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Nonlinear Zeeman splitting of magnetoexcitons in c-plane wurtzite GaN-based quantum wells
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We present a theoretical description of excitonic spectra in GaN-based quantum wells in a wide range of
magnetic fields taking into account built-in strain and electric fields, and valence band mixing due to the quantum
well confinement. Our calculations performed for the GaN/AlGaN quantum wells reveal a nonlinear behavior
of the excitonic Zeeman splitting on magnetic field. We have determined that the low magnetic field g-factor
dependence on the quantum well width shows a steplike variation due to the reordering of the light- and heavy-hole
valence subbands. Sharp change of the g factor is also predicted for InGaN/GaN quantum wells grown on a
virtual metamorphic InGaN substrate.
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I. INTRODUCTION

Optical experiments in strong magnetic field provide
valuable information concerning electronic properties of semi-
conductor structures. One of the most important parameters
determining the shape of the optical spectra in the magnetic
field is the effective g factor, which is responsible for the
Zeeman splitting of spectral lines. Measuring this splitting
leads to better understanding of the symmetry of the electronic
states participating in the optical transitions. In the simplest
approximation the excitonic g factor is equal to the difference
of the g factors of electrons in the conductance and valence
bands. However, this point of view turned out to be oversimpli-
fied, especially in the case of semiconductor heterostructures
characterized by strong confinement of electrons such as
widely studied GaAs/AlGaAs quantum wells (QWs). Using
different experimental techniques it was observed that the
Zeeman splitting of so-called heavy-hole excitons departs
from linearity and even changes sign when the QW becomes
wide enough [1–5]. This phenomenon is attributed to the
mixing between light- and heavy-hole states in the valence
subbands [2]. Two basic mechanisms were identified, which
could contribute to the subband mixing in excitons, namely
the k · p perturbation and the electron-hole Coulomb coupling.
Nonlinear splitting of excitons in the magnetic field was also
found in InGaAs/GaAs QWs [3].

Properties of magnetoexcitons are much less studied in the
case of group III-nitride semiconductors. So far, there are only
few reports on this subject. It has been observed that in the
case of bulk GaN, the Zeeman splitting of the optically active
A exciton in the magnetic field parallel to the crystalline c

axis is approximately equal to zero [6]. This information was
subsequently used to estimate the so-called Luttinger valence
band parameter κ for both excitonic [6,7] and bare, one-particle
valence band states [8]. The striking difference in obtained
values of κ in both cases was attributed to strong mixing
of the various valence band sublevels due to the k · p and
Coulomb interaction [8]. Subband mixing can become even
more pronounced in GaN-based QWs due to built-in strain
arising from the lattice mismatch between barriers and QWs,

and strong built-in electric field caused by the spontaneous and
piezoelectric polarizations, which influences the subbands due
to the quantum-confinement Stark effect.

Consequently, the behavior of such structures in the mag-
netic field may depart significantly from the bulk materials.
In particular, as it was established experimentally [9], the
excitonic g factor in narrow GaN/AlGaN QWs may take values
as high as 3.5. It was also demonstrated that increasing the
QW width reduces its value to about 2. This phenomenon
was interpreted as being caused by the reordering of the
valence subbands with different symmetries. It has been further
proposed that the higher value of the g factor corresponds to
the configuration in which the topmost valence band is of
�7 symmetry [termed as light-hole (LH) like] and that the
reduction of the g factor occurs when the topmost valence
subband is of �9 symmetry [heavy-hole (HH) like]. The proper
description of this effect requires inclusion both k · p mixing
of subbands and Coulomb interaction between the electron
and the hole, i.e., excitonic effects.

The well established model of magnetoexcitons in
QWs made of zinc-blend structure semiconductors such as
GaAs/AlGaAs was proposed in the 1980s [10]. Magnetoexci-
tons in bulk wurtzite GaN in the limit of weak magnetic field
were theoretically discussed in Ref. [7] and subsequently, for
the case of arbitrary strong field in Ref. [8]. In this work
we present a theoretical description of excitonic spectra in
GaN-based QWs in a wide range of magnetic fields taking
into account mixing between the valence subbands. We show
that our model is well suited for interpretation of the optical
g-factor measurements in c-plane GaN/AlGaN QW structures
in the magnetic field parallel to the QW growth axis. This
model also predicts unusual dependence of the g factor in
InGaN/GaN QWs with tensile strained barriers.

II. THEORETICAL MODEL

In order to describe the excitonic optical spectra of QW
systems within the framework of the Kubo linear response the-
ory, we consider the retarded momentum-momentum Green’s
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function:

�(t) = −i�(t) < [P̂ε (t),P̂ †
ε (0)]− >= −i

∑
1,2

P ε
2,1�1,2(t),

(1)
where we have introduced the time-dependent exciton wave
function: �1,2 = �(t) < [a†

2(t)a1(t),P̂ †
ε (0)]− >. The angular

and square brackets represent ensemble averaging and commu-
tator, respectively. Here â

†
1 and â2 are creation and annihilation

operators for electron band states 1 and 2, respectively. In our
convention the indices 1 denote single electron conduction
bands states and the indices 2 denote the states in the
valence bands. The interband part of the momentum operator
responsible for promoting electrons from the valence band to
the conduction band is defined by P̂ †

ε (t) = ∑
1,2 P ε

1,2a
†
1(t)a2(t),

where P ε
1,2 = 〈1|�ε · �̂p|2〉 is equal to the interband momentum

matrix element for the polarization vector of light �ε.
The time evolution of the exciton wave function is governed

by the Bethe-Salpeter equation:

i�
∂

∂t
�1,2(t) =

∑
1̄,2̄

[
HC

11̄δ22̄ − H̄V
22̄δ11̄

]
�1̄,2̄(t)

−
∑
2̄,1̄

V1,2̄,2,1̄�1̄,2̄(t) + i�δ(t)P ε
1,2

≡
∑
1̄,2̄

HX
12,1̄2̄�1̄,2̄(t) + i�δ(t)P ε

1,2. (2)

Here single-particle Hamiltonian matrices for the conduc-
tion and valence band states are denoted by HC

11̄ and HV
22̄,

respectively, and the V1,2̄,2,1̄ matrix elements describe both
direct and exchange electron-hole Coulomb interaction. Note
that the valence band part of the exciton Hamiltonian, H̄V

22̄
matrix, is equal to the complex conjugate of the valence
band Hamiltonian HV

22̄. This expression has the form of the
Schrödinger equation with the effective exciton Hamiltonian

HX
12,1̄2̄ and with the initial condition �1̄,2̄(0) = P ε

1,2. Its

solution can be expanded in terms of the eigenstates of HX
12,1̄2̄

as:

�1,2(t) =
∑

λ

e− i
�

EX
λ t 〈�λ|P ε〉�λ, (3)

where the eigenstates �λ and the eigenenergies EX
λ are

obtained from the eigenequation [11,12]:

HX�λ = EX
λ �λ. (4)

The absorption coefficient is proportional to the imaginary
part of the Fourier transform of �(t) [Eq. (1)] and it can be
expressed in terms of the exciton eigenstates, Eq. (4), as:

α(ω) = 4πe2

cnrm
2
0�ωLWA

∑
λ

|〈P ε|�λ〉|2δ(ω − EX
λ

/
�
)
, (5)

where LW and A are the QW width and area, respectively;
nr , the refractive index; m0, the electron mass; e > 0, the
elementary charge. The transition energies are therefore equal
to the excitonic eigenenergies EX

λ , while the line intensities
are proportional to |〈P ε|�λ〉|2, squared overlaps of the exciton
eigenfunctions with the initial state |P ε〉.

Considering the structure of the valence and conduction
bands in wurtzite nitrides we take into account the spin-
degenerate s-type conduction band of �7 symmetry and three
p-type double degenerate valence bands, which are split by
the spin orbit and crystal field interactions. By assumption,
the magnetic field �B is directed along the z axis, parallel
to the crystalline c axis and perpendicular to the QW plane.
The kinetic momenta of the electron and hole are given by
�p1 = −i� �∇1 + e

c
�A(�r1) and �p2 = i� �∇2 + e

c
�A(�r2), respectively

with the vector potential assumed in the symmetric gauge
�A(�r) = 1

2 �r × �B. According to our notation �r1 and �r2 denote
positions of the electron and of the hole, respectively. The
effective exciton Hamiltonian constructed within the effective
mass approximation, using the same basis set as in Ref. [13]
has the form:

HX( �p1, �p2) =
(

p2
1z

2mz

+ p2
1⊥

2m⊥
+ g0μBBzσc + Eg + Uc − Uv − e2

ε|�r1 − �r2|

)
Î6×6 − �2σ̂z ⊗ Ĵz −

√
2�3(σ̂− ⊗ Ĵ+ + σ̂+ ⊗ Ĵ−)

− σ̂0 ⊗ (
�1Ĵ

2
z + (

A1Î3×3 + A3Ĵ
2
z

)
p2

2 z + (
A2Î3×3 + A4Ĵ

2
z

)(
p2

2 x + p2
2 y

) − A5
(
Ĵ 2

+p2
2 − + Ĵ 2

−p2
2 +

)
− 2A6p2 z([Ĵz,Ĵ+]+p2 − + [Ĵz,Ĵ−]+p2 +) − μB(3κ + 1)BzĴz

) − 1

2
g0μBBzσ̂z ⊗ Î3×3 + Hstrain, (6)

where

Hstrain = −σ̂0 ⊗ {[
D1Î3×3+D3Ĵ

2
z

]
εzz(z2)+(

D2Î3×3 + D4Ĵ
2
z

)
[εxx(z2) + εyy(z2)]

}
+ Î6×6{aczεzz(z1) + ac⊥[εxx(z1) + εyy(z1)]}.

This form of the strain Hamiltonian is appropriate for
the biaxial stress in the plane perpendicular to the c-axis.
The strain tensor values in the given layer of a multi-QW
structure are equal to εxx,layer = εyy,layer = asubstrate

alayer
− 1 and

εzz,layer = − 2C13
C33

εxx,layer, where C13 and C33 denote the elastic
constants in the layer.

In the following, we label the valence band states by
quantum numbers, such as spin σv or angular momentum Jz,
pertinent to electrons (electron representation). The exchange
interaction, which is rather small in nitrides, is treated as a
perturbation, so in the first-order approximation, the projection
of the conduction electron on the z axis denoted as σc is a
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good quantum number for the excitonic eigenstates [13]. The
3 × 3 matrices Ĵx,y,z represent the components of the angular
momentum operator with J = 1. Furthermore, Ĵ± = 1√

2
(Ĵx ±

iĴy), p2 ± = p2 x ± ip2 y and σ̂± = 1
2 (σ̂x ± iσ̂y), where σ̂x,y,z

are standard Pauli matrices referring in our representation
to the spin of valence band electrons. The square brackets
denote the symmetrized product [Ĵz,Ĵ±]+ = 1

2 (ĴzĴ± + Ĵ±Ĵz).
The basis set for the electron states in the conduction and
valence bands and the matrices Ĵx,y,z in this representation are
taken from Ref. [14]. The terms proportional to the Bzσ̂z and
BzĴz describe the coupling of the valence electron spin and
angular momentum with the magnetic field. The Hamiltonian
is parametrized with valence band parameters A1,...,6, �1,2,3,
the conduction band effective masses, mz,m⊥ and the energy
gap, Eg . The Luttinger coupling constant of the valence band
electrons to the magnetic field is denoted by κ and the effective
g factors for electrons in the valence and conduction bands are
assumed to be equal to g0 = 2. The electron-hole interaction
is described by the Coulomb potential screened with the
isotropic dielectric constant ε. The strain-dependent part of the
Hamiltonian is parametrized with valence band deformation
potentials D1,...,4 and conduction band deformation potentials
acz and ac⊥. The potential profiles of the conduction and the
valence bands, in the QW structure are defined as:

Uc(z) = U0c + eEzz Uv(z) = U0v + eEzz, (7)

where the U0c and U0v denote the energy of the band edges
in unstrained material in the conduction and the valence band,
respectively. The built-in electric field Ez is different in the
QW and barrier region and is obtained from:

EW = LB(Ptot,B − Ptot,W )

LWλB + LBλW

, EB = −LW

LB

EW, (8)

where LW and LB denote the widths of the QW and the
barriers, and λ is the electric permittivity of the corresponding
material [15]. The total electric polarization including the first
and the second-order piezoelectric effects and the spontaneous
polarization is given by:

Ptot,W = Psp,W + 2e31,W εxx,W + e33,W εzz,W + e311,W ε2
xx,W

+ e333,W ε2
zz,W + e133,W εxx,W εzz,W , (9)

where the values of the spontaneous polarization Psp and
the piezoelectric coefficients eij and eijk are determined in
Ref. [16].

In order to diagonalize the excitonic Hamiltonian in the
QW in the magnetic field, it is convenient to separate the
motion in the z direction (perpendicular to the QW plane)
and the relative motion of the electron and hole in the QW
plane. The motion in the z direction is described using the
envelope functions FC

m,M and FV
n,N , which are obtained by

diagonalizing the conduction and valence band Hamiltonians
at the two-dimensional Brillouin zone center. The motion of
the electron and hole in the QW plane is described using
the set of center-of-mass �R⊥ = (�r1⊥ + �r2⊥)/2 and relative
coordinates �r⊥ = �r1⊥ − �r2⊥ = xî + yĵ , and corresponding
momenta �P⊥ = �p1⊥ + �p2⊥ and �p⊥ = ( �p1⊥ − �p2⊥)/2. By
applying the Lamb gauge transformation [17] and restricting
only to the states with zero center-of-mass momentum �P⊥ = �0,

this transformation amounts to substitution: �p1⊥ → �πa and
�p2⊥ → �πb in the Hamiltonian Eq. (6), where �πa = −i� �∇r⊥ +
e
c

�A(�r⊥) and �πb = −i� �∇r⊥ − e
c

�A(�r⊥) refer only to the relative
position �r⊥.

Due to the axial symmetry of the exciton Hamiltonian, the
total angular momentum in the z direction, Lz is conserved.
The value of Lz is determined by the polarization of incident
light and may take values Lz = ±1 for circular polarizations
of light σ±, and Lz = 0 for the linear polarization σz along
the z axis. In order to diagonalize the exciton Hamiltonian
(6) we introduce the symmetrized basis set to describe the
electron-hole pair states with fixed values of Lz and σc:

�
Lz

sMNσc
(�r⊥,z1,z2) =

∞∑
n=0

∑
Jz,σv

ϕns(�r⊥)FC
σc,M

(z1)F̄ V
Jzσv,N

(z2)

× |C,σc〉K̂|V,Jzσv〉δLz,n−s+σc−Jz−σv
.

(10)

Here FC
σc,M

(z1) and FV
Jzσv,N

(z2) denote the conduction and
valence band envelope functions obtained for p⊥ = 0 and
B = 0. They are labeled by M and N , respectively. The bulk
zone-center states |C,σ 〉 and |V,Jz,σv〉 are defined in Ref. [13]
and the time reversal operator K̂ reflects the symmetry of hole
states with respect to electron states. The relative motion of
the electron and hole in the QW plane is expressed using the
Landau orbitals ϕns(�r⊥).

According to the definition of the Landau orbitals:

ϕns(�r⊥) = (â†
0)n(b̂†0)s

l0
√

2πn!s!
exp

(
− r2

⊥
4l20

)
, (11)

their spatial extension is determined by the magnetic length
l0 = √

�/eB0 associated with the fictitious magnetic field �B0.
The magnitude of �B0 is adjusted in order to optimize the results
of calculations of the exciton ground state. We have checked
that the best results are obtained when l0 is comparable with
the exciton radius, which in the case of GaN-based QWs
corresponds to B0 = 15T.

Landau orbitals are generated using the ladder operators â
†
0

and b̂
†
0:

â
†
0 = 1√

2

[
−l0

(
∂

∂x
+ i

∂

∂y

)
+ 1

2l0
(x + iy)

]
,

(12)

b̂
†
0 = 1√

2

[
−l0

(
∂

∂x
− i

∂

∂y

)
+ 1

2l0
(x − iy)

]
.

Each ϕns(�r⊥) has a well-defined z component of the angular
momentum equal to �(n − s). Due to the Kronecker δ function
δLz,n−s+σc−Jz−σv

the sum in Eq. (10) is restricted to terms
with fixed total angular momentum in the z direction equal
to Lz.

Operators of relative electron-hole momentum in the QW
plane are expressed in terms of the ladder operators in the
following way:

πa+ = πax+iπay = i�√
2l

[(
l0
l
+ l

l0

)
â
†
0+

(
l0
l

− l

l0

)
b̂0

]

πb+ = πbx + iπby = − i�√
2l

[(
l0
l
+ l

l0

)
b̂0+

(
l0
l

− l

l0

)
â
†
0

]
,

(13)
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where l is equal to the magnetic length corresponding to the
actual magnetic field value B.

The excitonic eigenstates are obtained as the linear combi-
nations of the basis functions:

�λ(�r⊥,z1,z2) =
∑

sMNσc

ψλ
sMNσc

�
Lz

sMNσc
(�r⊥,z1,z2). (14)

The coefficients ψλ
sMNσc

and the exciton eigenenergies EX
λ are

determined by diagonalizing the Hamiltonian (6) using the
Lanczos reduction method with |P ε〉 as an initial vector. The
exciton Hamiltonian has axial symmetry and for the circular
polarization of light in the xy plane, the vector |P ε〉 has a
definite z component of angular momentum. Thus the Lanczos
procedure generates only states with prescribed symmetry with
nonvanishing scalar product 〈P ε|�λ〉. Consequently, we have
found that quite accurate description of the exciton spectra
could be obtained using the Lanczos basis set not exceeding
300 vectors, given the original dimension of the problem equal
to a few thousands.

The overlaps of the exciton eigenfunctions with the initial-
state vector determining the intensity of the excitonic lines in
Eq. (5) are given by

〈P ε|�λ〉 =
∑

sMNσc

P̄ ε
MNσc

ψλ
sMNσc

(15)

with

P ε
MNσc

= ∓1√
2π l0

PCV

∫
dz FC

σc,M
(z)F̄ V

−Lzσc,N
(z), (16)

where PCV = 〈iS|�

i
∂
∂x

|X〉 = m0
�

P2 denotes the bulk interband
momentum matrix element, which is related to the Kane’s
parameter P2 [14]. The upper sign corresponds to Lz = 1 for
circular light polarization σ+, while the lower sign corresponds
to Lz = −1 for circular polarization σ−, respectively.

III. RESULTS AND DISCUSSION

Our model is now applied to study the excitonic g factor
in c plane GaN/AlxGa1−xN QWs grown on GaN substrate
and InxGa1−xN/GaN QWs grown on InyGa1−yN buffer layer
with y < x. In both cases tensile strain is present in the
barriers, so that the highest valence level has light-hole
symmetry in narrow QWs. We focus on GaN/AlGaN QWs
for which experimental data were obtained for the wide range
of magnetic fields up 55 T [9]. As suggested in the previous
section, the calculations are preformed in two steps. First, we
obtain the envelope functions for electron and hole states in
the QW structures in the center of the Brillouin zone at zero
magnetic field. In the next step, the excitonic Hamiltonian
for the given magnetic field is diagonalized using the basis
set constructed from those envelope functions according to
Eq. (10). The calculations are performed for σ+ and σ−
circular polarizations of light with respect to the c axis, in
the range of the magnetic fields between 0 T and 55 T. The
k · p Hamiltonian parameters for the conduction and valence
bands in GaN, AlN and InN are estimated from the recent
quasiparticle self-consistent GW band structure calculations
in Ref. [18], while the elastic constants for those materials
are taken from Ref. [15]. The parameters for AlxGa1−xN and
InxGa1−xN alloys are obtained using the linear interpolation

FIG. 1. (Color online) Excitonic transition energies and intensi-
ties as functions of the magnetic field in two GaN/Al0.1Ga0.9N QW
structures with LW equal to 1.5 nm (a) and 4 nm (b) and LB = 150
nm for two circular polarizations of light. The relative intensities of
absorption lines are represented by the size of corresponding symbols.

between binaries except for the energy gap, the spontaneous
polarization, and the piezoelectric constants for which the
bowing is taken into account as in Refs. [15] and [16].

In Fig. 1, we present the influence of the magnetic field
on the excitonic transition energies and intensities in two
GaN/Al0.1Ga0.9N QW structures with LW equal to 1.5 nm
and 4 nm and LB = 150 nm, which were obtained for
two different circular polarizations of light. The relative
intensities of absorption transitions are represented by the
size of corresponding symbols. The spectrum for the narrow
QW in Fig. 1(a) shows that the lowest-energy transition line
corresponds to the light-hole or B exciton. It is split with
the magnetic field in such a way that the transition with σ−
polarization occurs at lower energy than the transition with σ+
polarization of light. The next transition line corresponding
to the heavy-hole or A exciton is split in the opposite sense,
i.e., the transition with σ+ polarization has lower energy than
the σ− transition. For wider QW with LW = 4 nm the relative
positions of A and B excitonic transitions are interchanged
as illustrated in Fig. 1(b), and the intensity of the transition
line with lower energy is larger than the intensity of the
higher-energy line. In both cases the intensity of A-exciton
lines is about 10 times larger than the intensity of the B-exciton
lines at zero magnetic field. With increasing magnetic field the
transition strength is increasing for both heavy- and light-hole
excitons. The fastest growth of transition intensity is observed
in the case of the B exciton in the σ+ polarization.

Since we are interested in the excitonic g factor obtained
from the analysis of the photoluminescence spectra, we focus
on the lowest-energy transition lines as functions of the
magnetic field. In Fig. 2(a), the energy splitting between the
transitions with polarizations σ+ and σ− for two QW widths
LW = 1.5 nm and LW = 4 nm are presented. In the first
case the lowest-energy transition corresponds to the light-hole
exciton and the energy splitting is positive, while in the other
case the lowest-energy transition is attributed to the heavy-hole
exciton and the energy splitting has the opposite sign. It is
interesting to note that the splitting is not linear as a function
of the magnetic field. The deviation from linearity is more
apparent in the case of the wider QW. The effective g factors
derived from the Zeeman splittings shown in Fig. 2(a) are
plotted in Fig. 2(b). For both heavy- and light-hole excitons
a significant reduction of the magnitude of the g factor with
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FIG. 2. (Color online) Magnetic field dependence of the energy
splitting between the lowest-energy transitions with polarizations σ+
and σ− (a) and the corresponding effective g factors (b) in two
GaN/Al0.1Ga0.9N QWs with QW widths LW = 1.5 nm (solid line)
and LW = 4 nm (dashed line).

the magnetic field is observed. Nevertheless, we may define
the low magnetic field g factor as half of the slope of curves
in Fig. 2(a) at B = 0T. In order to make connection to the
experimental results presented in Ref. [9], we have evaluated
the g factor for several GaN/AlxGa1−xN QW structures grown
on GaN substrates.

In Fig. 3 we present the dependence of the absolute value
of the low magnetic field g factor on the QW width, LW ,
in GaN/AlxGa1−xN QWs with three barrier thicknesses, LB ,
and Al content x = 0.1 [Fig. 3(a)] and x = 0.15 [Fig. 3(b)].
In agreement with the experimental observations in Ref. [9],
the absolute value of the g factor decreases with the QW
width from about |g| = 3.5 for LW = 1 nm wide QW to
about |g| = 2 for wider QWs. The transition from the high
to low value of the g factor as a function of QW width has
almost a steplike character and depends on the barrier thickness
LB . The sharp drop of the g factor is associated with the
reordering of the excitonic transitions A and B as illustrated
in Fig. 4 for the specific case of the QW barrier LB = 100 nm
and the Al composition in the barrier x = 0.1. Note that
the excitonic transition energy crossing (E�9 − E�7 = 0) in
this case corresponds exactly to the QW width at which the
absolute value of the g factor drops from the value 3.5 to
about 2 [Fig. 3(a)]. At the same time it is interesting to note
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FIG. 3. (Color online) The dependence of the absolute value of
the low magnetic field g factor on the QW width LW for three barrier
thicknesses LB in GaN/AlxGa1−xN QWs with Al content x = 0.1 (a)
and Al content x = 0.15 (b). The experimental points (open symbols)
from Ref. [9] for QWs with x = 0.08 and x = 0.13 are inserted in
figures (a) and (b), respectively.

FIG. 4. (Color online) Valence band single-particle (SP) energy
difference E�9 − E�7 (solid line) and difference in excitonic transition
energies (X) from the �7 and �9 valence band states to the conduction
band in GaN/Al0.1Ga0.9N QW with barrier LB = 100 nm as functions
of QW width.

that the single-particle transition energy crossing, i.e., when
the excitonic effect are neglected, occurs at significantly wider
QWs.

The energy crossing of the HH and LH levels in the valence
band is accompanied with the dramatic change of the shape
of the topmost level envelope function as illustrated in Fig. 5.
In the case of narrow GaN/Al0.1Ga0.9N QW with Lw = 1 nm
the topmost valence level is of �7 symmetry (LH) and the
corresponding envelope function penetrates into the barrier
more deeply than in the case of wider, Lw = 4 nm QW with
�9 (HH) level at the top of the valence band. The overlap
between the conduction and valence band envelope functions
is therefore much smaller in the former case, which leads to
the reduction of the optical transition intensity for B excitons
compared to the A excitons as shown in Fig. 1.

Steplike variation of the g factor with the QW width can be
also observed in InxGa1−xN/GaN QWs with tensile strained
barriers grown on InyGa1−yN metamorphic layer as a virtual
substrate [19,20]. Figure 6(a) shows the QW width dependence
of the absolute value of the low magnetic field g factor in
such structures for the barrier thickness LB = 20 nm and In
content in the QW and substrate equal to x = 0.15 and y = 0.1,
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FIG. 5. (Color online) (a) The square root of the electron prob-
ability density in the lowest conduction and the topmost valence
subbands in GaN/Al0.1Ga0.9N QWs structures with Lw = 1 nm
(a)–(b) and Lw = 4 nm (c)–(d), respectively for the barrier width
LB = 100 nm.
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FIG. 6. (Color online) (a) Dependence of the absolute value of
the low magnetic field g factor in In0.15Ga0.85N/GaN QWs with
barriers of thickness LB = 20 nm grown on In0.1Ga0.9N metamorphic
layer. (b) Valence band single-particle (SP) energy difference E�9 −
E�7 (solid line) and difference in excitonic transition energies from
the �7 and �9 valence band states to the conduction band for the same
structures as in (a).

respectively. The sharp change of the g factor is again caused
by the reordering of excitonic transitions related to heavy-
and light-hole subbands. In Fig. 6(b), we show the energy
difference for transitions to the conduction band from the
topmost valence band levels of symmetry �9 and �7 without
excitonic effects and including excitonic effect as function
of QW width. Similarly as in GaN/AlGaN QW (Fig. 4), the

crossing of the excitonic transition energies occurs at smaller
QW widths than in the case of single-particle transitions.

IV. CONCLUSIONS

In conclusion we have developed a model of excitonic
transitions in c-plane wurtzite QWs applicable for a wide
range of magnetic fields. By including the built-in strain,
the internal electric field, the valence band mixing due to
the QW confinement and Coulomb interaction, we were able
to describe properly the dependence of the optical transition
energies on the magnetic field. Our calculations performed for
GaN/AlGaN QWs have revealed a nonlinear magnetic field
dependence of the excitonic Zeeman splitting on the magnetic
field, which leads to the significant reduction of the effective
g factor with the magnetic field. We have also shown that
the absolute value of the low field g factor changes in a
steplike fashion as function of QW width in agreement with
the experimental results reported in Ref. [9]. Sharp change of
the g factor is also predicted for InGaN/GaN QWs grown on
a virtual metamorphic InGaN substrate.
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