strong system-detector coupling which we
describe by a von Neumann projection accounting for the limit
of strong backaction. We determine the physically measureable
correlators and quantitatively analyze their difference for the
case of a quantum dot with a single resonant level.

Understanding quantum measurement as the bridge be-
tween the quantum and our classical work is a fascinating
and broad topic, ranging from fundamental aspects of the
measurement problem [6–9] to such practical issues as opti-
mizing the information gain at minimal system invasion [10].
Much effort has gone into the microscopic understand-
ing of the measurement process and its interrelation with
backaction, treating quantum averaged evolutions [11–16],
selective system dynamics [17,18], and correlated weak-strong
measurements in the form of weak values [19–24]. Quantum
dots in transport [11,12,24–26], isolated double quantum
dots [15–18,20,21], and quantum point contacts [27–30] have
played a central role in analyzing quantum measurement
within the realm of mesoscopic physics.

In the present study, we focus on the charge dynamics of a
quantum dot (or a localized region of a mesoscopic scatterer
in more general terms) as measured by a nearby QPC detector

and determine the time evolution of the average charge and the
charge-charge correlator for different strengths of the system-
detector coupling. Thereby we keep in mind a measurement
with single-particle wave packets [31,32] incident on the detec-
tor at times t1 and t2 with their reflection/transmission through
the QPC providing information on the charge state of the quan-
tum dot at the two time instances. Our analysis provides us with
two central results: on a technical level, we find that the strong
projective measurement can be expressed through a projected
charge Q̂P (t |t0), the charge at time t after a previous projection
at time t0, for which we find a compact expression in terms
of the system’s scattering matrix. On a physical level, we find
that, in spite of the strongly different backaction induced by
the first measurement, the two correlators for weak and strong
measurements come out qualitatively similar, although quan-
titative differences remain, of course; the latter are specifically
discussed for the single-resonance level model. Furthermore,
we attempt to model the case of a finite constant voltage V

applied to the QPC detector by considering a sequence of wave
packets incident on the QPC, leading to repeated projections
which we describe via the projection postulate. Increasing
the rate of projections, we identify a transition from a regime
where the dynamics of the system is dominated by the system’s
characteristics to a regime where the dynamics is universal and
uniquely determined by the measurement.

The paper is organized as follows: In Sec. II we introduce
the model describing our mesoscopic conductor and discuss
the different regimes of projective (intermediate/strong cou-
pling) and weak measurements, identifying the measurable
charge-charge correlator in each of these regimes. In Sec. III,
the two charge-charge correlators are calculated for arbitrary
scatterers and their difference is discussed quantitatively for
the case of a single-level quantum dot. In Sec. IV, the
discussion is extended to the case of repeated projective
measurements. In order to understand the universal behavior
found for fast repeated measurements, we consider the model
of a fluctuating quantum dot level. A summary and conclusions
are given in Sec. V.

II. FORMALISM

We consider a mesoscopic conductor with a central
scattering region (e.g., a quantum dot), described through
its single-particle scattering matrix Sk (see Ref. [33] for
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FIG. 1. The system of interest with the central region D holding
the charge Q̂ (here a quantum dot) capacitively coupled to the central
region M of the measurement system. The current ÎM in the detector
serves as a readout for the charge Q̂ in the region D.

a review on the scattering matrix approach to mesoscopic
transport). Here, we are interested in the dynamics of the
charge Q(t) (measured in units of electronic charge e) in the
scattering region and its modifications when it is subjected to
a (strong) measurement. In order to measure this dynamics
and specifically the associated charge-charge correlator, the
scattering region is capacitively coupled to the quantum point
contact (QPC) of a detector system; see Fig. 1. The charge
dynamics Q(t) of the system and the current IM(t) through
the detector then mutually influence one another and we have
to analyze the measurement process in order to identify the
measurable charge-charge correlator.

A. The model system

We consider a one-dimensional noninteracting system
consisting of two half-infinite leads connected through a
central region D = [−d/2,d/2] where particles are scattered
by the single-particle potential V̂ . The latter is characterized
by the single-particle scattering matrix

Sk =
(

rLk tk

tk rRk

)
. (1)

We make use of the Lippmann-Schwinger scattering states
|ϕak〉 satisfying (Ĥkin + V̂ ) |ϕak〉 = εk |ϕak〉 with the kinetic
part of the Hamiltonian Ĥkin, the wave vector k > 0, and a =
L/R describing a scattering state incoming from the left/right.
We linearize the spectrum around the Fermi energy εF; i.e.,
εk = εF + �vF(k − kF). The asymptotics |x| → ∞ of the (LS)
scattering states is described by the scattering amplitudes; i.e.,

ϕLk ∼ �(−x)(eikx + rLke
−ikx) + �(x)tke

ikx,
(2)

ϕRk ∼ �(−x)tke
−ikx + �(x)(e−ikx + rRke

ikx).

Spin is trivially accounted for in our noninteracting system
and hence we restrict ourselves to spinless particles.

As shown in Refs. [29] and [34], the operator Q̂ describing
the charge in the central region D (in units of the electronic
charge e) can be expressed through creation (annihilation) op-
erators ĉ

†
ak (ĉak) of the above Lippmann-Schwinger scattering

states via

Q̂(t) =
∑
a′a

∫
dk′

2π

∫
dk

2π
Aa′k′,ak(t)ĉ†a′k′ ĉak (3)

=
∑
α′α

Aα′,α(t)ĉ†α′ ĉα, (4)

with the notation α = (a,k) and
∑

α = ∑
a

∫
(dk/2π ). The

matrix elements Aα′,α(t) = [Ak′,k(t)]a′,a are related to the
scattering matrix S̃k = Ske

ikd ,

Ak′,k(t) = −i
1 − S̃†

k′ S̃k

k′ − k
ei(k′−k)(vFt+d/2), (5)

with Ak,k(t) = −iS̃†
k∂kS̃k and where we have dropped terms

of order O(1/kF). The matrix A is equivalent to the density
of states matrix expression introduced in Ref. [35] and was
used in Ref. [34] to express the interaction kernel through
the scattering states in a discussion of interacting electron
transport; here, it is used to express the charge through the
scattering states, see Eq. (4), and to obtain simple and compact
expressions for the projected charge, see Eqs. (23) and (27).
With regard to the latter, we note that the matrix A possesses
the useful projector property∫

dp

2π
Ak,p(t)Ap,q(t) = Ak,q(t), (6)

a consequence of the projector property Q̂(t)Q̂(t) = Q̂(t) of
the charge operator restricted to the single-particle Hilbert
space; the latter is easily checked by acting (twice) with
the charge operator Q̂(t) ≡ P̂D(t) = ∫

D dx ψ̂†(x,t)ψ̂(x,t) on
a single-particle state |	1〉 [here, P̂D(t) denotes the real-
space projector on the region D]. The transport through D
is implemented by connecting the two semi-infinite leads
to two reservoirs at chemical potential μL and μR with
μL/R = εF ± eV/2 as described by the steady-state density
matrix ρ̂0.

Within this model, we are able to describe local properties
of the system, specifically the charge dynamics in the region
D, through the single-particle scattering matrix Sk which is an
asymptotic property of the system. Note that interactions are
limited to the system-detector coupling; i.e., we are consid-
ering a noninteracting system. Interactions within the system
could be taken into account within perturbation theory [34].

B. The detector

In order to measure the system charge Q̂ we make use
of a capacitively coupled QPC detector [27]. The latter is
characterized by a steplike transmission characteristic, see
Fig. 2, with a width h� related to the tunneling time ttun ∼ 1/�

of particles traversing the constriction. The coupling Ĥcoupl =
ECQ̂MQ̂ between the system charge Q̂ and the charge Q̂M
in the QPC region M of the detector will shift the location
of the transmission step and the detector current will provide
information about the system, while at the same time cause an
unavoidable backaction.

To fix ideas, we restrict the discussion to a single-level
quantum dot (QD) with two charge states |0〉 and |1〉 and
focus on the limit where each detector electron probes the dot
individually, requiring that the tunneling time ttun ∼ 1/� be
small compared to the typical separation between detector
electrons (alternatively, we can consider a weakly driven
detector with bias voltage eV � h� such that the typical time
separation tV ∼ h/eV > ttun between electrons is large). In
order for the detector to measure the system it should be
fast, ttun � tsys, where tsys is a typical system time scale. In
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FIG. 2. (a) The QPC transmission changes from 0 to 1 within
a width h�. In the case of strong coupling EC > h�, the change
of transmission between T|0〉 (empty dot) and T|1〉 (filled dot) can
be tuned to about unity (see black dots). (b) For weak coupling,
EC � h�, the change of transmission (see black dots) is small; i.e.,
�T ≈ EC/h� � 1.

this situation, the system is in a fixed charge state during the
tunneling of a detector electron. If the QD is empty (state |0〉),
the electron is transmitted with probability T|0〉 ≈ T (εF), while
for a filled QD (state |1〉), the transmission probability is T|1〉 ≈
T (εF − EC). We then identify two measurement regimes: (i) a
strong-coupling regime with EC > h�, see Fig. 2(a), where we
can choose a working point such that T|0〉 ≈ 1 and T|1〉 ≈ 0,
and (ii) a weak-coupling regime EC < h�, see Fig. 2(b), where
the change in transmission �T = T|0〉 − T|1〉 ≈ EC/h� � 1 is
small.

C. Projective measurement

For strong coupling, EC > h�, the charge states of the dot
and the state of one single QPC electron after scattering [i.e.,
transmitted (|t〉) or reflected (|r〉)] become fully entangled,
α|0〉 ⊗ |t〉 + β|1〉 ⊗ |r〉. The detection of this electron leads
to the “collapse” of the dot state and fully determines the
charge, such that the measurement with even a single QPC
electron is a strong one, able to acquire the full information;
the concomitant projection of the dot state corresponds to the
strongest possible backaction of the detector on the system.
Hence, in order to measure the charge Q̂(t) at time t at
strong coupling EC > h�, one single electron [31,32] is sent
towards the QPC to arrive there at time t . The detection of the
transmitted electron determines the charge state of region D
and projects the system to the corresponding state. Repeating
this measurement (after the system has equilibrated) allows
one to determine the average charge Q. Similarly, in order to
measure the charge-charge correlator, the dot charge has to be
measured at times t1 and t2 and the measurement has to be
repeated after equilibration at fixed time delay �t = t2 − t1 in
order to find the average charge-charge correlator for times t1
and t2.

In order to describe this correlator theoretically, we describe
the measurement using the projection postulate [5]: the
measurement of the charge operator Q̂ at t projects the system
onto a state with an integer number of charges in the central
region D which we account for by the operator

P̂N (t) =
∫ 2π

0

dλ

2π
eiλ[Q̂(t)−N] (7)

projecting the state of the system at time t onto a state with N

charges in the central region D. While the system’s state for
times t ′ < t is described by the steady-state density matrix ρ̂0,
the charge measurement at time t projects the density matrix
onto well-defined charge states which are expressed through
the operator P̂N as

∑
N P̂N (t)ρ̂0P̂N (t). Then the projected

charge-charge correlator at times t1 and t2 > t1 is given by

SP
QQ(t2,t1) =

∑
N

Tr{Q̂(t2)Q̂(t1)P̂N (t1)ρ̂0P̂N (t1)}, (8)

where the collapse of the state at time t1 is accounted for by
the projection operators P̂N (t1) while the measurement at time
t2 does not affect the result. Making use of the cyclic property
of the trace and [Q̂(t1),P̂N (t1)] = 0, we obtain the projected
correlator

SP
QQ(t2,t1) = 〈Q̂P (t2|t1)Q̂(t1)〉, (9)

with 〈Ô〉 = Tr{Ôρ̂0} and the operator Q̂P (t2|t1) describing the
charge in the central region at time t2 provided that the state
of the system was projected at time t1 < t2,

Q̂P (t2|t1) =
∑
N

P̂N (t1)Q̂(t2)P̂N (t1). (10)

Equation (9) corresponds to the measurable charge-charge
correlator in the regime of strong, projective measurements.
Taking into account the spin degree of freedom, Eq. (9) remains
unchanged with Q̂(t1) = Q̂↓(t1) + Q̂↑(t1) and Q̂P (t2|t1) =
Q̂P

↓ (t2|t1) + Q̂P
↑ (t2|t1); furthermore, the up- and down-spin

components of charge are uncorrelated.
At intermediate coupling EC < h� the scattering of one

single electron becomes a probabilistic process (with finite
transmission and reflection probability for both charge states)
such that one electron alone does not provide the information
on the dot’s state and many electrons are required to probe the
dot. The full information about the dot state is acquired after the
passage of N electrons when the measured transmitted charge
Qtr(N ) through the QPC can be attributed to a particular dot
state; i.e., the difference Q

|0〉
tr (N ) − Q

|1〉
tr (N ) = �T N has to

be larger than the standard deviation σ of the probabilistic
process of charge transmission. At small temperatures, the
latter is determined by the charge partitioning noise, i.e., σ 2 =
T (1 − T ) N , such that the required number of probe electrons
is [11,12,15,16]

N ∼
(

h�

EC

)2

T (1 − T ). (11)

For the case where a finite voltage V is applied across the
QPC detector, we obtain the measurement time tms ∼ NtV with
tV = h/eV the voltage time. For small temperatures kBT < eV

the partitioning noise dominates over the thermal noise.
Next, we have to account for the time scale tsys of the

dot. For tms � tsys, the state of the dot can be determined
by probing the dot for some measurement time larger than
tms; such a measurement is strong and projective. On the other
hand, the measurement is generically weak if tms > tsys and we
have to find an alternative procedure to find the information on
the dot’s charge state; we will discuss this weak-measurement
regime in the next section.
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The discussion in this section has been limited to the
case of a single-level quantum dot; however, the extension
to the case of a more complex system with more charge
states is straightforward. While in such a situation it is not
possible to resolve all charge states by one electron alone, a
projective measurement involving many electrons or a weak
measurement as described below are still possible.

D. Weak-coupling, weak-measurement regime

At generically weak coupling EC � h� (such that tms>tsys),
the system cannot be measured during the system time tsys and
we need an alternative measurement scheme. The capacitive
coupling between the system and the detector still affects
the detector current ÎM and thus can be used to learn about
the system’s charge dynamics Q(t). The detector current is
given by the expectation value 〈Î H

M(x,t)〉 = Tr{Î H
M(x,t) ρ̂sd},

where Î H
M(x,t) is the current operator in the Heisenberg

representation and ρ̂sd is the steady-state density matrix of the
combined system-detector setup, ρ̂sd = ρ̂0 ⊗ ρ̂M

0 . For a weak
system-detector coupling, we can calculate the modulation in
the detector current perturbatively [29,36–38]; to lowest order
in the coupling strength EC the result is

〈
Î H
M(x,t)

〉 ≈ 〈ÎM(x,t)〉 + 2EC

�

∫ t

−∞
dτ ISM

IQ(x,t ; τ )〈Q̂(τ )〉,
(12)

where ÎM(x,t) is the current operator in the interaction
representation (i.e., with respect to the coupling Hamiltonian)
and 〈Ô〉 = Tr{Ô ρ̂sd}. In the expression above, ISM

IQ(x,t ; τ )

is the imaginary part of the correlator between the detec-
tor current ÎM(x,t) and the detector charge Q̂M(τ ); i.e.,
ISM

IQ(x,t ; τ ) = −i〈〈[ÎM(x,t),Q̂M(τ )]〉〉/2 with 〈〈Ô1Ô2〉〉 =
〈Ô1Ô2〉 − 〈Ô1〉〈Ô2〉. The quantity ISM

IQ(x,t ; τ ) is a response
function of the measurement apparatus M and hence a pure
detector property, independent of the system. A good detector
is much faster than the dynamics of the system of interest,
i.e., ttun � tsys, such that the charge 〈Q̂(τ )〉 can be treated as
slowly varying on the time scale of the detector. The response
function ISM

IQ then is effectively given by the zero-frequency
response function, i.e., ISM

IQ(x,t ; τ ) ≈ ISM
IQ,ω=0δ[τ − (t −

x/vF)], such that〈
Î H
M(x,t)

〉 ≈ 〈ÎM(x)〉 + 2EC

�
ISM

IQ,ω=0〈Q̂(t − x/vF)〉. (13)

This relation allows one to determine the time-averaged charge
expectation value Q̄ from an experimentally measured time
trace of IM(x,t) by calculating the time-averaged current
ĪM = (1/T )

∫ T

0 dt IM(x,t).
Next, we derive an expression for the charge correla-

tor at times t1 and t2 in the weak-coupling regime. We
consider two detectors [38] A and B capacitively cou-
pled to the system; i.e., Ĥcoupl = EA

C Q̂AQ̂ + EB
C Q̂BQ̂. The

correlation between the two detectors arises due to the
coupling between the two detectors via the system charge.
The measurable time-domain correlator of the detector is
the irreducible symmetrized current-current correlator [39]
〈〈Î H

A (xA,tA)Î H
B (xB,tB) + Î H

B (xB,tB)Î H
A (xA,tA)〉〉/2 (in contrast

to a measurement in the frequency domain, where a nonsym-
metrized correlator is measured at positive frequencies [40–
42]). The above symmetrized detector correlator is related to
the charge-charge correlator of the dot via

RS irr
IAIB

(xA,tA; xB,tB) = 〈〈
Î H
A (xA,tA)Î H

B (xB,tB) + Î H
B (xB,tB)Î H

A (xA,tA)
〉〉/

2

≈ EA
C EB

C

�2

∫∫ ∞

−∞
dτAdτB

(
�(tA − τA)�(tB − τB)ISA

IQ(xA,tA; τA)ISB
IQ(xB,tB; τB)RS irr

QQ(τA,τB)

+�(tA − τA)�(τA − τB)ISA
IQ(xA,tA; τA)RSB

IQ(xB,tB; τB)IS irr
QQ(τA,τB)

−�(tB − τB)�(τB − τA)RSA
IQ(xA,tA; τA)ISB

IQ(xB,tB; τB)IS irr
QQ(τA,τB)

)
, (14)

as follows from a perturbative analysis in the lowest order of
the couplings. In the above expression,

RSM
IQ(x,t ; τ ) = 〈〈{ÎM(x,t),Q̂M(τ )}〉〉/2, (15)

ISM
IQ(x,t ; τ ) = −i〈〈[ÎM(x,t),Q̂M(τ )]〉〉/2 (16)

are the real and imaginary parts of the current-charge
correlator in the detectors M = A or B representing
pure detector response functions. On the other hand,
RS irr

QQ(τA,τB) = 〈〈{Q̂(τA),Q̂(τB)}〉〉/2 and IS irr
QQ(τA,τB) =

−i〈〈[Q̂(τA),Q̂(τB)]〉〉/2 are the real (symmetrized) and imagi-
nary (antisymmetrized) parts of the irreducible charge-charge
correlator of the scattering region D which we are interested
in. Again, for good, i.e., fast ttun � tsys, detectors, the system
quantities IS irr

QQ and RS irr
QQ are slowly varying on the time

scales of the detectors and the response functions effectively

are given by the zero-frequency response functions ISM
IQ,ω=0

and RSM
IQ,ω=0. For the QPC detector with a symmetric scat-

tering potential, the real part of the zero-frequency response
vanishes [29,30], i.e., RSM

IQ,ω=0 = 0, and we arrive at the
simple relation [38]

RS irr
IAIB

(xA,tA; xB,tB)

≈ EA
C EB

C

�2
ISA

IQ,ω=0ISB
IQ,ω=0RS irr

QQ(ξA,ξB) (17)

with ξM = tM − |xM|/vF for M = A,B. Hence, for weak
coupling and good (i.e., fast) detectors, the measureable quan-
tity is the symmetrized irreducible correlator RS irr

QQ(ξA,ξB) =
〈〈{Q̂(ξA),Q̂(ξB)}〉〉/2 which depends only on the time dif-
ference �ξ = ξA − ξB. Analyzing the measurement with a
single detector M, we find that the relation between the
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current-current and charge-charge correlators is of the form
[36,37]

RS irr
IMIM

(t2,t1) ≈ RS
irr,0
IMIM

(t2,t1)

+ (
ECISM

IQ,ω=0/�
)2RS irr

QQ(t2 − t1) (18)

withRS
irr,0
IMIM

(t2,t1) describing the intrinsic current fluctuations
of the detector current giving rise to a reduced signal-to-noise
ratio.

Finally, the measurable reducible charge-charge correlator
that can be compared to the projected charge correlator Eq. (9)
is given by

RSQQ(t2 − t1) = 〈Q̂〉2 + RS irr
QQ(t1 − t2)

= 〈{Q̂(t2),Q̂(t1)}〉/2. (19)

As for strong coupling, spin can be taken into account by
considering the full charge operator Q̂ = Q̂↑ + Q̂↓ in Eq. (19)
and accounting for the statistical independence of Q̂↑ and Q̂↓.

III. CHARGE-CHARGE CORRELATORS

A. Symmetrized charge-charge correlator

The measurable quantity at weak coupling is the sym-
metrized charge-charge correlator RSQQ(t2,t1). Making use
of Eq. (3) expressing the charge Q̂(t) in region D through the
matrix Ak′,k(t) and the density matrix ρ̂0 we obtain the result

RSQQ(t2,t1) =
(∑

α

Aα,αnα

)2

+ 1

2

∑
α,β

Aα,β (t2)Aβ,α(t1)

× [nα(1 − nβ) + nβ(1 − nα)], (20)

with the occupation numbers nα = nak = f (εk − μa). Below,
we will compare this correlator to the projected charge-charge
correlator SP

QQ(t2,t1).

B. Projected charge-charge correlator

Starting from the expression (9) for the projected charge-
charge correlator, we make use of the Poisson formula∑

N ei(λ−λ′)N = ∑
M 2πδ(λ − λ′ + 2πM) to rewrite the pro-

jected charge in the form

Q̂P (t2|t1) =
∫ 2π

0

dλ

2π
e−iλQ̂(t1)Q̂(t2)eiλQ̂(t1). (21)

Using the projector property of A, see Eq. (6), we find for the
commutators [we adopt the notation in Eq. (4)]

[e−iλQ̂(t1),ĉ
†
α′ ] = (e−iλ − 1)

∑
γ ′

Aα′,γ ′ (t1)ĉ†γ ′e
−iλQ̂(t1),

(22)
[ĉα,eiλQ̂(t1)] = eiλQ̂(t1)(eiλ − 1)

∑
γ

ĉγ Aγ,α(t1),

and carrying out the integration in (21) over λ, the projected
charge operator can be written as

Q̂P (t2|t1) =
∑
α′α

AP
α′,α(t2|t1)ĉ†α′ ĉα. (23)

The matrix AP
k′,k associated with the projected charge assumes

the form (in lead space)

AP
k′,k(t2|t1) =

∫∫
dp′

2π

dp

2π
[Ak′,p′ (t1)Ap′,p(t2)Ap,k(t1)

+ Āk′,p′ (t1)Ap′,p(t2)Āp,k(t1)] (24)

with the matrix Ak,p(t) given by Eq. (5) and Āk,p(t) ≡
2πδ(k − p)1 − Ak,p(t). Finally, the projected reducible
charge-charge correlator SP

QQ can be expressed in the form

SP
QQ(t2,t1) =

∑
α

AP
α,α(t2|t1)nα

∑
β

Aβ,β(t1)nβ

+ 1

2

∑
α,β

AP
α,β (t2|t1)Aβ,α(t1)

× [nα(1 − nβ) + nβ(1 − nα)], (25)

where the first contribution corresponds to the product
〈Q̂P (t2|t1)〉〈Q̂(t1)〉. The comparison with the symmetrized
correlator RSQQ(t2,t1) found in Eq. (20) reveals quite some
similarities, with one of the matrices Ak′,k to be replaced by
its projected version AP

k′,k . Further below, we will analyze
this correlator and compare it to the symmetrized correlator
RSQQ(t2,t1).

Before doing so, we show that the projected charge matrix
elements in Eq. (24) can be simplified considerably. To this
end, we derive a generalized version of Eq. (6) which involves
different times t and s,∫

dp

2π
Ak,p(t)Ap,q(s) = �(s − t)

∫
dp

2π
�k,p(t)Ap,q(s)

+�(t − s)
∫

dp

2π
Ak,p(t)�p,q(s),

(26)

with the matrix elements �k,p(t) = −iei(k−p)(vFt+d/2)/

(k − p − iδ) and �(t) the Heaviside function. Combining
Eqs. (24) and (26) we obtain the projected charge matrix

AP
k′,k(t2|t1) =

∫∫
dp′

2π

dp

2π
[�k′,p′ (t1)Ap′,p(t2)�p,k(t1)

+ �̄k′,p′ (t1)Ap′,p(t2)�̄p,k(t1)], (27)

where �̄k,p(t) = 2πδ(k − p) − �k,p(t). Note the consider-
able simplification of this expression as compared to the orig-
inal formula (24), where the structure of the region D encoded
in the matrix elements Ak′,k through the scattering matrices
S†

k′ and Sk appeared three times, while now only one matrix
Ap′,p remains. The result Eqs. (23) with (27) for the projected
charge operator is the main technical result of this paper.

The generalized projector property Eq. (26) is related
to the projector property of the charge operator Q̂ = P̂D
restricted to the single-particle Hilbert space. Expressing
the field operators in

∫
dx ψ̂†(x)ψ̂(x) = 1 (restricted to the

single-particle Hilbert space) through the scattering states, we
can express P̂D through the projectors onto the incoming and
outgoing parts of the scattering states,

P̂D(t) = 1 − P̂in(t) − P̂out(t), (28)
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where P̂ν(t) = ∫
dx ψ†

ν (x,t)ψν (x,t) with ν = in/out. Here,
we have used that D〈ϕak|ϕbq〉in/out = 0 and have neglected the
small overlaps in〈ϕak|ϕbq〉out = O(1/kF). Multiplying Eq. (28)
by P̂D(s) with s > t , we obtain the relation

P̂D(s)P̂D(t) = P̂D(s)[1 − P̂in(t)], (29)

where we could drop the term P̂D(s)P̂out(t) since the out-
coming component of a scattered particle cannot contribute to
the charge on the dot at a later time. Expressing P̂D through
the charge matrix Ak,p, see Eq. (5), and using 1 − P̂in(t) =∫∫

(dk/2π )(dp/2π )�k,p(t)ĉ†kĉp with matrix elements �k,p

given above, we straightforwardly arrive at Eq. (26). Choosing
s < t , we multiply Eq. (28) by P̂D(s) from the right.

The two correlators RSQQ(t2,t1) and SP
QQ(t2,t1) are for-

mally different; see Eqs. (20) and (25). This implies that in
the two limiting measurements, a different charge dynamics is
detected due to the different backaction of the measurement
onto the system. To study the difference between these two
correlators beyond a formal level, we focus on the specific
example of a single-level quantum dot (modeled by the single
resonance level model [34]) and investigate the differences
between RSQQ(t2,t1) and SP

QQ(t2,t1) quantitatively. In the end,
we will draw some conclusions from this analysis for the
general situation.

C. Single resonance level model

We model a single-level quantum dot scatterer by a
single resonance level with a wave vector kres defining its
energy εres = εF + �vF(kres − kF), a width γ (in k space),
and a parameter η ∈ [−1,1] describing the asymmetry in the
coupling to the two leads [34]. The unprojected charge matrix
elements in Eq. (5) assume the simple form

Aa′k′,ak(t) = a∗
a′aa [φ∗

k′(t)φk (t)] (30)

with aL/R = ±i
√

1 ∓ η and φk(t) = √
γ /(δk + iγ ) ×e−iδk vFt

where δk = k − kres. Alternatively, the charge operator can
be expressed as Q̂ = d̂†d̂ with d̂ = ∑

a

∫
(dk/2π )aaφkĉak ,

where the operator d̂† creates a charge on the resonance level.
This model describes a single spin-degenerate dot level in
the noninteracting case with the spin trivially accounted for as
noted above; alternatively, the model applies to the case of a dot
with strong Coulomb interaction where at most one electron
is present on the dot. In the following, we restrict ourselves to
the discussion of the equilibrium case at zero temperature,
i.e., μL = μR and T = 0 (more precisely, we require that
kBT < max[|εres − εF|,�vFγ ]). Equation (4) combined with
Eq. (30) then provide us with the equilibrium (steady-state)
charge

Q = 〈Q̂(t)〉 =
∑

α

Aα,αnα =
∫ δκF

−∞

d(δκ)

π

1

δκ2 + 1
, (31)

which is the measured dot occupation both for a strong
and a weak system-detector coupling [we introduced the
dimensionless relative wave vector δκ = (k − kres)/γ ].

(a) Projected charge. First, we determine the expectation
value of the projected charge operator Q̂P (t |0); see Eq. (23).
The measurement of this quantity involves two charge projec-
tions at times t = 0 and later at t > 0, where the outcome of

the first measurement is disregarded. For the single resonance
level, the projected charge matrix element Eq. (27) is given by

AP
a′k′,ak(t2|t1) = a∗

a′aa

{
φP∗

k′ (t2|t1)φP
k (t2|t1)

+ [
φ∗

k′(t2) − φP∗
k′ (t2|t1)

][
φk (t2) − φP

k (t2|t1)
]}

(32)

with the projected amplitude φP
k (t2|t1) = φk (t1) ×e−γ vF(t2−t1).

The expectation value of the projected charge operator then
takes the form

〈Q̂P (t |0)〉 =
∫ δκF

−∞

d(δκ)

π

(
e−2τ

δκ2 + 1
+ |eiδκτ − e−τ |2

δκ2 + 1

)
, (33)

where we have introduced the dimensionless time τ = vFγ t .
The time dependence of 〈Q̂P (t |0)〉 for different positions

of the resonance with respect to the Fermi level is plotted in
Fig. 3. The data are (particle-hole) symmetric with respect to
the resonance’s position relative to the Fermi level, with the
average projected charges below the Fermi level (δκF > 0) and
symmetrically above (−δκF) related via

〈Q̂P (t |0)〉δκF = 1 − 〈Q̂P (t |0)〉−δκF . (34)

This symmetry enforces the projected charge to be equal to
the equilibrium value for the resonance aligned with the Fermi

2
0

τ
0 4

1

3

0.5

1

|Ψ1
proj =

δκF = −5

(c)

0.5

1(b)
δκF = 1

δκF = 0

δκF = 5
(a)

Q
P
(t
|0

)

310 542

|Ψ0
proj =

Ψ0
proj|Q̂(t)|Ψ0

proj

Ψ1
proj|Q̂(t)|Ψ1

proj

Q̂P (t|0)

τ
0

FIG. 3. (a) Charge expectation value QP (t |0) for δκF = ±5,
δκF = ±2, δκF = ±1, δκF = ±0.5, and δκF = 0. (b) Escape dynamics
of the projected electron [hole] out of the dot described by
〈	1

proj|Q̂(t)|	1
proj〉 (dotted) [〈	0

proj|Q̂(t)|	0
proj〉 (dashed)] resulting in

the total projected charge dynamics 〈Q̂P (t |0)〉 (full line) for δκF = 1.
(c) Sketch of two possible outcomes |	1

proj〉 and |	0
proj〉 of the charge

projection at t = 0.
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level, 〈Q̂P (t |0)〉δκF=0 = 1/2 at δκF = 0; see Fig. 3(a). Away
from the Fermi level, the average projected charge at time t > 0
is suppressed in magnitude with respect to its equilibrium value
〈Q̂P (t = 0|0)〉 = Q and returns back as t → ∞ with a typical
equilibration time teq ∼ 1/γ vF|δκF|.

Consider, for example, a situation where the resonance is
located below the Fermi level (δκF > 0). In this situation, it is
more likely to observe an electron on the dot and thus one has
Q > 1/2 in this regime. Surprisingly, the second projective
measurement at 0 < t < teq gives an average charge which is
smaller than its equilibrium value (and correspondingly for
δκF < 0). In order to understand the relaxation dynamics of
〈Q̂P (t |0)〉 it is instructive to analyze the evolution of the entire
many-particle state right after the first projection. Consider
again the situation where the resonance level is placed below
the Fermi level. After the first projection, the dot is either
occupied or empty; i.e., for zero temperature the state of the
system is given by

∣∣	N
proj

〉 = P̂N |	eq〉√
〈	eq|P̂N |	eq〉

, N = 0,1,

where the equilibrium state |	eq〉 corresponds to a filled Fermi
sea [see Fig. 3(c)]. Making use of the projectors P̂0 = d̂ d̂† and
P̂1 = d̂†d̂ one can see that for both measurement outcomes
N = 0,1 the projection creates a single electron-hole pair in the
system. The hole then screens the excess charge on the dot and
gives rise to a Friedel-type oscillation of the charge distribution
around the dot due to the sharp Fermi edge at zero temperature.
Assume the first measurement results in an outcome N = 1
increasing the charge value on the dot above the equilibrium
value. Since the projection is local, the accompanying hole is
also created near the dot. During the subsequent evolution the
charge in the dot can equilibrate in two ways: (1) the electron in
the dot can tunnel out above the Fermi sea, or (2) it can tunnel
out below the Fermi sea and fill the hole state. The appearance
of the second relaxation channel enhances the electron escape
rate that gives rise to the reduction of the average charge
value below the equilibrium level; see Fig. 3(b). The same
picture holds for the state |	0

proj〉 with the excess hole in the
dot compensated by an excess electron screening the charge
outside the dot. Finally, the projected charge expectation
value 〈Q̂P (t |0)〉 is a weighted average of the two processes
corresponding to the two alternatives N = 0,1 of the first
projection, 〈Q̂P (t |0)〉 = 〈Q̂〉〈	1

proj|Q̂(t)|	1
proj〉 + (1 − 〈Q̂〉)

〈	0
proj|Q̂(t)|	0

proj〉; see Fig. 3(b).
The creation of the electron hole-pair due to the projection

of the charge provides energy to the system. The average
energy of the excited electron-hole pair is given by εph =∑

N 〈Ĥ P̂Nρ0P̂N 〉 − 〈Ĥρ0〉,

εph = 2
∫ ∞

kF

dk

π

∫ kF

−∞

dq

π

(εk − εq)

[δk2 + γ 2][δq2 + γ 2]
. (35)

This integral is divergent for the linear dispersion εk = εF +
�vF(k − kF) (the same is true for the quadratic dispersion as
well [with q > 0 in Eq. (35)]), a consequence of the description
of the projection as an instantaneous process. In an experi-
mental realization the measurement involves a finite time and
provides a finite amount of energy to the system; hence the

particle-hole pair involves a finite energy. For example, for
the case of single-electron projection with a strong Coulomb
coupling EC > h� the measurement time is given by the
tunneling time ttun ∼ 1/� and the energy exchange between
the system and the detector is limited by EC; on the other
hand, the measurement process should provide the energy for
a “reasonable” electron-hole pair (defining one electron or
hole in the dot) given by εph ∼ |εF − εres|. For a resonance
overlapping with the Fermi level |εF − εres| < hvFγ and a fast
measurement with ttun � tsys ∼ 1/vFγ the Coulomb energy
exceeds the electron-hole energy as EC > h� � hvFγ ∼ εph.
In the case of a multielectron projection with EC � h�, each
individual QPC electron provides a small amount of energy
∼EC exciting the system to a virtual state and the overall
process creates the resulting electron-hole pair in a way similar
to the ionization via multiphoton absorption [43].

(b) Charge-charge correlator. When discussing the charge-
charge correlator, it is convenient to subtract the asymp-
totic value 〈Q̂〉2 = Q2 and define �(RSQQ) = RSQQ − Q2

(which corresponds to the irreducible correlator) and �SP
QQ =

SP
QQ − Q2. For a single resonance level, the correlator

�(RSQQ) as given by Eq. (20) takes the form

�(RSQQ)(t = τ/γ vF,0) = e−τ

∫ δκF

−∞

d(δκ)

π

cos(δκ τ )

δκ2 + 1

−
∣∣∣∣
∫ δκF

−∞

d(δκ)

π

eiδκ τ

δκ2 + 1

∣∣∣∣
2

. (36)

On the other hand, the projected correlator �SP
QQ follows from

Eq. (25) and reads

�SP
QQ(t,0) = Qe−2τ −

∣∣∣∣
∫ δκF

−∞

d(δκ)

π

eiδκ τ

δκ2 + 1

∣∣∣∣
2

(37)

with the equilibrium charge expectation value Q given in
Eq. (31). Due to particle-hole symmetry, both correlators
Eqs. (36) and (37) remain unchanged when replacing δκF →
−δκF. Furthermore, the difference between the two correlators
is given by the first terms and vanishes as δκF → ±∞ (filled
and empty dot, unaltered by the projection) as well as at the
particle-hole symmetric point at half filling, δκF = 0.

Analyzing the time dependence of the two correlators,
see Figs. 4(a)–4(d), we observe that both correlators become
negative at t ∼ 1/γ vF|δκF| (cutoff at t ∼ 1/γ vF as |δκF| drops
below unity) indicating the anticorrelation in the system:
detecting a particular charge value on the dot at t = 0, the
observed charge state of the dot after the tunneling time is
more likely to be inverse. At large times both correlators
show a weak oscillating behavior approaching �RSQQ(t →
∞,0) = �SP

QQ(t → ∞,0) → 0 and the full charge-charge
correlator assumes its asymptotic value Q2. Comparing the
two correlators with one another, we identify two regimes: (1)
For δκF � 1, the system is close to the particle-hole symmetric
point and the time-dependence of the two correlators is
qualitatively the same with only a small quantitative difference.
(2) When the Fermi level is away from the resonance level, the
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FIG. 4. The correlators �RSQQ(t,0) (dashed line) and
�SP

QQ(t,0) (full line) as a function of the dimensionless time
τ = γ vFt for different values of the dimensionless resonance position
δκF = (kF − kres)/γ . While the two correlators are similar for small
δκF [see (a) δκF = 0 and (b) δκF = 0.2], for larger δκF, the difference
between the two correlators is more pronounced [(c) δκF = 1 and
(d) δκF = 2]. The absolute value of the correlators decreases for
increasing δκF such that in the limit δκF → ∞ both correlators vanish.

two correlators deviate considerably as the projection enhances
the nonequilibrium behavior of the charge at later times.
Indeed, the projected correlator shows a larger anticorrelation
and more pronounced oscillations than the symmetric one;
see Fig. 5.

The following general conclusions can be drawn from the
above results: If the region D is in a well-defined charge state,
the two correlators are identical as the projection due to the
first charge measurement does not alter the state. For small
deviations from a well-defined charge state, the difference
between the two correlators remains small. The same is true
for a system with particle-hole symmetry, as discussed for
the half-filled dot above. If the system is in a superposition
of different charge states with similar weights (but away
from a particle-hole symmetric point), the projection has a
pronounced impact on the measurement outcome and the two
correlators RSQQ(t,0) and SP

QQ(t,0) can deviate considerably

ΔSP
QQ,min

ΔRSQQ,min

-0.10

-0.05

0

δκF
0 4 10862

FIG. 5. The minima of �RSQQ,min ≡ mint R�SP
QQ(t,0) (dashed

line) and �SP
QQ,min ≡ mint �SQQ(t,0) (full line) as a function

of the dimensionless resonance position δκF = (kF − kres)/γ . The
anticorrelation dip is much more pronounced for the projected
correlator.

with specific details depending on the scattering matrix of the
system.

IV. EFFECT OF MULTIPLE PROJECTIVE
MEASUREMENTS

So far, we have discussed two regimes of measuring
the time-resolved charge-charge correlator: (i) by projections
(strong measurements) at times t1 and t2, or (ii) by a weak
measurement where the charge-charge correlator is obtained
from a deconvolution of the detector current-current correlator
and the detector response function. While in the latter case the
detector current may be applied continuously, for the strong
measurement it is crucial to measure the charge at two times
in a strong manner and allow for an unperturbed evolution
in between. Let us compare these two regimes to a typical
experimental situation [26]: In these experiments, a fixed
voltage V is applied at the detector which thus is constantly
monitoring the charge of the system; at the same time, the
clear steps visible in the detector-current traces indicate a
strong measurement. Given the constant monitoring of the dot
charge, the system is always perturbed. Furthermore, while
our analysis above assumes a fully coherent evolution of the
system, the coupling to the environment leads to a further
decoherence beyond the one introduced by the measurement.
Our model of a projective measurement of the charge-charge
correlator SP

QQ(t2,t1) with an initial projection at time t1 and
a final projection at time t2 is inappropriate to describe these
measurements.

In the following, we formulate the continuous strong
measurement discussed above and derive the appropriate
charge-charge correlator. Following the general spirit of the
paper, we model the continuous strong measurement by
repeated projective measurements of the system. We introduce
the formalism of multiple projective measurements and present
the results for the multiple projected charge expectation value
as well as the multiple projected charge-charge correlator. We
identify a critical measurement rate where the dynamics of
the charge changes from a system property to a regime where
it is dominated by the measurement, becoming universal in
the limit of a high projection rate. In the end, we discuss
the rate at which we should project the system in order to
model a realistic continuous measurement and compare to
experiments.

A. Charge expectation value

Starting from the situation where we project the density
matrix ρ̂0 once, see Sec. III B above, we account for n

projections at times t1 < · · · < tn via the multiply projected
density matrix

∑
N1,...,Nn

T
[

n∏
i=1

P̂Ni
(ti)

]
ρ̂0T̃

[
n∏

i=1

P̂Ni
(ti)

]
(38)

with the time-ordering operator T and the anti-time-ordering
operator T̃ . The charge expectation at time t > tn after n

previous projections at times t1 < · · · < tn is given by the
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expression

∑
N1,...,Nn

Tr

{
Q̂(t)T

[
n∏

i=1

P̂Ni
(ti)

]
ρ̂0T̃

[
n∏

i=1

P̂Ni
(ti)

]}

=
∑

N1,...,Nn

Tr

{
T̃

[
n∏

i=1

P̂Ni
(ti)

]
Q̂(t)T

[
n∏

i=1

P̂Ni
(ti)

]
ρ̂0

}

≡ 〈Q̂mP (t |{tj })〉, (39)

where we have used again the trace property Tr(ÂB̂) =
Tr(B̂Â) and we have introduced the multiply projected
charge operator Q̂mP (t |{tj }) with the projection times {tj } ≡
t1, . . . ,tn. The latter can be expressed as Q̂mP (t |{tj }) =∑

α′,α AmP
α′,α(t |{tj })ĉ†α′ ĉα with matrix elements AmP

α′,α(t |{tj }). To
obtain these matrix elements, the projection operators can
be taken into account iteratively; i.e., Q̂mP (t |tn, . . . ,ti) =∑

Ni
P̂Ni

(ti)Q̂mP (t |tn, . . . ,ti+1)P̂Ni
(ti). Making use of Eq. (26)

and the property
∫

(dq/2π )�pq (t)�qk(t ′) = �pk(tmin) with
tmin = min(t,t ′), the resulting matrix element can be simplified
to

ÂmP
k′,k(t |{tj })

=
∫∫

dp′

2π

dp

2π

{
�k′p′ (t1)Ap′,p(t)�pk(t1)

+
n−1∑
i=1

[�(ti+1) − �(ti)]k′p′Ap′,p(t)[�(ti+1) − �(ti)]pk

+ �̄k′p′ (tn)Ap′,p(t)�̄pk(tn)

}
. (40)

1. Single resonance level model

The relevant time scale in the description of (multiple)
projections of the mean charge is the equilibration time
τeq = γ vFteq ∼ 1/δκF (for δκF � 1). For multiple projections,
there are two regimes: if the time between subsequent projec-
tions δt = δτ/vFγ exceeds the equilibration time, δt > teq,
the projections are independent; see Fig. 6 (dashed line)
for a plot of the corresponding multiply projected charge
QmP,δt (t) ≡ 〈Q̂mP (t |{tj = (j − 1)δt})〉. On the other hand,
for short intervals δt < teq, the system is not in equilibrium
when the next projection occurs; multiple charge projections
with small equal-time steps δt then drive the system to a new
steady state; see Fig. 6 (thin line).

When the Fermi energy resides above the resonance level
(δκF > 0), the new “steady state” corresponds to a lower
occupation of the dot state than in equilibrium, while for a
resonance level above the Fermi energy (δκF < 0), the dot
occupation is increased. Frequent projection pushes the steady-
state occupation towards 1/2; see Fig. 6. For |δκF|δτ � π , the
steady-state occupation (at the times of projection) is given by

lim
δt→0

QmP,δt (t) = 1

2
+ δκFδτ

2π
; (41)

i.e., the dot occupation is 1/2 up to a small correction. We
can attribute this universal behavior (independent of applied
chemical potentials) to an effective “broadening” of the level

0.5

210
0

1

543

Q
m

P
,δ

t (
t)

multiple
projections

limit: δt → 0

τ

single projection

FIG. 6. For a single initial projection, the charge QP (t |0) re-
turns to the equilibrium value after a characteristic time scale teq

[upper thick line; we choose δκF = (kF − kres)/γ = 2]. For multiple
projections (indicated by arrows) with time steps δt , we find two
different behaviors for the charge QmP,δt (t): For δt > teq, the dot
returns to the equilibrium before the next projection (dashed line;
δt = 2/γ vF), while this is not the case when δt < teq and the system
is driven to a new steady state (upper thin line; δt = 1/2γ vF). For
faster projections (lower thin line; δt = 1/10γ vF), the occupation
value is driven towards 1/2 (with the limit δt → 0 indicated by the
lower thick line).

over the width h/δt in energy—as this width becomes much
larger than the distance �vF|δkF| of the resonance level to the
Fermi level, the dot is filled and emptied with equal probability.

2. Comparison to experiment

Let us compare these results and in particular the ap-
pearance of a universal regime with a charge expectation
value 1/2 to the experiments by Gustavsson et al. [26];
as it turns out, this experiment is not dominated by the
measurement but rather by temperature and no universal
behavior is expected. The experimental setup consists of a QPC
detector which is measuring the charge states |N〉 or |N + 1〉
of a capacitively coupled quantum dot. The QPC detector is
driven with a constant voltage VQPC ∼ 500 μV producing a
current Iin ∼ 20 nA which corresponds to electrons impinging
on the QPC at a rate 1/tV ∼ 1011 Hz. From the current
steps, we conclude that the transmissions corresponding to the
two charge states are given by T|N〉 ∼ 0.3 and T|N+1〉 ∼ 0.2,
implying a coupling EC/h� ∼ 0.1. Making use of Eq. (11),
we obtain that N = tms/tV ∼ 20 electrons determine the dot
state. For each data point, the QPC current is integrated during
tdp ∼ 50 μs such that 6 × 106 electrons pass through the QPC,
which is far larger than Nproj ∼ 20. With tdp < tsys every
data point then provides the information of the actual charge
state of the dot. The system lifetime derives from the step
widths (of order tsys ∼ 1 ms) of the measurement tracks and
amounts to h/tsys ∼ 10−5 μeV. We model the effect of the
continuous measurement by repeated projections on the time
scale δt ∼ tms, which provides an effective level broadening
h/tms ∼ 2 μeV. This value is far below the temperature
scale [26] kBT ∼ 20 μeV (at T ∼ 230 mK). Alternatively, the
system is drive-dominated when VQD > kBT ; see Ref. [26].
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B. Charge-charge correlator

Next, we investigate the effect of multiple projections on the
charge-charge correlator. We consider the correlator between
charges at times t1 and t with multiple projections at times ti in
between, assuming a free evolution of the system at times prior
to the first measurement at t1. The corresponding correlator is
given by

SmP
QQ(t,t1|{tj })

=
∑

N1,...,Nn

Tr

{
Q̂(t)T

[
n∏

i=1

P̂Ni
(ti)

]
Q̂(t1)ρ̂0T̃

[
n∏

i=1

P̂Ni
(ti)

]}

= Tr{Q̂mP (t |{tj })Q̂(t1)ρ̂0}, (42)

where we have used the trace property and the definition of the
multiply projected charge operator Q̂mP (t |{tj }). Making use of
the matrix elements AmP

α,β (t |{tj }) in Eq. (40), the charge-charge
correlator can be expressed as

SmP
QQ(t,t1|{tj }) =

∑
α

AmP
α,α (t |{tj })nα

∑
β

Aβ,β (t1)nβ

+ 1

2

∑
α,β

AmP
α,β (t |{tj })Aβ,α(t1)

× [nα(1 − nβ) + nβ(1 − nα)], (43)

where the first contribution is 〈Q̂mP (t |{tj })〉〈Q̂(t1)〉. Compar-
ing this result to the case of a single projection discussed
before, see Eq. (25), we recognize that the multiple projections
enter through the matrix elements AmP

α,β (t |{tj }) replacing the
(singly projected) matrix element AP

α,β (t |0).

1. Single resonance level model

For the single resonance level in equilibrium (μL = μR =
εF) the charge matrix element assumes the simple form in
Eq. (30). In Fig. 7 we compare the projected correlator
SP

QQ(t,0) with the multiply projected correlator S
mP,δt
QQ (t,0) ≡

SmP
QQ(t,t1 = 0|{tj = (j − 1)δt}) with equal-time separations

δt = δτ/γ vF between projections; we consider the cases δτ =
1 and δτ → 0. All correlators start out at t = 0 with the value

0

1

0.5

50 1 2 3 4

S
m

P
,δ

t
Q

Q
(t

,0
) δτ → 0

δτ = 1
single proj.

τ

FIG. 7. S
mP,δt
QQ (t,0) for multiple projections at δκF = 1: Single

projected correlator (thick line), multiply projected correlator (dashed
line, with δτ = 1 and dots indicating the projections), and the limiting
behavior for δt → 0 (thin line).

1/ν

F
res

EC

FIG. 8. A single resonance level at energy εres coupled to two
leads with states filled up to the Fermi energy εF is capacitively
interacting (with interaction strength EC) with the electrons passing
through the QPC with frequency ν. We take this interaction into
account via an effective time-dependent level energy εres(t).

Q of the average charge Eq. (31). The correlator SP
QQ(t,0) then

undergoes a pronounced anticorrelation dip and approaches
〈Q̂(t)〉〈Q̂(0)〉 = Q2 for t → ∞ (as the two charge states at 0
and t become uncorrelated). Repeated projections in between
drive the correlator S

mP,δt
QQ (t,0) towards 〈Q̂mP,δt (t)〉〈Q̂(0)〉 as

the measurement induces an additional time dependence. In the
limit of frequent projections, the projected charge expectation
value 〈Q̂mP,δt (t)〉 approaches 1/2 and hence the asymptotic
value of the correlator is given by S

mP,δt→0
QQ (t,0) ∼ Q/2.

Overall, the result shows that only small times τ < 1 probe
the system dynamics, while larger times become dominated
by the measurement.

C. Fluctuating quantum dot level

We have seen that repeated projections with a time
separation between subsequent projections approaching the
Heisenberg time h/|εF − εres| start dominating the dynamic
evolution of the system and the average occupation number of
the dot approaches the universal value 〈Q̂〉 = 1/2, irrespective
of the position of the dot level with respect to the Fermi level;
see Eq. (41). Here, we show how this formal result of the von
Neumann projection postulate can be understood in terms of a
measurement-induced fluctuation of the dot level. As before,
we assume that the state of the dot is measured by a capacitively
coupled QPC; see Fig. 8. We assume single electrons passing
through the QPC with a frequency ν, e.g., due to an applied
voltage V corresponding to ν = eV/h, which corresponds
to an incoming QPC current I = eν. An electron passing
through the QPC interacts typically during a time ttun = 1/�

with the dot. The interaction strength is given by the Coulomb
energy EC. In our model, we take into account the effect of
this current on the dot level εres via a classical electrostatic
potential of the form εres(t) = εres + ẼC cos(2πνt) with an
effective coupling strength ẼC = ECν/� accounting for the
typical interaction time ttun = 1/�. In order to describe the
system, we define the time-dependent Hamiltonian

Ĥ (t) = εres(t)ĉ
†ĉ +

∫
dk

2π
εk(â†

kâk + b̂
†
kb̂k)

+
∫

dk

2π
[�vF

√
γL(â†

kĉ + H.c.)

+ �vF

√
γR(b̂†kĉ + H.c.)], (44)
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where âk , b̂k are the annihilation operators for the left and
right reservoirs, ĉ is the annihilation operator corresponding
to the localized dot state, γL,R are the partial widths of the
level, εk = εF + �vF(k − kF) is the linearized dispersion of the
lead electrons, and εres(t) is the fluctuating energy of the dot.
Solving the Heisenberg equation of motion, we obtain

ĉ(t) = ĉ(t0)e−iφ(t)+iφ(t0)−γ vF(t−t0)/2

− ivF

∫
dk

2π
(
√

γLâk + √
γRb̂k)

×
∫ t

t0

dt ′e−iφ(t)+iφ(t ′)−γ vF(t−t ′)/2−iεk (t ′−t0)/�, (45)

where γ = (γL + γR) is the resonance width and
φ(t) = ∫ t

dt ′εres(t ′)/�. Taking t0 → −∞ and t = 0, the
steady-state dot occupation is given by

〈Q̂〉 = 〈ĉ†(0)ĉ(0)〉 = v2
F

∫
dk

2π
(γLnLk + γRnRk)

×
∫ 0

−∞
dt1dt2e

−iφ(t1)+iφ(t2)+γ vF(t1+t2)/2+iεk (t1−t2)/�, (46)

which in equilibrium, i.e., nLk = nRk = �(kF − k), simplifies
to

〈Q̂〉 = γ vF

∫ 0

−∞

dt1dt2

2πi

e−iφ(t1)+iφ(t2)

t1 − t2 − iδ
eγ vF(t1+t2)/2eiεF(t1−t2)/�.

The phase φ(t) is of the form φ(t) = εres t/� + (ẼC/hν)
sin(2πνt) and using the expansion eiz sin θ = ∑

n Jn(z)einθ ,
we can rewrite the expression above as

〈Q̂〉 =
∞∑

n,m=−∞
Jn

(
ẼC

hν

)
Jm

(
ẼC

hν

)
γ vF

∫ 0

−∞
dt eγ vFt−i2π(n−m)νt

×
∫ −2t

2t

dτ

2πi

e−i2π(n+m)ντ+i(εF−εres)τ/�

τ − iδ
(47)

with Jn(z) the Bessel functions of the first kind. Assuming
frequent projections, hν � |εF − εres|, and a narrow
resonance, �γ vF � |εF − εres|, we can calculate 〈Q̂〉 to leading
order, where only terms n = m � 0 contribute, and obtain

〈Q̂〉 = 1

2

[
1 + sgn(εF − εres) J 2

0

(
ẼC

hν

)]
, (48)

where the identity 1 = [J0(x)]2 + 2
∑∞

ν=1[Jν(x)]2 has been
used. Making use of ẼC/hν = EC/h�, we notice that for EC >

h�, the steady-state charge 〈Q̂〉 approaches the asymptotic
value 1/2. Hence, assuming a strong system-detector coupling
with each electron realizing a strong projective measurement,
we reproduce the case of frequent projective measurements
discussed before; see Eq. (41). In order to reproduce the
case of a projection by N electrons within a time tms, we
consider a periodic oscillation εres(t) = εres + ẼC cos(2πν̃t) of
the dot level with frequency ν̃ = ν/N = 1/tms and effective
Coulomb strength ẼC = NECν̃/ � = ECν/�. While this pe-
riodicity is artificially introduced here, it could be realized
by switching the QPC current on and off repeatedly with

this period. Adapting the calculation above, we obtain in the
limit of fast projection hν̃ � |εF − εres| an average charge
〈Q̂〉 = (1/2)[1 + sgn(εF − εres) J 2

0 (NEC/h�)], such that for
NEC > h� the system is driven to the universal regime as in the
case of single electron projection discussed above. Within this
treatment, it is the randomization of the dot level which leads
to equal probabilities to find the level either empty or filled
and which is responsible for the universal filling factor 1/2.

V. CONCLUSION

We have studied the charge and charge-charge correlator
of a quantum dot D (a localized region D of an arbitrary
mesoscopic scatterer in more general terms). Making use
of the single-particle scattering matrix of the scatterer Sk ,
we expressed the charge operator Q̂(t) for D through the
single-particle scattering matrix. In order to measure this
charge, the system has been coupled to a detector; the
measurement then acts back on the dot’s occupation and
therefore the charge dynamics depends on the coupling to
the detector. We have focused on a QPC detector which is
capacitively coupled to the charge in region D. We have
analyzed different measurement regimes and identified two
particular cases: at strong dot-detector coupling EC > h�, one
single electron already can perform a strong measurement and
project the system; such a strong/projective measurement is
still possible even at intermediate coupling EC < h� where
many electrons accumulated over a measurement time tms are
needed to project the dot state, provided that tms remains below
the system time tsys where the charge on the dot changes.
In our phenomenological approach, we have described such
strong measurements with the help of the von Neumann
projection postulate (maximal backaction) and the measured
charge-charge correlator is the projected quantity SP

QQ(t,0)

involving the projected charge operator Q̂P (t |0). When the
coupling is weak, EC � h� and tms > tsys, the measurement is
in the weak regime. We have analyzed this case in lowest-order
perturbation theory (with vanishing back action) and have
identified the symmetrized irreducible correlator RSQQ(t,0)
as the measurable quantity.

The difference between the strong and weak measurement
regimes consists in the different degree to which the system
becomes entangled with the detector during the system’s
dynamical time. In a strong measurement, the projection of
the detector degree of freedom implies a projection of the
system’s state, allowing one to exclude the detector from
the consideration. For the weak measurement, the system
becomes only weakly entangled with the detector and almost
preserves its coherent evolution; the detector’s projection
(involving a quasiclassical variable [39]) then acts only as
a weak perturbation on the system’s dynamics. Although the
results for strong and weak measurements look quite different
on a formal level, we find a qualitative correspondence when
analyzing the expressions for a single-level quantum dot.

The projected charge correlator involves the projected
charge operator Q̂P (t |0) providing the charge at time t after
a projection at an earlier time t = 0; see Eq. (23). A simple
expression for this quantity (that could also be carried over
to the case of multiply repeated projections) was obtained by
making use of the analytic structure of the scattering matrix Sk .
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The evolution of this projected charge, in particular, its initial
decay in modulus and subsequent return to the equilibrium
value, could be understood in terms of the generation of
a particle-hole excitation in the nearby leads through the
projection. In the limit of frequent projections, we have
identified a transition from a regime where the dot dynamics
is determined by the characteristics of the system to a regime
where it is uniquely determined by the detector with universal
outcome. In order to reproduce these results within a unitary
treatment, we have modeled the projective measurements by a
strongly fluctuating dot level.

The backaction of a measurement naturally manifests itself
in the time correlator of the measured quantity, as the second
measurement probes both the dynamics of the system as well
as the backaction on the system originating from the first

measurement. Furthermore, the strength of the backaction
increases from zero in a weak measurement to a maximum
in a strong measurement described by the von Neumann pro-
jection scheme. Our analysis of time correlators then provides
insights on the range of backaction effects in a simple model
setup.
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