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The short-time evolutions of two distinct systems, the pump and probe experiments with a semiconductor
and the sudden quench of cold atoms in an optical lattice, are found to be described by the same universal
response function. This analytic formula at short time scales is derived from the quantum kinetic-theory approach
observing that correlations need time to form. The demand of density conservation leads to a reduction of the
relaxation time by a factor of 4 in quench setups. The influence of the finite-trapping potential is derived and
discussed along with Singwi-Sjølander local-field corrections including the proof of sum rules.
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I. INTRODUCTION

The experimental progress with cold atoms triggered
by Bose-Einstein condensation has led to an enormous
undertaking to understand the time-dependent formation of
correlations. Besides pump and probe experiments in semi-
conductors like GaAs [1] or InP [2], where the formation of
collective modes and quasiparticles has been observed with
the help of femtosecond spectroscopy, it is now possible
to measure the time-dependent occupation of Hubbard-like
setups and to observe the formation of correlations [3]. The
ultrafast excitations in semiconductors, clusters, or plasmas
by ultrashort laser pulses are characterized by long-range
Coulomb interactions reflected in the time dependence of
the dielectric function [1,2,4] in the terahertz regime [5]; for
an overview of theoretical and experimental work see [6].
Calculating nonequilibrium Green’s functions [7,8] allows one
to describe the formation of collective modes [2,9], screening
[7], and even exciton population inversions [10].

The thermalization of cold atoms is characterized by
short-range interactions mostly described within Hubbard-like
models [11]. Different kinds of quenches are applied and
studied [12,13], and the importance of local conservation laws
has been pointed out [14]. In regard to these conservation laws,
several existing many-body approximations in the literature
have been analyzed by numerical solution of Kadanoff and
Baym equations [15,16]. Special preparation of cold atoms in
optical lattices allows us to study the local relaxation [3,17]
and to explore dissipation mechanisms [18]. At intermediate
time scales a quasistationary state has been found during the
thermalization process [19].

Different physical systems, the long-range Coulomb [20]
and short-range Hubbard systems, can be described by a
common theoretical approach leading to a unique formula
to explain the formation of correlations at short time scales,
as we will demonstrate. This could be of interest since,
normally, the formation is treated by numerically demanding
calculations solving Green’s functions [7,8] or renormalization
group equations [3].

What is the basic reason why such different systems show
similar features? It is just the fact that correlations need time to
form. In other words higher-order correlations need more time
to be built up than low-order ones. Although this statement is

strictly valid for only weakly correlated systems, we adopt it
here and see that it leads to good results at short time scales
even in the strongly correlated regime. Therefore it is suggested
a conjecture that the lowest level, the mean-field approxima-
tion, is sufficient to describe the basic features of the short-time
formation of correlations. We will follow a relaxation-time
approximation while explicitly imposing local conservation
laws where the mean fields are time dependent, which is an
extension of the idea of Mermin [21,22]. In order to estimate
the influence of higher-order correlations on the response, we
will derive the time-dependent local-field corrections on the
level of the Singwi-Sjølander approximation.

The outline of this paper is as follows. In the next section
we briefly sketch the kinetic equations in the mean-field and
conserving relaxation-time approximation and linearize the
solution. The influence of a harmonic trap is derived exactly.
In Sec. III we solve the kinetic equation for the situation of
sudden quench of atomic lattices like Hubbard models, leading
to an analytical formula describing the time dependence of
the occupation, and compare them with the experimental and
renormalization-group (RG) data. This formula brings the first
important result of the paper. The influence of the trapping
potential is discussed in the regime of the experiments which
allows a perturbative treatment. Section IV is devoted to the
response function when the system is initially uncorrelated.
Here it is found that the short-time response has the same
form for long-range Coulomb interactions and for short-range
Hubbard interactions. This universal time dependence is the
second important result of the paper, and the sum rules are
discussed and the local-field corrections as an expression of
higher-order correlations are derived. The time dependence
of the response function for different approximations is
illustrated by the movies in the Supplemental Material [23]. A
summary tries to encourage the usage and further comparison
with other approaches.

II. KINETIC THEORY APPROACH

The advantage of the equation of motions is that the
linearization leads to a higher-order response function than
used as an approximation in the kinetic equation. This
means, e.g., that a mean-field equation leads to random-phase-
approximation (RPA) response, which has been pointed out
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in [24,25]. Therefore we will briefly present the ingredients
of such a kinetic approach and restrict ourselves to the mean
field as lowest order since higher-order correlations need time
to form if one begins in an uncorrelated state [26,27].

We consider models with the Hamiltonian

H =
∑

k

εka
+
k ak + 1

2

∑
kpq

Vqa
+
k a+

p ap+qak−q, (1)

where the energy dispersion of quasiparticles in Coulomb
systems like semiconductors is given by an effective mass
εp = p2/2m. As a model for the short-range lattices we
consider the Hubbard model of constant hopping J and
constant Coulomb repulsion Vq = U . For short-range lattices
of length a and with hopping element J the dispersion is given
by εp = 2J (1 − cos ap/�) such that 1/m ≈ 2Ja2/�

2 near the
band minima.

We consider the time evolution of the reduced density
matrix 〈p + 1

2q|δρ|p − 1
2q〉 = δf (p,q,t), which is given by

linearization, δ[H,ρ] = [δH,ρ0] + [H0,δρ], of the kinetic
equation

ρ̇ + i[H,ρ] = ρ l.e. − ρ

τ
(2)

with respect to an external perturbation δV ext. The effec-
tive Hamiltonian consists of the quasiparticle energy, the
external and induced mean field 〈p + 1

2q|δH |p − 1
2q〉 =

δV ext + Vqδnq , given by the interaction potential Vq , and
the density variation δnq . As a possible confining potential
we assume a harmonic trap V trap = 1

2Kx2, which leads to
〈p + 1

2q|δ[V trap,ρ]|p − 1
2q〉 = −K∂p∂qδf (p,q,t).

The kinetic equation (2) relaxes towards a local equilib-
rium (Fermi/Bose) distribution but with an allowed variation
of the chemical potential 〈p + q

2 |ρ l.e. − ρ|p − q

2 〉 = 〈|ρ l.e. −
ρ0|〉 − δf (p,q,t) = −�f

�ε
δμ(q,t) − δf (p,q,t). Here we use

the short-hand notation �f = f0(p + q

2 ) − f0(p − q

2 ) and
�ε = εp+ q

2
− εp− q

2
. The variation of the chemical potential

is determined by the density conservation n = ∑
p f =∑

p f l.e., leading to a relation between density variation
δn(q,t) = �̃(t,ω = 0)δμ(q,t) and the polarization in the
RPA

�(t,t ′) = i
∑

p

[
fp+ q

2
(t ′) − fp− q

2
(t ′)

]
e

(iε
p+ q

2
−iε

p− q
2
+ 1

τ
)(t ′−t)

,

�̃(t,ω) =
∫

d(t − t ′)eiω(t−t ′)�(t,t ′). (3)

The linearized kinetic equation (2) therefore reads, for δft =
δf (p,q,t),

δ̇f t + δft

τ
+ i�εδft = i�f δV ext

t + i�f Vqδnt

+ �f

�ε

δnt

τ�(q,0,t)
+ iK∂p∂qδft . (4)

The last term in the second line describes the confining
harmonic trap, and the first term comes from Mermin’s
correction due to the density-conserving relaxation-time
approximation.

Neglecting the time derivative of the homogeneous part
f0(p,t) compared to δf (p,q,t), we can solve the kinetic

equation (4) considering the momentum derivatives of the last
term as a perturbation to obtain

δf (p,q,t) − δf (p,q,0) = i

∫ t

t0

dt ′ exp

[(
i�ε+ 1

τ

)
(t ′−t)

]

×
{
�f (t ′)

[
Vqδn(q,t ′) + V ext

q (t ′)
]

+ 1

iτ �̃(t ′,0)

�f (t ′)
�ε

δn(q,t ′) + K∂p∂qδf (p,q,t ′)
}
. (5)

Further evaluation is very much dependent on the physical
setup and leads to different solutions as we will demonstrate
now.

III. ATOMS IN A LATTICE AFTER SUDDEN QUENCH

For cold atoms occupying every other place on a lattice fk =
[1 + (−1)k]n/2 we have a Fourier transform to the momentum
distribution,

f0(p) = a

N∑
k=−N

e
i
�

kapfk = na
sin (2N + 1) qp

�

sin
(

ap

�

)
→ π�nδ(p) = n

2
δp, (6)

for a large total number of atoms N and lattice spacing a.
We can now Laplace transform the time t → s in the kinetic
equation (4) or (5) to get

δfs = δf0

s + i�ε + 1
τ

+ in

2

(
δp+q/2

s − ib + 1
τ

− δp−q/2

s + ib + 1
τ

)

× (δV ext + Vqδns)

+ 1

2τ

(
δp+q/2

s − ib + 1
τ

+ δp−q/2

s + ib + 1
τ

)
δns

+ iK

s + i�ε + 1
τ

∂p∂qδfs, (7)

where we introduced �ε|p=±q/2 = ±4J sin2 aq

2�
= ±b. The

initial time disturbance of the distribution δf0 is determined
according to the different physical preparations.

In the case of a sudden quench the interaction is switched
on suddenly, and no external perturbation will be assumed,
δV ext = 0. Let’s consider the time evolution of an empty place
in a lattice where every other place was populated initially.
The density nt = n

2 + δnt starts with n0 = 0, which means
δn0 = −n/2 is the initial condition. If we first look at the
quench without interaction (V = 0), we can solve (4):

δft = δf (0)e−i�εt− t
τ , (8)

with a choice of δf (0) = −n/2 so that the density

δnt =
∑

p

δft = −n

2
J0(

√
4Jbt)e− t

τ (9)

starts with δn0 = −n/2 as desired since the Bessel function
J0(0) = 1. Note that

∑
p = a/2π

∫ 2π/a

0 dp, according to the
finite band. If we use the parabolic approximation near the band
minimum instead, we will obtain Re[δnt ] = −n sin(x)/2x,
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FIG. 1. Comparison of the free-particle-density short-time evo-
lution (dashed line) of (9) with the result using a parabolic approxi-
mation (solid line), where the x axes of the latter curve are elongated
by a factor of 2π .

with x being 2π times the argument of the Bessel function
in (9), as illustrate in Fig. 1. Despite the 1/x decay instead of
the correct 1/

√
x, there are more artifacts of the parabolic ap-

proximations, e.g. the 2π faster oscillation and the appearance
of an imaginary part in the density. Therefore we will use the
correct εp = 2J (1 − cos ap/�) dispersion and no parabolic
approximation.

Now that the initial value is specified, we can integrate
(7) over the momentum including the interaction to get
an equation for the density. Using the Laplace transform
J0(

√
4Jbt) 1/

√
s2 + 4Jb, let’s first inspect the solution

without a confining trap (K = 0):

δns = −n

2

(
s + 1

τ

)2 + b2√(
s + 1

τ

)2 + 4Jb
(
s2 + s

τ
+ nbVq + b2

)
δnt = −n

2
J0(

√
4Jbt)e− t

τ − n

4γ τ 2

∫ t

0
dxJ0(

√
4Jbx)e− t+x

2τ

× [2γ τ cos γ (t − x) + (1 − 2bnVqτ
2) sin γ (t − x)],

(10)

where γ 2 = nbV + b2 − 1/4τ 2. Without interaction, V = 0,
and damping, 1/τ → 0, we obtain the exact result of [17].

In Fig. 2 we compare the experimental data [3] with (10),
and we plot the interaction-free evolution together with that
including interaction. The main effect of interaction is the
damping, which brings the curves nearer to the experimental
data. Here we use the parameter for the lattice constant given by
half of the short laser wavelength, a = λ/2 = 765 nm, which
provides a wave vector of q = π�/a, and an initial density
n = 1/2a with every other place filled. The relaxation time
characterizes dissipative processes, which we assume arise
due to polaron scattering. These lattice deformation processes
are dominated by hopping transport at high temperatures and
band regime transport at low temperatures, with the transition
given by �/τ = 2J exp (−S), where S describes the ratio of
polaron binding to optical phonon energy. This quantity is
generally difficult to calculate [28] but is on the order of 1.
We will use it as a fit parameter and find a common value,
τ = 0.6�/J , for the results in the figures presented here. A
more refined theory should also take the contribution of the
electron-electron correlation into account for this relaxation
time.
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FIG. 2. (Color online) Comparison of the experimental data of
[3] (dots) with the RG calculation (thin line) [17] and Mermin’s
conserving relaxation time τ = 0.6�/J approximation (10) without
(green) and with interaction (red).

The influence of Mermin’s correction is visible in Fig. 3.
One sees that without these corrections of conserving re-
laxation time approximation (brown curve) we obtain too
much damping. In order to compare the relative forms of the
curve we artificially increase the relaxation time by a factor
of 4 (green line), which brings both curves closer together.
One sees that without Mermin’s correction (and the 4 times
larger relaxation time) the oscillation is too fast compared
to the data. Mermin’s correction as an expression for the
density conservation decreases the frequency, which is in better
agreement with the data.

However, it is still not sufficient since the oscillations
are still too fast. We need the corrections to the finite
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FIG. 3. (Color online) Same data as in Fig. 2 and (10), with
(red) and without (brown) Mermin’s conserving relaxation time
approximation. The curve without Mermin’s approximation but with
a 4 times larger relaxation time is plotted as a green curve for
comparison.

trap condensed in the parameter K/J , which we have not
considered yet.

The finite-size term ∼K/J is a small number such that
one iteration of (7) is sufficient. With one partial integra-
tion with respect to p we obtain three terms. The first
one,

iKn

2

∑
p

∂p

(
1

s + i�ε + 1
τ

)
∂q

(
1

s + i�ε + 1
τ

)
, (11)

is easily seen to vanish by back transforming in time and
performing the momentum integration. The second term is the
q derivative of δn, which is readily integrated due to the δp

functions, yielding

K

2
∂qδns4Ja cos

qa

2
sin

qa

2

×
[
nbV ∂2

1
τ

− 1

τ
∂2

1
τ

(
s + 1

τ

)]
1

(s + 1
τ

)2 + b2
. (12)

Since the experimental data are performed with commensurate
wavelengths q = �/a, this term is negligibly small.

The last remaining term is the one proportional to δns ,
which results in

K

2
δns2Ja2 sin2 qa

2

×
[

− nbV ∂2
1
τ

+ 1

τ
∂2

1
τ

(
s + 1

τ

)]
1(

s + 1
τ

)2 + b2
, (13)

where we again have neglected terms ∼cos qa

2 . We see that
the trap potential introduces an additional s and therefore
time dependence. However, these corrections range from zero
at zero time (s → ∞) to the maximal value at large times
(s → 0). Using the latter limit, we obtain a constant shift to
the term nbV in (10) of

nbV → nbV + k,

k = Ka2b

2(1 + τ 2b2)2
[nbV τ 2(τ 2b2 − 3) − 1 + 3b2τ 2].

(14)

In Fig. 4 we see that these trap-potential corrections
decrease the frequency further, and (10) agrees better with
the data, although the corrections are small. For comparison
we plotted the RG simulation [17] as thin lines. For larger
interaction U/J we see that the analytic result (15) describes
the data slightly better, and we can give the time evolution up
to more oscillations than possible using numerical RG.

IV. SHORT-TIME RESPONSE FUNCTION

A. RPA modes

Now we are interested in the short-time response of the
system to an external perturbation V ext. This is different from
a sudden quench since here we initially have δf (p,q,0) = 0
and the system is driven out of equilibrium by V ext. As a result,
we will obtain the dielectric response, which gives microscopic
access to optical properties.

Integrating (5) over momentum, one obtains the time-
dependent density response

δn(q,t) =
∫ t

t0

dt ′χ (t,t ′)V ext
q (t ′) (15)

describing the response of the system with respect to the
external field in contrast to the polarization function (3), which
is the response to the induced field.
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FIG. 4. (Color online) Same data as in Fig. 2, with (red) and
without (green) the influence of the trapping potential K/J of (14)
together with the RG calculation (thin line) of [17].

One obtains the equation for χ (t,t ′) from (15) by inter-
changing integrations in (5),

χ (t,t ′) = �(t,t ′) +
∫ t

t ′
dt̄

×{[�(t,t̄)Vq + I (t,t̄)]χ (t̄ ,t ′) + R(t,t̄)}, (16)

with the polarization (3) and Mermin’s correction,

I (t,t ′) =
∑

p

fp+ q

2
(t ′) − fp− q

2
(t ′)

εp+ q

2
− εp− q

2

e
(iε

p+ q
2
−iε

p− q
2
+ 1

τ
)(t ′−t)

τ�̃RPA(t ′,0)
. (17)

The confining-trap potential leads to the term

R(t t ′) = K
∑

p

e
(iε

p+ q
2
−iε

p− q
2
+ 1

τ
)(t ′−t)

∂p∂qδf (p,q,t ′). (18)

For cold atoms on the lattice we have already obtained the
solution (7), which we can use here with δf (0) = 0, and we
have

�(t,t ′) = ne
t ′−t

τ sin [b(t ′ − t)],

I (t,t ′) = 1

τ
e

t ′−t
τ cos [b(t ′ − t)], (19)

R(t,t ′) = JKa

�

∫ t

t ′
dt ′(t ′ − t)e

(t ′−t)
τ sin

(qa

2�

)
∂qχ (t̄ ,t ′).

This will lead to the same response formula as that for a
gas of particles with the thermal Fermi/Bose distribution for
fp. For the latter we work in the limit of long wavelengths

q → 0, and the leading terms are �(t,t ′) ≈ q2n(t ′)
m

(t ′ − t)e
t ′−t
τ ,

I (t,t ′) ≈ 1
τ
e

t ′−t
τ , and R(t,t ′) = K

∫ t

t ′ dt ′(t ′ − t)e
(t ′−t)

τ
q∂q

m
χ (t̄ ,t ′)

with the time-dependent density n(t).
We introduce the collective mode of plasma/sound-velocity

oscillations for a Coulomb gas and for the Hubbard models,
respectively,

ω2
p =

{
ne2

mε0
for Vq = e2

�
2

ε0q2 ,εp = p2

2m
,

bnaU for Vq = Ua,εp = 2J (1 − cos pa/�),

(20)

where we have already used b = 4J sin2 aq

2�
. For Coulomb

interactions one has an optical mode, while for atoms on the
lattice the mode is acoustic.

For the gas of particles it is convenient to transform (16)
into a differential equation:

χ̈(t t ′) + 1

τ
χ̇ (t t ′) + ω2

pχ (t t ′) = −kω2
p∂ω2

p
χ (t t ′) + o

(
kω2

p

)
,

χ (t,t) = 0, χ̇(t,t ′)|t=t ′ = −ω2
p/Vq + o

(
kω2

p

)
, (21)

where the influence of the trap is condensed in k = 2K/m for
the gas system and (14) for the Hubbard models.

Interestingly, both solutions, the one for the Hubbard lattice
(7) and the one for the gas of particles (21), lead to the same
result for the integral equation (16) for the two-time response
function,

V χ (t,t ′) = −ω2
p

γ
e− t−t ′

2τ sin γ (t − t ′), (22)

but with different collective modes, γ =
√

ω2
p + k − 1

4τ 2 for

the Coulomb gas and γ =
√

ω2
p + b2 + k − 1

4τ 2 for cold
atoms. In this sense we consider (22) to be universal short-time
behavior.

In the further analysis we will closely follow the experi-
mental way of analyzing the two-time response function [2].
The pump pulse creates charge carriers in the conduction band,
and the probe pulse tests the time evolution of this occupation.
The time delay after this probe pulse, T = t − t0, is Fourier
transformed into frequency. Similarly, we set the half-empty
lattice of cold atoms to relax at t0. The frequency-dependent
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inverse dielectric function associated with the actual time t is
then given by

1

ε(ω,t)
= 1 +

∫ t−t0

0
dT eiωT V χ (t,t − T ), (23)

which is exactly the one-sided Fourier transform introduced
in Ref. [29]. Integral (23) with (22) can be expressed in
terms of elementary functions. Without the last term due to
the confining potential it is the solution derived for Coulomb
systems in [20].

The virtue of (23) is that the long-time limit correctly yields
the Drude formula (K → 0),

lim
t→∞

1

ε
= 1 − ω2

p

γ 2 − ω
(
ω + i

τ

) , (24)

which is not easy to achieve within short-time expansions
[29] and which had provided the wrong long-time limit of
1 − ω2

p/[ω2
p − (ω + i/τ )2] before.

B. Sum rules

Checking on the sum rules we first see that the f -sum rule is
completed independent of time. Indeed, using

∫ ∞
0 ω sin ωT =

−δ′(T )π , we obtain from (23)∫ ∞

0
ωImε−1 = −πω2

p. (25)

The compressibility sum rule becomes time dependent and
reads∫ ∞

0

dω

ω
Imε−1 = −πω2

p

2γ

∫ t−t0

0
dT e− T

2τ sin γ T

→ −π

2

ω2
p

γ 2 + k
= −π

2

⎧⎨
⎩

ω2
p

ω2
p+k

ω2
p

ω2
p+b2+k

for t → ∞ (26)

for the gas of particles and lattice atoms, respectively.
This result can be confirmed from (24) by using the

Kramers-Kronig relation,

2

π

∫ ∞

0

dω

ω
Imχ = Reχ (ω = 0) = − 1

Vq

⎧⎨
⎩

ω2
p

ω2
p+k

ω2
p

ω2
p+b2+k

, (27)

in which the long wavelength limit q → 0 defines the
compressibility for the lattice gas,

κ = lim
q→0

1

n2Vq

(
ω2

p + b2 + k
) = 1

n(naU − Ka2/2)
, (28)

where we have used the long-wavelength limit of (14).
For the long-range Coulomb gas the compressibility is

defined as the response to the screened field (E instead
of D),

κ = − 1

n2
lim
q→0

χ (q,0)

1 + Vqχ (q,0)
= lim

q→0

ω2
p

n2Vq(s2q2 + k)
, (29)

where one needs to expand one step further in powers of q

in the polarization function to get the sound velocity s. The
compressibility vanishes if we have a trap k 
= 0. Without a
trap we have κ = 1/nms2 for the gas.
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FIG. 5. The time evolution of the inverse dielectric function in
GaAs. The labels from top to bottom denote the time t . The pump
pulse was at t0 = −40 fs, and the probe pulse has a FWHM of
27 fs. Circles are data from Refs. [1,4], and solid lines show the
electronic part (22) published in [20]. The plasma frequency is given
by ωp =14.4 THz, and the relaxation time is τ = 85 fs.

In spite of the numerous approximations, Eq. (23) with (22)
fits well the experimental data, as shown in Fig. 5 for the polar
semiconductor GaAs. Formula (22) results in a slightly too
fast buildup of the collective mode at time t = 25 fs. This
is, however, just the time duration of the experimental pulse
and, consequently, the time of populating the conduction band
which we have approximated by an instant jump [20].

For the atoms on a lattice we obtain the time evolution of
the dielectric function as plotted by snapshots in Fig. 6. We
see that the influence of finite-trap correction diminishes the
frequency of the collective mode, as we had already seen with
the sudden quench. Further the damping is lowered, which is
visible by a sharpening of the mode. Note the instability around
times of 1h/4J at frequencies of 4J/h where Imε becomes
negative.

C. Local-field correction

For strong interactions like the cold atoms feel in the
lattice one might expect that the mean-field response is not
sufficient. Although it works well at short times since the
interactions need time to form, for larger times we expect to
see the influence of the so-called local-field corrections. They
describe the interaction cloud around the atom which changes
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FIG. 6. (Color online) The time evolution of the dielectric func-
tion for the atomic lattice for U/J = 9.91 of Fig. 3 with (red) and
without (green) trap correction according to (14) (see the movie in
the Supplemental Material [23]).

the potential locally. We will derive it here for the lattice atoms
in the sense of Singwi and Sjølander [30]. For this purpose we
calculate the second time derivative of the reduced density
matrix since this describes the dynamics. With the help of
iρ̇k = [ρk,H ] the Hamiltonian (1) leads to

ρ̈k = −
∑
k1

(
εk1+k − εk1

)2
a+

k1
ak1+k

− 1

2

∑
k1q

Vq

(
εk1+k − εk1 − εk1+k−q + εk1−q

)
× (

ρqa
+
k1

ak1+k−q + a+
k1

ak1+k−qρq

)
. (30)

The trick now is to write the mean-field term k = q in the
second sum in front of the sum. For lattice atoms with the
dispersion εp = 2J (1 − cos pa) one obtains

ρ̈k = −4b2
∑
k1

(
sin k1a

2

sin ka
2

)2

cos2 k1a

2
fk1,k

− nbVk

∑
k1

cos (k1a)(ρkfk1,0 + fk1,0ρq)

×
⎡
⎣1+

∑
q

Vq sin qa

2

Vk sin ka
2

∑
k1

cos (k1a)(ρqfk1,k−q+fk1,k−qρq)∑
k1

cos (k1a)(ρkfk1,0 + fk1,0ρk)

⎤
⎦,

(31)

and one sees that the effect of correlations beyond the mean
field can be recast into a local field Vk → Vk[1 + Gk(t)]. In-
troducing the cosine-weighted density ρc

q = ∑
k cos (ka)fk,q ,

this local field is read off (31),

Gk =
∑

q

Vq sin qa

2

Vk sin ka
2

ρqρ
c
k−q + ρc

k−qρq

ρkρ
c
0 + ρc

0ρk

. (32)

We now linearize the Wigner function fp,q = a+
p− q

2
ap+ q

2
=

n
2 δp + δfp,q according to the special equilibrium distribution
(6) and the density operator as an integral over p, where
ρq = ρ0 + δρq . Then ρ0 = ρc

0 = n/2, and we assume δρq =
δρ−q to arrive for Hubbard models Vk = Ua at a wave-vector-
independent local field,

δG(t) =
∑

q

cos

(
qa

2

)
δρc

q(t)

ρc
0

. (33)

This local-field correction means that we have to replace
the term Vqδn → Vqδn + nVqδG in the kinetic equation (4).
It is not hard to see from the solution (5) that δnc = δn cos qa

2
holds. We obtain for the Laplace transform of the response (15)
and (16), which was χs(k) = −nb(k)/[s2 + s

τ
+ nb(k)Vk +

b(k)2], the modification

δns(k) = χs(k)

[
V ext

s (k) + aU
∑

q

cos2 qa

2
δns(q)

]

= χs(k)

1 − V δḠs

V ext
s (k) = χ eff

s (k)V ext
s (k), (34)

where b(q) = 4J sin2 (qa/2). To solve (34) we integrate the
first line with cos2, leading to

δḠs = −
∑

q

nb(q) cos2
(

qa

2

)
s2 + s

τ
+ nb(q)V + b(q)2

= − 1

πV

∫ 1

0
dy

√
y − y2

z − y + 4J
nV

y(y − 2)
, (35)

where z = [(s + 1
2τ

)2 + γ 2]/4nV J and γ is from (22).Since
the response function without local-field correction is just χ =
−nb/z, it is advantageous to expand with respect to 1/z to
obtain

V χ eff
s = − sin2 qa

2

(
1

z
− 1

8z2
− 3 + 22J

nV

64z3
+ o(z−4)

)
. (36)

This is easily back transformed into time,

V χ eff
t = −ω2

pe− t
2τ

[
1 + ω2

p

16γ

∂

∂γ

(
1 − 3 + 22J

nV

256γ
ω2

p

∂

∂γ

)]

× sin γ t

γ
, (37)

and the correction is discussed in Fig. 7. We see that the
local-field correction shifts the collective mode towards higher
energies and sharpens the mode. Further it leads to more
structure at smaller frequencies which heal out at larger times.
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FIG. 7. (Color online) The time evolution of the dielectric func-
tion for the atomic lattice of Fig. 6 with U/J = 9.91 with (red) and
without (green) local-field correction of (37) (see the movie in the
Supplemental Material [23]).

V. SUMMARY

The aim of the present paper was to separate the gross
features of the formation of collective modes at transient
times which are due to mean-field fluctuations. Assuming
higher-order correlations described by conserving relaxation-
time approximations, this has resulted in an analytic formula
for the time dependence of the dielectric function and for
sudden quench dynamics. Subtracting this gross feature from
the data allows one to extract the effects which are from
higher-order correlations and which have to be simulated by

quantum kinetic theory [7–10] and response functions with
approximations beyond the mean field [24]. These treatments
are numerically demanding such that analytic expressions for
the time dependence of some variables [31] are useful for
controlling the numerics.

We have also discussed here the Singwi-Sjølander local-
field corrections in order to estimate the influence of higher-
order correlations [32] on short-time behavior. We find the
same time scale for the formation of correlation as for the
mean-field response but with more details in the response
function due to the local-field corrections. This deviation
between the two levels of approximations is considered an
estimate of the validity of the simple mean-field formula.

The final answer, however, regarding to what time the
presented short-time expansion works can only be given
by solving the time evolution of the complete correlation
functions [15]. Here a selective comparison with experiments
and RG simulations in the strong-coupling regime has been
chosen as a first test. Further comparisons are needed and
encouraged.

As a further result of this paper we derive the influence of
a finite trapping potential on the kinetic equation and the time
evolution of the population. We find that the main effect of
correlations consists of lowering the collective frequency and
a damping.

To conclude, we have derived an analytic formula for the
formation of correlations after a sudden quench and for the
density response to an external perturbing field. By considering
two distinct physical systems, the pump and probe dynamics in
semiconductors and the dynamics of atoms in an optical lattice,
we find the same short-time feature of the formation of quasi-
particles, which we suggest is universal. The simplicity of the
presented result is extremely practical and offers a wide range
of applications. It could spare a lot of computational power
to simulate ultrashort-time behavior of new nanodevices, and
it could help us understand and describe the formation of
collective modes during processes which are not experimen-
tally accessible in the early phase of reactions like in nuclear
collisions.

Note added in proof. There is a remarkable activity to
investigate the time which correlations need to spread known
as effective light cone [33] based on the Lieb-Robinson bound
[34] which supports the here used conjecture that higher-order
correlations need more time to develop than lower ones.
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[7] L. Bányai, Q. T. Vu, B. Mieck, and H. Haug, Phys. Rev. Lett.

81, 882 (1998).
[8] P. Gartner, L. Banyai, and H. Haug, Phys. Phys. B 60, 14234

(1999).
[9] Q. T. Vu and H. Haug, Phys. Phys. B 62, 7179 (2000).

[10] M. Kira and S. W. Koch, Phys. Rev. Lett. 93, 076402 (2004).
[11] S. Genway, A. F. Ho, and D. K. K. Lee, Phys. Rev. A 86, 023609

(2012).
[12] S. Sotiriadis, P. Calabrese, and J. Cardy, Europhys. Lett. 87,

20002 (2001).
[13] S. R. Manmana, S. Wessel, R. M. Noack, and A. Muramatsu,

Phys. Rev. B 79, 155104 (2009).
[14] M. Fagotti and F. H. L. Essler, Phys. Rev. B 87, 245107

(2013).
[15] M. Puig von Friesen, C. Verdozzi, and C.-O. Almbladh, Phys.

Rev. Lett. 103, 176404 (2009).
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