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Exchange integrals in Mn- and Co-doped II-VI semiconductors
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Exchange integrals between nearest-neighbor (NN) transition metal ions in II-VI diluted magnetic semicon-
ductors (DMSs) are calculated within a local superexchange model, which includes orbital-dependent transfer,
on-site Coulomb repulsion and Hund’s exchange between 3d electrons, and ligand field effects. This extended
model gives a quantitative account for the available experimental data on the NN exchange constants in all
II-VI DMS family (wurtzite and zinc-blende) doped by cobalt or manganese. As expected, all obtained exchange
integrals are antiferromagnetic. Remarkably, the model input parameters are taken directly from the photoemission
spectroscopy. We show that in the case of Co-doped compounds, as compared to Mn-doped ones, the exchange
process has at least two salient features. The first one is that the electron transfer between NN Co2+ 3d orbitals
strongly depends on their symmetry positions in the crystal lattice. The second one is related to a peculiar virtual
process, involving empty and occupied Co2+ 3d orbitals, which leads to an additional ferromagnetic contribution
to the exchange constant. We argue that our systematic study of the superexchange opens a pathway toward an
understanding of other exchange mechanisms occurring in DMSs.
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I. INTRODUCTION

Diluted magnetic semiconductors (DMSs), that is binary
semiconductors in which a fraction x of cations is replaced by
transition metal ions (TMIs), are promising materials for spin
electronics [1,2]. Room-temperature carrier-induced ferro-
magnetism (FM) in these materials remains a great challenge.
While it is clear that long-range magnetic ordering involves
delocalized carriers to couple distant TMIs by a Zener-like
FM exchange process [3,4], several exchange mechanisms can
occur at shorter distances, enhancing or inhibiting this long-
range FM order. Therefore, exchange interactions at a short
distance, and in particular nearest-neighbors (NN) exchange,
deserve to be studied deeply to understand conditions enabling
room-temperature FM in DMS. To this end, the undoped
II-VI DMS are of particular interest because the isovalent
substitution of host cations by TMIs prevents carrier-induced
spin interactions.

Experimentally, many works have been devoted during
the last three decades to measurement and identification of
NN, next nearest-neighbors (NNN), and sometimes more
distant [5], exchange constants in DMSs, principally by
magnetization step (MST) [6] and inelastic neutron scattering
(INS) experiments [5,7]. In all cases, NN and NNN pairs of
TMIs have been found to be antiferromagnetically coupled.

On the theoretical side, recent ab initio calculations,
using the supercell method, have proved that LSDA can
reproduce NN exchange constants (Jdd ) [8–12], provided that
the localized character of the TMI d shell is taken into account
via an adjustable Hubbard parameter U in the so-called
LSDA+U approach. However, these calculations do not say
much about the involved mechanisms, so that quantitative
analytic calculations remain highly desirable.

Since the pioneering work of Spalek et al. [13] and Larson
et al. [14,15], it is commonly admitted that coupling between
NN TMIs in DMS mainly stems from the superexchange [16],
that is, from a high order process of virtual hole hopping from

valence band to open d shell. Therefore, analytical calculations
have been based on a perturbative treatment of p-d transfer
(hybridization) in k space. In this case, the calculation of Jdd

involves a double integration over the Brillouin zone [14,15],
which makes it rather complex and dependent on a lot
of band-structure parameters [17–19]. While thus obtained
exchange constants take into account the contribution of
all ions of the host lattice, the local character of the d-d
interaction is clearly ignored. This seems contrary to the fact
that even in highly covalent tellurides the exchange between
nearest Mn ions involves principally a single intermediate
Te anion [15].

In this work we present the results of analytical calculations
of a NN exchange constant, within a local superexchange
model, for all common II-VI DMSs doped by cobalt and
manganese. This is done by a generalization of a model which
has been successfully applied for Jdd estimation in wurtzite
Mn-doped II-VI DMS [20]. In this model, k-space description
of hybridization is discarded in favor of a purely local transfer
between d and p electrons (flat-band or dispersionless limit).
This simplification, which is a posteriori justified, allows us
to take into account: (1) all details of p-d hybridization, and
in particular its orbital dependence (see below), (2) on-site
Coulomb repulsion and Hund’s exchange between d electrons,
and (3) ligand field terms in the TMI Hamiltonian.

Our approach reveals an important difference between
Mn2+-Mn2+ and Co2+-Co2+ superexchange interactions. In
the high-spin state of the Mn2+ ion (or other TMI with d5

configuration), all d orbitals are singly occupied and the state
has a spherical symmetry. In this case, in the expression for
the superexchange Jdd [Eqs. (9) and (10) of Ref. [20], also
Eq. (2) below], the sum over occupied state runs over all
d orbitals and the orientation of the coordinate system does
not matter. In the Co2+ ion, in tetrahedral coordination, three
holes in the d shell occupy t2 orbitals. The ligand field thus
fixes the orientation of the coordinate system, with respect
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FIG. 1. (Color online) Analogous cluster of (a) zinc-blende and
(b) wurtzite DMS. A, B, and C (red) denote cationic sites possibly
occupied by transition metal ions, and 1, 2, 3,. . . (gray) denote anionic
sites. A-B and A-C pairs are equivalent in the zinc-blende structure
but not in the wurtzite structure: The C surrounding anion tetrahedron
is rotated by 60◦ compared to the A and B ones.

to which the d orbitals are defined. This has an important
consequence for the superexchange between lattice sites which
are not simply related by translation: Local coordinate systems
of different TMIs may be rotated with respect to each
other [see Fig. 1(b)], and we should take this rotation into
account in the Jdd calculation if the d-shell filling differs
from 5.

Another advantage of our approach is that its input
parameters are unequivocally related to the parameters used
in the interpretation of photoemission experiments [21–24].
This connects our consideration of the superexchange with the
ligand field theory, where p-d hybridization appears in second
order virtual hopping [25–27]. Moreover, the quantitative
agreement of our model allows us to use the measurement
of Jdd to determine the p-d hybridization in addition or
replacement of Jsp−d [28].

After having presented the model in Sec. II, we discuss in
some detail the structures and input parameters in Sec. III.
The two following sections focus, respectively, on Mn-doped
and Co-doped compounds. They are followed by a discussion
about general trends in the II-VI series, and about the involved
magnetic mechanisms. Two detailed Appendices supplement
the main part of this work, and are displayed after our
conclusions.

II. MODEL

The local superexchange model between two NN TMIs
(denoted A, B, or C) presented here is an extension to the case
N � 5 (N is the number of d holes in the TMIs ground state)
of a previously described model [20] developed for Mn ions
(N = 5). This model treats p-d transfer between two TMIs
and L ligands as a perturbation to on-site Hamiltonians for
TMIs and surrounding anions. On-site Hamiltonians contain
on-site energy (TMIs and ligands), Coulomb repulsion, and a
ligand field (for TMIs only). For N �= 5, a ligand field cannot
be ignored and an intra-d Coulomb Hamiltonian gives rise to
the FM process.

The first point is accounted for by writing all operators in
a basis which diagonalizes the ligand field. The second one is
a consequence of the off-diagonal part of the intra-d Hund’s
exchange. Following Ref. [20], we use the approximate intra-d
Coulomb operator introduced by Kanamori [29,30]:

W =
(

Ud − 5

2
JH

)
N̂ (N̂ − 1)

2
− JH

(
Ŝ2 − 3

4
N̂

)
+ JH P̂ †P̂ ,

(1)

where Ud is the Hubbard parameter, JH is the Hund exchange
constant, and Ŝ and N̂ are the total spin and the total number
of d holes operators, respectively. P † = ∑

m d
†
m↑d

†
m↓ (d†

mσ

creates a fermion in which quantum numbers are m for the
orbital index, and σ for the spin degree of freedom). P̂ †P̂
couples empty orbitals to doubly occupied ones such that, for
N �= 5, occupied and unoccupied d orbitals of A and B can
be connected via p-d transfer over an intermediate ligand.
Note that the Hamiltonian (1) is strictly equivalent to Eq. (7)
of Ref. [20] when the condition for the spherical symmetry
U ′

d = Ud − 2JH is satisfied (see Appendix A for the proof).
The explicit spherically symmetric form (1) of the interaction
Hamiltonian is close to the form obtained in Ref. [31],
which was used for superexchange calculations in Ref. [19].
In Ref. [31] the so-called double hopping term of Hund’s
exchange [last term in Eq. (A2)] J ′

H

∑
m�=m′ d

†
m,↑dm′,↑d

†
m,↓dm′,↓

was neglected (J ′
H ≈ 0), then the spherical symmetry was

achieved via the relation U ′
d = Ud − JH , and the last term

of Eq.(1) is absent.
Repeating the calculation scheme depicted in Ref. [20],

with the additional difficulty that W is no longer diagonal in
some intermediate states, a general expression for Jdd coupling
between TMIs of the same kind is obtained (see Appendix B
for details):

Jdd = K1

occ.∑
mA,mB

RmAmB
+ K2

occ.∑
mA

unocc.∑
mB

(
RmAmB

+ RmBmA

)
,

(2)

where K1 and K2 are constants defined below and R is the
5 × 5 matrix whose elements are the resulting coupling, to
fourth order, between d orbital mA of A and d orbital mB of
B, mA and mB spanning the basis which diagonalize ligand
fields (not necessarily identical) of A and B. Elements of the
R matrix can be written as the square modulus of a sum on the
L ligands involved in the superexchange process, this ensures
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their positivity:

RmAmB
=

∣∣∣∣∣∣
L∑

β=1

T β
mAmB

∣∣∣∣∣∣
2

, (3)

T β is the 5 × 5 matrix which couples, to second order, A and
B via the β ligand:

T β = T†
βA × TβB, (4)

where TβA (TβB) is the 3 × 5 matrix of the Slater-Koster
coefficients [32] between ligand β and A (B) written in the
suitable basis (see Appendix C), × denotes the matrix product,
and † is the hermitic conjugate. Tβα matrix (α = A,B,C)
depends on relative orientation of α TMI and β ligand, as well
as on two transfer parameters for p-d hopping, Vpdσ (β,α) and
Vpdπ (β,α). We then note η = Vpdσ (β,α)/Vpdπ (β,α) (∀ β, α)
and adopt the value of η = −2.16 from Ref. [33] in order
to keep a connection with the model used in Refs. [21–24],
which provides us input parameters. So far there is still as
many transfer parameters as there is (β,α) couples, so that we
make two common assumptions: (1) Vpdσ (β,α) depends only
on the distance between the β ligand and α TMI, Rβ,α , and
(2) this dependence is given by Harrison formula [33], that is,
Vpdσ (β,α) ∝ R

−7/2
β,α .

As a result, for a given ligand number and positions,
knowing the basis which diagonalize ligand fields of A and
B, the R matrix is unambiguously determined by only one
transfer parameter, namely Vpdσ , which appears to fourth
order. We choose it to be the transfer between a TMI and
its nearest ligand. Sums in Eq. (2) then only depend on the set
of basis orbitals which are holes occupied in A and B ground
states.

Constants K1 and K2 contain energy differences related to
intermediates states of the fourth order processes:

K1 = − 1

2S2�2
eff

(
1

�eff
+ r2

Ueff

)
, (5)

K2 = + r2JH

2S�2
eff(Ud − 3JH )[Ud + (N − 2)JH ]

, (6)

where r is a reduction factor that is caused by dependence
of the transfer integrals on the number of d holes: The
transfer integrals between configurations dN+1 and dNp1 are
smaller by the factor r than the integrals between dN and
dN−1p1, where N is the number of holes on TMI [22,24]. The
effective charge transfer �eff and effective Coulomb repulsion
parameter Ueff are defined as follows (see Sec. III):

�eff ≡ � + 7
9 (N − 1)JH , (7)

Ueff ≡ (Ud + 4JH )[Ud + (N − 2)JH ]/(Ud + 3JH ). (8)

Here we have neglected the tetrahedral ligand field (CF)
splitting 10Dq (∼0.5 eV) compared to �eff (∼5–9 eV) in
the denominators. By doing this, we still take into account
the most important effect of CF, namely, the local symmetry
dependence of p-d transfer.

We see that, due to the positive sign of R matrix elements,
K1 implies an antiferromagnetic (AFM) contribution from the

first term of Eq. (2), while K2 implies an FM one from the
second term. As |K2/K1| ∼ 0.1, the resulting Jdd coupling
remains AFM. It can be checked that for N = 5 we get back
to the results previously obtained for Mn ions: The first term
of Eq. (2) becomes exactly Eq. (9) of Ref. [20]. Also, the cross
terms of Eq. (3), involving different ligands, gives rise to the
ring exchange discussed in Ref. [20].

Equation (3) clearly shows that coupling between occupied
orbitals is AFM (because of the Pauli principle), while
coupling between occupied and unoccupied ones is FM
because of Hund’s exchange. In some special cases, the AFM
contribution is suppressed (e.g., 90◦ bond angle, N = 1) and
the resulting superexchange may be ferromagnetic [34].

III. INPUT PARAMETERS

The model giving Jdd exchange integrals is supplied by
three kinds of parameters: crystallographic data of host semi-
conductors, free TMIs parameters, and energetic couplings
between both.

First, structures of II-VI semiconductors are well known
and, provided that TMI concentrations are not too high, lattice
parameters of the corresponding DMS are assumed to be
globally identical, although slight local deformations around
TMIs certainly take place. We then dispose of all geometrical
data needed, namely, relative orientation and distance of each
ligand-TMI couple. Figure 1 shows the clusters for zinc-blende
(ZB) and wurtzite (W) structures.

In unstressed ZB structure, characterized by one lattice
parameter (a), all distances are equal so that we simplify
notations and write Rβ,α = R1.

On the contrary, W structure is defined by two lattice (a,c)
and one displacement (u) parameters. For u = 3/8 = a2/c2,
the ligands surrounding a TMI form a perfect tetrahedron
(R1 = R2 = 3c/8 on Fig. 1), and the W structure is said to
be ideal. Even in this case, it can be seen that there exists two
kinds of NN pairs (A-B �= A-C), which will be referred to
as in-plane (A-B) and out-of-plane (A-C) pairs [20]. To keep
generality (nonideal W) and simplify notation, W structure
cluster will be characterized by three distances, R1, R2, and
R5 [see Fig. 1(b)]. Note that the A-1-C-5 ring lies in a single
plane.

Second, exact Coulomb interaction of free TMIs is fully
defined by three Racah parameters A, B, and C, which reduce
to two in the approximated form (1): Ud = A + 4B + 3C and
JH = 5B/2 + C. While B and C are relatively well known
from the study of intra-d optical transitions in a single dN

configuration, A (and so Ud ) characterizes transitions between
different configurations and is not so well known. Then, fol-
lowing Bocquet et al. [21], we use U = Ud − 20JH /9 which
is experimentally accessible from the fit of photoemission (PE)
spectroscopy on each DMS. This has been made in Ref. [20].
In the following, JH will be regarded as constant for a given
TMI while U will vary a little from one host to another.

Finally, energetic parameters coupling TMIs and ligands
are logically the most important in the resulting TMI-TMI
interaction. There are two such parameters: �, the energetic
barrier to be overcome by a hole to be transferred from a
TMI d shell to a ligand p shell [see Eq. (6) of Ref. [20]
and Eq. (B10)], and Vpdσ , the corresponding transfer integral.
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� = εp − εd − U (N − 1), where εl (l = p,d) and N refer to
hole energies and number, respectively. In terms of electron
energies (εl,el) and number (Nel), the energetic barrier reads
� = εd,el − εp,el + UNel.

In many cases, � and Vpdσ are available from the fit of
PE experiment, and if not, their values can be reasonably
extrapolated or interpolated from the known ones in a given
series of II-VI DMS. For example, it is clear that the Vpdσ

parameter must decrease as the TMI-ligand distance increases
because of the minor resulting overlapping. Similarly, the �

parameter must decrease, for a given cation of the host (Zn or
Cd), as the ligand goes down in the periodic table (O, S, Se,
. . . ), because of the decreasing electronegativity. Note that the
examination of the density of states from ab initio calculations
fully supports these qualitative trends.

We are now able to apply our model to the reproduction
of experimental NN exchange integrals in all II-VI DMS,
of W and ZB structures, doped by cobalt and manganese
with a minimum number (and sometimes none) of adjustable
parameters.

IV. Mn-DOPED COMPOUNDS

The case of manganese NN pairs in II-VI semiconductors
has been the most studied and is the simplest one. Because
all five d orbitals are singly occupied in the ground state of
the ground configuration (N = 5, S = 5/2, L = 0), any basis
change has no effect so that the tetrahedral ligand field can be
ignored and the sum over unoccupied orbitals, second term of
Eq. (2), disappears. For both W and ZB structures, we have
used a reduction factor r = 0.8, and free ion values of Racah
parameters (B = 0.119 eV, C = 0.412 eV), leading to a Hund
exchange constant JH = 0.710 eV.

In ZB structure, where there is only one type of NN pair
to consider, only one anion (labeled as 1) is involved. Noting
that this pair is equivalent to the in-plane pair of an ideal
W structure, we have Jdd (ZB) ≡ J in

dd (W ). Only J in
dd (W ) and

J out
dd (W ) for the ideal W structure will be given in the following.

By injecting input parameters (Sec. III) into the generalized
superexchange model for L = 1 (Sec. II), we obtain the R
matrix for which we sum all 25 elements. The resulting
superexchange integral is then

J in
dd

V 4
pdσ

= K1

9

(
1 + 16

η2
+ 10

η4

)
. (9)

In this expression we have kept the η dependence (although
it finally results in a numerical value) in order to see the
contribution of V 4

pdσ , V 2
pdσ V 2

pdπ , and V 4
pdπ processes as well

as to facilitate comparison with other past or future works. We
stress that this expression is exact for ZB and ideal W cases,
but that for nonideal W, weights of each process (1, 16, 10) are
slightly modified and odd-power processes (e.g., V 3

pdσ Vpdπ )
appear.

In the same spirit, we give an expression for out-of-plane
pairs of ideal W structure for which two different lengths, R1

and R5, are involved (see Fig. 1). In the ideal W structure, their
ratio is simply ρ = R1/R5 = 3/5. Now that two ligands are
involved in the superexchange process (L = 2), Eq. (3) gives
rise to a FM cross term, that is, the ring-exchange contribution

TABLE I. Calculated Jdd (ZB) and J in
dd , J out

dd (W) (in K) for Mn-
doped II-VI DMS as a function of input parameters Vpdσ , U , � (in
eV). The table also enables comparison with experimental J1 and J2.

Host ZnO ZnS ZnSe ZnTe CdS CdSe CdTe

Struct. W ZB ZB ZB W W ZB
Vpdσ −1.8a −1.34 −1.09 −0.92 −1.22a −0.98a −0.92
� 4.7a 3b 2b 1.5b 3a 2a 2c

U 5d 4b 4b 4b 4c 4c 4c

J in
dd , Jdd −24.1 −16.1 −12.6 −9.1 −11.1 −8.3 −6.4

J out
dd −18.7 −9.4 −7.2

J1 −24.3e −16.1f −12.6g −9.0h −11.0i −8.1j −6.2h

J2 −18.2e −9.6i −7.0j

aReference [20].
bReference [24].
cReference [22].
dReferences [9,24,35].
eReference [36].
fReference [7].
gReference [37].
hReference [38].
iReferences [6,39].
jReferences [38,40,41].

discussed in Ref. [20]:

J out
dd

V 4
pdσ

= K1

9

[(
1 + 16

η2
+ 10

η4

)
(1 + ρ7)

− 2ρ7/2

81

(
9 + 768

η2
+ 130

η4

)]
. (10)

The 7/2 exponent comes from the Harrison bond-length
dependence of Vpdσ transfer discussed in Sec. III. We see that
Eq. (9) is a special case of Eq. (10): it just results from the
strict equivalence of A-5-B and A-1-C superexchange paths.
Other contributions to J out

dd are the A-5-C and A-1-C-5 paths.
We remark that, if Eq. (9) and (10) are only valid for

ideal W structures, J values for nonideal cases can be simply
numerically obtained by changing orientation and bond length
in the appropriate Slater-Koster transfer matrix Tβi (Sec. II).

We now apply this model to the seven II-VI Mn-doped DMS
for which the measurement of the largest exchange integrals
(J1, J2) is available. The three W compounds have already
been treated in a previous work [20] and will not be discussed
here.

Concerning ZB compounds, Refs. [22] and [24] give all
three energetic input parameters, Vpdσ , �, and U . As the Jdd

expression is highly sensitive to Vpdσ , we choose to let it vary a
little within its uncertainty. The uncertainty of Vpdσ resulting
from PE modeling is of the order of a few tenths of an eV
[24], while our adjustment is of the order of a hundredth of
an eV around the same central value. For example, concerning
Mn-doped ZnS, Vpdσ is given to be −1.3 eV [24], leading
to Jdd = −14.2 K. By letting Vpdσ grow up to −1.34 eV, we
reach the experimental value of J1 = −16.1 K. Doing the same
for other ZB compounds, we are able to reproduce with a very
good agreement all experimental J1 values (Table I).

The resulting uncertainty in Jdd value deserves some words.
As Jdd ∝ V 4

pdσ , an uncertainty of about 10% on Vpdσ results
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in a huge uncertainty for Jdd . However, the problem must
not be taken in this way. Indeed, the better experimentally
known value is Jdd , which has an uncertainty of about a few
percent and, moreover, which is almost raw data due to the
simplicity of the fitting model (Heisenberg Hamiltonian). As
a consequence, it is more relevant to consider the very weak
resulting uncertainty for Vpdσ . The conclusion is that only
a very narrow range around the central Vpdσ PE modeling
value is compatible with the experimental Jdd value, and this
very narrow range is entirely contained in the wide one of PE
modeling.

Having only to adjust the Vpdσ parameter to reproduce
NN exchange integrals, we can say that, in this model,
measurement of Jdd is a measure of a p-d transfer integral.

Concerning spatial anisotropy, formulas (9) and (10) show
that ξ = (J in

dd − J out
dd )/J in

dd (defined in Ref. [20]) does not
depend on energetic parameters, but only on η value and
geometrical configuration.

V. Co-DOPED COMPOUNDS

We now consider the case of a Co2+ pair in II-VI DMS.
In tetrahedral coordination, ground state representation of the
ground configuration of each TMI is 4A2, that is, N = 3 holes,
S = 3/2, and L = 0. As for Mn-doped compounds (Sec. IV),
we use free ion values of Racah parameters (B = 0.138 eV,
C = 0.541 eV), leading to a Hund exchange constant JH =
0.886 eV.

As pointed in Sec. II, the essential difference between Mn
and Co cases is that for Co, e orbitals are unoccupied by holes
in the ground state, this implies two important modifications.

First, the ligand field symmetry of d holes cannot be ignored
anymore in the Slater-Koster transfer matrix appearing in
Eq. (4), so that we replace the Tβi transfer matrix (whose
matrix elements are given in Ref. [32] and Table III for
tetragonal basis) by Tβi × B−1

i (i = A,B,C), where B−1
i is

the matrix passing from tetragonal d basis to the trigonal d

basis of i TMI [Eq. (A5)], namely to the basis with z axis
parallel to the threefold axis C3. The p basis of the transfer
matrix is indifferent because the ligand p shell is empty of
holes.

Second, neglecting the ligand field splitting, one-particle
d level of each TMI is degenerate and the ground state can
be denoted, in hole occupation, as e0t3

2 , so that occupied-t2-
hole state of a TMI can be coupled to an unoccupied-e-hole
(electron-occupied) state of the other. This makes the second
term of Eq. (2) nonzero by summing elements of e/t2 and t2/e

subspaces of the R matrix with the K2 prefactor, while the
first term is a sum over t2/t2 subspace with the K1 prefactor.
Due to the K2 sign, the second term of Eq. (2) (specific to
cobalt pairs) results in a FM contribution to the superexchange
constant.

Concerning ZB compounds, A-B and A-C pairs [see
Fig. 1(a)] are strictly the same and are equivalent to an
A-B (in-plane) pair of ideal W structure. As for the Mn
case (Sec. IV), we then give the J in

dd formula, valid for ZB
compounds and the in-plane pair of ideal W ones:

J in
dd

V 4
pdσ

= K1

81

(
9 + 48

η2
+ 10

η4

)
+ 8

K2

81

(
12

η2
+ 5

η4

)
. (11)

The number of AFM processes [first term of Eq. (11)] is
reduced when passing from the Mn to Co case because the
number of occupied d-states pairs changes from 25 to 9. The
FM process [second term of Eq. (11)] is a small correction to
the AFM one (|K2/K1| ∼ 0.1) and involves only 12 d-states
pairs. We note that FM contributions imply only V 2

pdσ V 2
pdπ

and V 4
pdπ processes. As for the Mn case (Sec. IV), nonideal

W compounds slightly modify the weight of each process and
give rise to odd power transfer processes.

An out-of-plane pair of W structure is more complicated
because, taking into account the ligand field, A-B and A-C
pairs are not equivalent [Fig. 1(b)]. This difference has to be
accounted for in the appropriate Slater-Koster transfer matrix
(see Appendix C). Moreover, for the out-of-plane pair A-C,
two ligands (1 and 5) have to be considered and the following
expression for J out

dd of ideal W structure is obtained:

J out
dd

V 4
pdσ

= K1

81

[ (
9 + 48

η2
+ 10

η4

)
(1 + ρ7)

− 2ρ7/2

9

(
9 + 480

η2
+ 82

η4

) ]
+ 8K2

81

[ (
12

η2
+ 5

η4

)
(1 + ρ7)

− 2ρ7/2

3

(
12

η2
− 13

η4

) ]
. (12)

This expression for J out
dd for the Co2+-Co2+ pair concentrates

all the difficulties encountered before, that is, FM and AFM
processes due to empty ground state orbitals, each of these
processes containing bridged and loop exchange paths due to
the two involved ligands.

We then apply our formulas to the six Co-doped II-VI
DMS for which NN exchange constants have been measured
(Table II).

TABLE II. Calculated Jdd (ZB) and J in
dd , J out

dd (W) (in K) for
Co-doped II-VI DMS as a function of input parameters Vpdσ ,
U , � (in eV). Comparisons with experimental J1 and J2 are
provided. Nonreferenced input parameters have been extrapolated
or interpolated.

Host ZnO ZnS ZnSe ZnTe CdS CdSe

Struct. W ZB ZB ZB W W
Vpdσ −1.6a −1.11 −1.01 −0.92 −1.01 −0.9
� 5a 1.5b 1.1b 1 1.5 1.06
U 6a 5.5 5 5 5 5

J in
dd , Jdd −25.5 −47.6 −49.9 −38.7 −33.7 −33.3

J out
dd −13.7 −24.3 −25.8

J1 −25.6c −47.5d −49.5e −38.0e −33f −33f

J2 −8.5c −27f −27f

aReference [42].
bReference [22]
cReference [5].
dReference [43].
eReference [7].
fReference [44].
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For reproducing J values, we proceed as follows: We first
obtain the ZnO:Co J1 exchange constant by only adjusting
the reduction factor r , other input parameters being given by
Ref. [42]. A very good agreement is obtained for r = 0.95,
a value that we keep constant for the rest of the series.
Concerning the next two compounds, ZnS:Co and ZnSe:Co,
Ref. [22] gives Vpdσ = 1.1 and 1.0 eV, respectively. These
values lead to slightly underestimated J1 constants. As the
remaining free parameter U cannot resolve this discrepancy,
we choose to slightly increase Vpdσ (1.11 and 1.01) in order to
match the experimental value. For the remaining compounds,
as no input parameters have been found in literature, we
extrapolate them from the precedent ones.

In all cases, J1 values are well reproduced by J in
dd (for W) or

Jdd (for ZB) with the available input parameters or reasonably
extrapolated ones. Again, the predominance of superexchange
mechanism is supported by these results, and a quantitative
link between Jdd and Vpdσ is made.

More interesting is the J2 constant for W compounds (J out
dd

integral), resulting from the fitting of J1: We see that J out
dd gives

an overestimated J2 value for ZnO, a slightly underestimated
one for CdS, and an almost exact one for CdSe.

The ZnO:Co case discrepancy has been discussed in
previous work in terms of possible Kpd FM process [5], which
would reduce the AFM J out

dd , thereby allowing us to reach the
J2 value. Work in this direction in the context of DMS is in
progress.

Concerning CdS and CdSe cases, experimental exchange
constants call for some remarks: MST peaks corresponding
to J1 and J2 are barely resolved in CdS, and not at all in
CdSe. Foner et al. [44] then only give average J : −30.6 ±
1.7 K and −31.0 ± 2 K for CdS and CdSe, respectively.
Consequently, J1 and J2 constants for these two compounds
are not known with precision but should be almost identical
in both cases. However, accepting the values given in Table II
is a good approximation, we remark that CdSe:Co, an almost
perfect W structure, is very close to the experimental value
while CdS:Co, a less ideal W structure, is a bit farther. In fact,
experimental J1 and J2 values for these two compounds can
be exactly reproduced by assuming ideal W structure, that is,
using formulas (11) and (12). A possible explanation would be
that in these compounds, around the Co impurities, W structure
tends to be ideal.

We end this section by noting that the greater spatial
anisotropy of Co-doped compounds (compared to the Mn-
doped ones) can be qualitatively understood as follows:
Both Mn2+ and Co2+ ions in tetrahedral coordination have
a zero orbital momentum ground state, but while Mn2+
is fully symmetric (A1 representation), Co2+ is not (A2

representation). The ground state wave function changes sign
by S4 and σd operations of the Td point group. The ground
state being less symmetric for Co2+ ions, a greater anisotropy
can be expected for these ions.

VI. DISCUSSION

The understanding of how localized spins of TMIs couple
in matter is a longstanding and still open problem. While it is
clear that many different mechanisms can occur according to
the particular situation (TMIs type, distance and concentration,

host carrier doping, etc.), it is valuable to examine the simplest
situation, that is NN TMIs pair in insulating materials, as a
basis for more elaborate cases.

First, by reproducing J1 value for 13 different compounds,
this work supports the common idea that NN exchange
is largely dominated by superexchange mechanism but in
a quantitative and systematic way, within the frame of a
single model linked to independent experimental data. More
precisely, the success of this cluster model indicates that, for
such a NN pair, a k-space approach is not relevant because of
the highly localized character of superexchange. The problem
will then be to describe how superexchange contribution
gradually decreases as the distance between TMIs increases
(due to the increasing order of superexchange processes)
and is gradually relayed by other exchange mechanisms,
carrier mediated or not: In fact, even in insulating materials,
some distant pairs have been found to be ferromagnetically
coupled (e.g., in ZnO:Co [5]), indicating that noncarrier-
mediated exchange mechanisms, other than superexchange,
can occur.

This last idea is supported by the examination of the J2

exchange integral of W compounds: While this constant is well
reproduced in Mn-doped compounds (all d orbital filled), this
is not the case for Co-doped ones (not all d orbital filled). We
can deduce from this fact that, even for NN pairs in insulating
materials, additional exchange mechanisms involving TMI’s
empty orbital must take place. A candidate can be the FM Kpd

exchange, which is a mix of second order superexchange and
direct exchange [45], briefly discussed in Sec. III of Ref. [5].
This mechanism may account for J2 in ZnO:Co by adding a
FM contribution.

We mention that the results presented in Tables I and II
have been obtained within the Harrison approximation for
Vpdσ (β,α) transfer integrals (see Sec. III), which results in a
single Vpdσ parameter, but that J1 and J2 for the three Co-
doped W compounds can be simultaneously reproduced by
letting Vpdσ (5,C), the transfer integral involved in the looped
exchange, vary. However, we are more interested in trends
than in the illusory exact reproduction of all J . Moreover,
the resulting Vpdσ (5,C) value is very far from the Harrison
approximation and not consistent with the estimation of J3

in ZnO:Co, the third exchange integral which is believed to
involve Vpdσ (5,C) in the 4-C-5 bridge [see Fig. 1(b) with
anions and cations inverted].

At this stage, it is worthwhile to compare our cluster model
to the k-space description developed by Larson et al. for
Mn-doped ZB compounds. In his work, the authors finally
express an exchange integral as a function of the distance
between the two Mn ions: J (r) = J0f (r), where f (r) is a
material-independent dimensionless function of r = R/a (a
being the ZB lattice constant and R the Mn-Mn distance)
and J0 a constant. Being orbital independent, this formula
uses Vpd = tpd/

√
2S, tpd = Vpdσ /3 − 2

√
3Vpdπ/9 (see, e.g.,

Ref. [11]), a kind of isotropic mean transfer. For the NN pair
r = 1/

√
2, the identification with Eq. (9) (taking care of the

electron description of Larson) leads to

f (1/
√

2) = 9
10 + 16η2 + η4

(2/
√

3 − η)4
. (13)
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These authors found that, for flat valence bands (dispersionless
limit), f (1/

√
2) = 9. We see that we exactly find this result if

the numerator and denominator of Eq. (13) are equal, that is,
if we consider the same mean transfer expression as Larson.
This confirms that our cluster description is, as expected, the
dispersionless limit of the k-space description.

Another interesting comparison is the study of J (r) based
on the spin-glass transition temperature of DMS [46] which
gives f (r) = r−6.8, that is, for the NN pair in ZB compounds,
f (1/

√
2) = 10.56. By setting η = 2.16 we obtain f (1/

√
2) =

7.93, a not so different value which again supports the local
description. However, if our work points out the fact that
superexchange is really the dominant mechanism in NN TMI
coupling, it also points out that other exchange mechanisms
should take place so that an expression of the kind J (r) =
J0f (r) for any distance r and involving only one mechanism
is certainly not relevant.

Finally, we remark that this cluster model of the NN
superexchange can be applied to any TMIs pair coupled to
fourth order with N � 5 and an arbitrary number of ligands in
any local symmetry, provided that input parameters are known
or reasonably estimated. Formulas given for the J can then be
incorporated in higher-level calculations such as Monte Carlo
simulation of a set of randomly distributed TMIs over a given
lattice.

Demonstration and generalization of the superexchange
formula to a NN pair of different TMIs are given in the
Appendix B.

VII. CONCLUSION

Analytical calculation of NN superexchange integrals
within a local model has allowed us to reproduce the
experimental exchange constants for a wide range of II-VI
DMS doped by cobalt and manganese.

First, our results quantitatively and systematically confirm a
large predominance of superexchange mechanism in the mag-
netic coupling between NN localized spin of TMI embedded
in an insulating host matrix.

Second, the importance of taking into account the off-
diagonal Hund’s exchange in the Coulomb operator has
been pointed out by revealing an additional FM mechanism
which occurs for N �= 5. We show that the principal dif-
ference between Co and Mn cases consists in the possibil-
ity or not for this additional off-diagonal term to couple
occupied and unoccupied d orbitals. The other difference
resides in the ligand field which acts for nonfully symmetric
ground states of TMIs and which results in an anisotropic
transfer.

Finally, our model allows us to access the crucial pa-
rameter for DMS physics, namely Vpdσ , by means of
magnetic measurements on a NN TMIs pair. This last
point is of particular importance since the determina-
tion of Vpdσ from Jsp−d measurements encounters serious
difficulties [3].
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APPENDIX A: DETAILS OF THE MODEL

We consider a pair of TMIs, which can be different, and
several ligand ions between them. The electronic Hamiltonian
may be written as

Ĥ =
∑

α

Ĥd,α +
∑

β

Ĥp,β + T̂ , (A1)

where Ĥd,α and Ĥp,β are, respectively, on-site Hamiltonians
for TMIs and ligands. T̂ describes electron hoppings between
TMIs and ligands.

In the single ion Hamiltonian we include the diagonal one-
particle terms and dominant Coulomb interactions

Ĥd,α = εd,αN̂d,α + ĤLF,α + Ŵα,

Ŵα = Ud,α

∑
m

n̂α,m,↑n̂α,m,↓ + U ′
d,α

2

∑
m�=m′

n̂α,mn̂α,m′

− JH,α

2

∑
m�=m′

(
2ŝα,mŝα,m′ + 1

2
n̂α,mn̂α,m′

)
+ J ′

H,α

∑
m�=m′

d
†
α,m,↑dα,m′,↑d

†
α,m,↓dα,m′,↓, (A2)

Ĥp,β = εp,βN̂p,β, (A3)

where

N̂l,i ≡
∑
m

n̂i,m, n̂i,m ≡
∑

s

n̂i,m,s ,

n̂i,m,s = c
†
i,m,sci,m,s,

ŝz
i,m = (n̂i,m,↑ − n̂i,m,↓)/2,

ŝ+
m = c

†
i,m,↑ci,m,↓,

ĤLF,α =
∑

s

∑
m,m′

Vα,mm′d†
α,m,sdα,m′,s ,

Ud,α = Aα + 4Bα + 3Cα,

JH,α = 5

2
Bα + Cα,

U ′
d,α = Ud,α − 2JH,α = Aα − Bα + Cα,

εd,α,εp,β are the one-particle energies of d and p states, and
Aα , Bα , and Cα are the Racah’s parameters of TMI α. It
is convenient to use the hole notations, then the operator
c
†
i,m,s = d

†
α,m,s(p

†
β,n,s) creates a hole with the one-particle basis

d(p) wave function and spin projections s on TMI (α =
A,B,C) and ligand (β = 1,2) site, respectively; n = x,y,z for
the ligand. For the d functions, m = x,y,z,v,w enumerates
the functions that diagonalize the tetrahedral ligand field in
trigonal axes [26]. The expression of the basis functions in
terms of cubic harmonics m′ = xy,yz,zx,x2 − y2,3z2 − r2,
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is given by

|x〉 =
√

2

3
|x2 − y2〉 −

√
1

3
|zx〉,

|y〉 = −
√

2

3
|xy〉 −

√
1

3
|zy〉,

(A4)
|z〉 = |3z2 − r2〉,

|v〉 =
√

1

3
|x2 − y2〉 +

√
2

3
|zx〉,

|w〉 = −
√

1

3
|xy〉 +

√
2

3
|zy〉,

written symbolically as

dt = Bdc,
(A5)

dc = B−1dt ,

where dt ,dc denote the vectors in trigonal and cubic basis,
respectively. In the ground state, the d shell of TMI α contains
Nα � 5 holes and ligand has the closed p shell with N = 0
holes.

The hopping Hamiltonian reads

T̂ =
∑

n,m,α,β,s

tα,m,β,n(d†
α,m,spβ,n,s + H.c.), (A6)

where tα,m,β,n coefficients are related to matrix elements of the
Slater-Koster matrix, tα,m,β,n ≡ (Tβα)nm. T̂ couples configura-
tions with different numbers of d and p holes. We will account
for the coupling between the ground configuration dNAp0dNB

and the following excited ones: dNA−1p1dNB ,dNA−1p2dNB−1,
dNA−1p0dNB+1, and those with NA ↔ NB .

The diagonal part of the LF Hamiltonian fixes the ground
state of TMI, e.g., for the Co2+ for N = 3, it is 4A2, and is
given by single configuration e0t3

2 with the total spin S = 3/2.
Using the identities n̂2

α,m,s = n̂α,m,s , ŝα,mŝα,m =
3
4

∑
s n̂α,m,s(1 − n̂α,m,−s), the interaction term in (A2)

may be written as

Ŵα = (Ud,α − U ′
d,α − JH,α)

∑
m

n̂α,m,↑n̂α,m,↓

+
(

U ′
d,α − JH,α

2

)
N̂2

d,α − N̂d,α

2

− JH,α

(
Ŝ2

α − 3

4
N̂d,α

)
+ J ′

H,α

∑
m�=m′

d
†
α,m,↑dα,m′,↑d

†
α,m,↓dα,m′,↓, (A7)

where Ŝα = ∑
m ŝα,m. In Ref. [31] the double hopping term

was neglected (J ′
H ≈ 0), then the spherical symmetry was

achieved via the relation Ud − U ′
d − JH = 0. The spherical

symmetry of full Ŵα (A7) demands the relations U ′
d,α =

Ud,α − 2JH,α ,JH,α = J ′
H,α , and we obtain Eq. (1).

APPENDIX B: PERTURBATION EXPRESSION
FOR SUPEREXCHANGE

We write the effective magnetic interaction between two
TMIs as

ĤJ = −2Jdd ŜAŜB. (B1)

In a superexchange calculation, the hopping term (A6) is
considered as a perturbation to zeroth order Hamiltonian of
isolated TMIs and ligands ions:

Ĥ0 =
∑

α

Ĥd,α +
∑

β

Ĥp,β . (B2)

Then the isotropic superexchange may be calculated from the
fourth-order formula [14,15,48]

Jdd = − 1

2
√

SASB

〈f |T̂ R̂1T̂ R̂2T̂ R̂3T̂ |i〉

= JA + JG, (B3)

R̂h = (E0 − Ĥ0)−1

=
∑

Ih∈CTE

|Ih〉〈Ih|
(E0 − EIh

)
, (B4)

where |i〉 (|f 〉) denotes the initial (final) state, which is
|SA,SB − 1〉 (|SA − 1,SB〉), here the notation |MA,MB〉 means
that the first TMI has the spin projection MA, and the second
MB . JA and JG denote the Anderson [49] and Gertsma [50,51]
contributions in the total exchange (see Appendix B 1 b). We
consider the general case when TMIs may be different and
have different d-shell filling. The sign Ih ∈ CTE means that
the intermediate states are charge-transfer excitations, here
the subscript h = 1,2,3 indicates that only a specific subspace
of the total Hilbert space gives nonzero contribution at every
“hop” from the initial state |i〉 to the final state |f 〉. These
subspaces will be considered below in detail. The product of
matrix elements of the perturbation operator T̂ [Eq. (A6)] and
the resolvent operator R̂ may be schematically depicted in
diagram forms (cf. Fig. 3 of Ref. [48], or Fig. 1 of Ref. [15]),
where every contributions in the sum [Eq. (B3)] corresponds
to a four-step path from initial to final state.

1. Intermediate states

It is convenient to introduce the state |G〉 ≡ |SA,SB〉 (all
hole spin projections on both TMI are ↑), then

|i〉 = 1√
2SB

Ŝ−
B |G〉 , |f 〉 = 1√

2SA

Ŝ−
A |G〉 .

Note that for Nα � 5, Nα = 2Sα , which will be used below.

a. First hop, d NA p0d NB → d NA−1 p1d NB ,d NA p1d NB−1

The first action of the T̂ [Eq. (A6)] on the initial state
leads to a hole transfer from a TMI and ligand. Only a
hole with spin projection ↑ may hop from the first TMI
(dNAp0dNB → dNA−1p1dNB ), and only the hole with spin ↓
may hop from the second TMI (dNAp0dNB → dNAp1dNB−1).
The latter statement is not obvious but we should keep in mind
that we should arrive to final state (where all holes on the

075205-8



EXCHANGE INTEGRALS IN Mn- AND Co-DOPED II-VI . . . PHYSICAL REVIEW B 90, 075205 (2014)

second TMI are ↑) via four steps. So the intermediate states
after the first step have the two forms

|I31〉 = p
†
β,n1,↑dA,m1,↑Ŝ−

B |G〉, (B5)

|I32〉 = p
†
β,n1,↓dB,m1,↑|G〉. (B6)

We can write

R̂T̂ |i〉 = |G31〉 + |G32〉, (B7)

|G31〉 = −
∑

n1,m1,β

tA,m1,β,n1

�A,β

√
2SB

p
†
β,n1,↑dA,m1,↑Ŝ−

B |G〉, (B8)

|G32〉 = −
∑

n1,m1,β

tB,m1,β,n1

�B,β

√
2SB

p
†
β,n1,↓dB,m1,↑|G〉, (B9)

where

�αβ ≡ εpβ − εdα − (Udα − 3JHα)(Nα − 1). (B10)

These energy denominators �α,β = EI − E0 are simply ob-
tained by remarking that the initial and intermediate |I31〉,
|I32〉 states do not contain any doubly occupied orbitals so
that last term of Eq. (1) can be ignored and the unperturbated
Hamiltonian is diagonal.

b. Second hop, d NA−1 p1d NB → d NA−1 p2d NB−1,
d NA−1 p1d NB → d NA−1 p0d NB+1, etc.

Now our task is to find the intermediate states |I2〉, which
arise after the action of the T̂ [Eq. (A6)] on |I3〉. They are of two
qualitatively different kinds: one having two holes on ligand
dNA−1p1dNB → dNA−1p2dNB−1 (Gertsma process [50,51]),
and the second corresponds to the transfer of the hole from
ligand to the second TMI dNA−1p1dNB → dNA−1p0dNB+1

(Anderson process [49]).
The former ones cannot contain doubly occupied orbitals

since the TMI holes number has just decreased. As a
consequence, the unperturbated Hamiltonian is still diagonal in
this kind of intermediate states and no particular difficulties are
then encountered. The resulting contribution of these processes
are directly given in Appendix B 3.

Regarding the second kind of intermediate states, we see
that the hole number is increased by one from the initial
configuration on one TMI, thus opening the possibility for
having doubly occupied orbitals. Then, the off-diagonal part
of Ŵ cannot be ignored anymore, leading to ferromagnetic
contribution in the Anderson process. In the following, we
consider this in detail.

T̂ |I31〉 gives the functions of the form dA,m1,↑d
†
B,m3,↑Ŝ−

B |G〉,
which are not eigenfunctions of Ĥ0 in the general case. We
introduce two auxiliary states

|F1〉 ≡ d
†
B,m3,↓n̂B,m3,↑|G〉, (B11)

|F2〉 ≡ 1√
2SB

d
†
B,m3,↑Ŝ−

B (1 − n̂B,m3,↑)|G〉, (B12)

that correspond to the cases when an additional hole comes to
the orbital m3 occupied in |G〉 [Eq. (B11)] or empty:

〈F1|F1〉 = b2
01 = 〈G|n̂B,m3↑|G〉 ≡ nB,m3,↑, (B13)

〈F2|F2〉 = b2
02 = 1 − nB,m3,↑. (B14)

Using the commutation

[Ŵ ,d†
α,m,s] = ([dα,m,s,Ŵ ])† =

(
Ud,α − 5

2
JH,α

)
d†

α,m,sN̂d,α

−JH,α

(
sd†

α,m,s Ŝ
z
α + δs,↑d

†
α,m,↓Ŝ+

α

+ δs,↓d
†
α,m,↑Ŝ−

α

) + JH,α(δs,↑dα,m,↓

− δs,↓dα,m,↑)P̂ †
α + JH,αd†

α,m,s,
(B15)

Ŵ ≡ ŴA + ŴB,

and general properties of spin operators

S+S− = S(S + 1) + Sz − (Sz)2, (B16)

S−S+ = S(S + 1) − Sz − (Sz)2, (B17)

we obtain

Ŵ |F1〉 = E0|F1〉 +
(

UdB − 5JH,B

2

)
NB |F1〉

−JH,B

[
d
†
B,m3,↓Ŝz

B + d
†
B,m3,↑Ŝ−

B + dB,m3,↑P̂
†
B

− d
†
B,m3,↓

]
Ŝ−

B n̂B,m3,↑|G〉
= [E0 + (UdB − 2JH,B )NB + 2JH,B ]|F1〉

+ JH,B

√
5 − NB |f1〉, (B18)

where

|f1〉 ≡ − 1√
5 − NB

dB,m3,↑P̂
†
Bn̂B,m3,↑ |G〉 .

We see that |F1〉 is coupled by Hund interaction with another
state when NB < 5:

〈f1|f1〉 = 〈G|P̂Bn̂B,m3,↑P̂
†
B |G〉

5 − NB

= nB,m3,↑, (B19)

〈F1|f1〉 = 0. (B20)

Projecting the function (B18) onto |F1〉 we have

a01 ≡ 1

b2
01

〈F1|Ŵ |F1〉

= E0 + (UdB − 2JH,B )NB + 2JH,B, (B21)

E0 = 〈G|Ŵ |G〉 =
∑

α

(Udα − 3JH,α)
Nα(Nα − 1)

2
. (B22)

The next action of ion Hamiltonian gives

Ŵ |f1〉 = − nB,m3,↑√
5 − NB

{
dB,m3,↑P̂ †Ŵ

+ [
Ŵ ,dB,m3,↑

]
P̂ † + dB,m3,↑[Ŵ ,P̂ †]

}|G〉
= {E0 + UdBNB − 3JH,B (NB − 2)}|f1〉

+ JH,B

√
5 − NB |F1〉, (B23)
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so, in the subspace spanned by |f1〉 and |F1〉 (when nB,m3,↑ =
1), the Coulomb Hamiltonian has the form

W =
(

a01 b11

b11 a11

)
, (B24)

where

a11 = E0 + UdBNB − 3JH,B (NB − 2) , (B25)

b11 = JH,B

√
5 − NB. (B26)

The eigenvalues are

W1ν = ε1 + νR1, ν = ±1, (B27)

ε1 ≡ a01 + a11

2
, (B28)

D1 ≡ a01 − a11 = JH,B (NB − 4), (B29)

R1 ≡
√

D2
1

4
+ b2

11 = JH,B

2
(6 − NB), (B30)

and the eigenfunctions are given by

|ψ1ν〉 = u1ν |F1〉 + v1ν |f1〉

=
(

u1νd
†
B,m3,↓ − v1ν√

5 − NB

dB,m3,↑P̂ †
)

n̂B,m3,↑|G〉,

(B31)

where

u1ν ≡ 1√
2

√
1 + νD1

2R1
, v1ν = ν√

2

√
1 − νD1

2R1
. (B32)

Now we proceed with the state (B12)

Ŵ |F2〉 = E0|F2〉 +
(

UdB − 5JH,B

2

)
NB |F2〉

− JH,B√
2SB

[
d
†
B,m3,↑Ŝz

B + d
†
B,m3,↓Ŝ+

B

− dB,m3,↓P̂ † − d
†
B,m3,↑

]
Ŝ−

B

(
1 − n̂B,m3,↑

)|G〉
= [E0 + UdBNB − JH,B (3NB − 1)]|F2〉

+ JH,B

√
NB |f2〉, (B33)

where

|f2〉 ≡ −d
†
B,m3,↓

(
1 − n̂B,m3,↑

)|G〉. (B34)

We see that |f2〉 vanishes only for N2 = 5. For other fillings
we have to find the eigenfunctions, which will be the
superpositions of |F2〉 and |f2〉.

We have

〈f2|f2〉 = 1 − nB,m3,↑, 〈F2|f2〉 = 0. (B35)

Projecting the function (B33) onto |F2〉, we have

a02 ≡ 〈F2|Ŵ |F2〉/〈F2|F2〉
= E0 + UdBNB − JH,B(3NB − 1), (B36)

we now may calculate

Ŵ |f2〉 = [E0 + (UdB − 2JH,B )NB]|f2〉 + JH,B

√
NB |F2〉,

(B37)

and see that |F2〉 and |f2〉 form an invariant subspace of Ŵ .
Then

a12 = 〈f2|Ŵ |f2〉/〈f2|f2〉 = E0 + (UdB − 2JH,B )NB

(B38)

and the Ŵ matrix has the form analogous to (B24). Then the
eigenvalues and eigenfunctions will have the form analogous
to Eqs. (B27) and (B31), respectively, and the eigenfunctions
may be immediately written as

|ψ2ν〉 = u2ν |F2〉 + v2ν |f2〉

=
(

u2ν√
NB

d
†
B,m3,↑Ŝ−

B − v2νd
†
B,m3,↓

) (
1 − n̂B,m3,↑

)|G〉,

(B39)

where u2ν , v2ν has the form similar to (B32) with obvious
change of indices, and b12 = JH

√
N2,

D2 = −JH,B (NB − 1), (B40)

R2 = JH,B

2
(NB + 1). (B41)

The action of T̂ on |I32〉 generates the functions
of the form dB,m1,↑d

†
A,m3,↓|G〉 = dB,m1,↑d

†
A,m3,↓(n̂A,m3,↑ +

1 − n̂A,m3,↑) |G〉.
In analogy with the considered cases, we may introduce

|F̃1〉 ≡ d
†
A,m3,↓n̂A,m3,↑|G〉, (B42)

|F̃2〉 ≡ 1√
NA

d
†
A,m3,↑Ŝ−

A

(
1 − n̂A,m3,↑

)|G〉, (B43)

|f̃1〉 ≡ − 1√
5 − NA

dA,m3,↑P̂ †n̂A,m3,↑|G〉, (B44)

|f̃2〉 ≡ −d
†
A,m3,↓

(
1 − n̂A,m3,↑

)|G〉, (B45)

and diagonalize the Ŵ matrix, thus we obtain

|ψ3ν〉 = u3ν |F̃1〉 + v3ν |f̃1〉 =
(

u3νd
†
A,m3,↓

− v3ν√
5 − NA

dA,m3,↑P̂ †
)

n̂A,m3,↑|G1〉, (B46)

|ψ4ν〉 = u4ν |f̃2〉 + v4ν |F̃2〉 =
(

−u4νd
†
A,m3,↓

+ v4ν√
NA

d
†
A,m3,↑Ŝ−

A

)(
1 − n̂A,m3,↑

)|G1〉, (B47)

where again uiν , viν has the form similar to (B32) with
the parameters D3 = JH,A (NA − 4), R3 calculated similar to
Eqs. (B29) and (B28) R3 = JH,A (6 − NA) /2.
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For the calculations of the D4, R4, we should analo-
gously calculate ã02, b̃12, ã12, but to put D4 ≡ ã11 − ã01 =
JH,A (NA − 1), we have R4 = JH,A (NA + 1) /2.

Now we may write expressions for various states |I2〉 for
Anderson processes

|I2iν〉 ≡ dA,m1,↑|ψiν〉, i = 1,2, (B48)

|I2jν〉 ≡ dB,m1,↑|ψjν〉, j = 3,4. (B49)

Those energies are

E21ν = E0 + εd,B − εd,A − (UdA − 3JH,A)(NA − 1)

+ UdBNB − JH,B

(
5
2NB − 4

) + νR1,

E22ν = E0 + εd,B − εd,A − (UdA − 3JH,A)(NA − 1)

+ UdBNB − JH,B

(
5
2NB − 1

2

) + νR2,

E23ν = E0 + εd,A − εd,B − (UdB − 3JH,B )(NB − 1)

+ UdANA − JH,A

(
5
2NA − 4

) + νR3,

E24ν = E0 + εd,1 − εd,B − (UdB − 3JH,B )(NB − 1)

+ UdANA − JH,A

(
5
2NA − 1

2

) + νR4. (B50)

Now we are ready for the calculation of matrix elements and
energy differences for the Anderson processes contribution in
Eq. (B3):

〈I21ν |T̂ |I31〉 = rtB,m3,β,n1

u1ν√
NB

nA,m1,↑nB,m3,↑,

〈I22ν |T̂ |I31〉 = −rtB,m3,β,n1u2νnA,m1,↑
(
1 − nB,m3,↑

)
,

(B51)
〈I23ν |T̂ |I32〉 = −rtA,m3,β,n1u3νnB,m1,↑nA,m3,↑,

〈I24ν |T̂ |I32〉 = rtA,m3,β,n1u4νnB,m1,↑
(
1 − nA,m3,↑

)
,

the factor r [see Eq. (6)] allows for the transfer integrals
dependence on the d-shell filling of the TMI. The matrix
elements (B51) involves the transfer integrals between con-
figurations dN+1 and dNp1, which are smaller by the factor r

than the integrals between dN and dN−1p1.
Now we may write the states |I1〉, which looks like |I3〉

[Eqs. (B5) and (B6)] with the interchange of d-operators
indices A ↔ B:

|I11〉 = 1√
NA

p
†
β4,n4,↑dB,m4,↑Ŝ−

A |G〉, (B52)

|I12〉 = p
†
β4,n4,↓dA,m4,↑|G〉. (B53)

The action of T̂ gives

T̂ |I11〉 = 1√
NA

[ ∑
m

tA,m,β4,n4d
†
A,m,↑dB,m4,↑Ŝ−

A |G〉

+
∑
m,β,n

tA,m,β,np
†
β,n,↓dA,m,↓p

†
β4,n4,↑dB,m4,↑Ŝ−

A |G〉
]
,

(B54)

T̂ |I12〉 = 1√
NA

[ ∑
m

tB,m,β4,n4d
†
B,m,↓dA,m4,↑|G〉

+
∑
m,β,n

tB,m β,np
†
β,n,↑dB,m,↑p

†
β4,n4,↓dA,m4,↑|G〉

]
,

(B55)

this gives (here the factor r appears again)

〈I12|T̂ |I21ν〉 = −rtB,m3,β4,n4u1νδm1,m4nA,m1,↑nB,m3,↑,

〈I12|T̂ |I22ν〉 = rtB,m3,β4,n4v2νδm1,m4nA,m1,↑
(
1 − nB,m3,↑

)
,

〈I11|T̂ |I23ν〉 = r√
NA

tA,m3,β4,n4u3νδm1,m4nB,m1,↑nA,m3,↑,

〈I11|T̂ |I24ν〉 = −rtA,m3,β4,n4v4νδm1,m4nB,m1,↑
(
1 − nA,m3,↑

)
,

and we may write∑
I2,I3∈CTE

|I2〉〈I2|T̂ |I3〉〈I3|T̂ Ŝ−
2 |G〉

(E0 − EI2 )(E0 − EI3 )

= −r
∑

n1,β,ν

occ.∑
m1

{[ occ.∑
m3

|I21ν〉 tB,m3,β,n1u1ν√
NB(E0 − E21ν)

−
unocc.∑

m3

|I22ν〉 tB,m3,β,n1u2ν

(E0 − E22ν)

]
tA,m1,β,n1

�Aβ

+
[
−

occ.∑
m3

|I23ν〉 tA,m3,β,n1u3ν

(E0 − E23ν)

+
unocc.∑

m3

|I24ν〉 tA,m3,β,n1u4ν

(E0 − E24ν)

]
tB,m1,β,n1

�Bβ

√
NB

}
. (B56)

In the first member of Eq. (B56), second intermediate states I2

concern only Anderson processes.

2. Anderson contribution to superexchange, Nα < 5

From the above intermediate states we have the Anderson
contribution as

JA = − r2

2
√

SASB

∑
β,β ′n,n′,ν

occ.∑
m1

{
tA,m1,β,n√
NA�Aβ

[
occ.∑
m3

tB,m3,β,ntB,m3,β ′,n′u2
1ν√

NB(E21ν − E0)
+

unocc.∑
m3

tB,m3,β,ntB,m3,β ′,n′v2νu2ν

(E22ν − E0)

]
tA,m1,β ′,n′

�Aβ ′

+ tB,m1,β,n

�Bβ

[
occ.∑
m3

tA,m3,β,ntA,m3,β ′,n′u2
3ν√

NA(E23ν − E0)
+

unocc.∑
m3

tA,m3,β,ntA,m3,β ′,n′v4νu4ν

(E24ν − E0)

]
tB,m1,β ′,n′√
NB�Bβ

}
. (B57)
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Let us note that in our approximations E2i,ν ,uiν,viν does
not depend on the orbital m3, so we may calculate for
every i ∑

ν

u2
iν

�2i + νRi

= �2i − Di/2

�2
2i − R2

i

, i = 1,3, (B58)

∑
ν

u2νv2ν

�22 + νR2
= − |b12|

�2
22 − R2

2

, (B59)

here we have denoted E2iν − E0 ≡ �2i + νRi . The expression
for i = 4 has the same form as Eq. (B59), but with b̃12 =
JH,A

√
NA in the numerator. We see that the contribution that

comes from the sum over unoccupied m3 gives ferromagnetic
contribution.

If we consider two TMIs having the same number of holes
(but not necessarily identic, e.g., Mn2+-Fe3+), NA = NB =
N = 5, all orbitals of both TMI in |G〉 are occupied by holes
with spin up and sums over unoccupied orbitals of Eq. (B57)
disappear. Then b11 = 0 = b31, also |F2〉 = |f2〉 = ∣∣f̃2

〉 =∣∣F̃2
〉 = 0, as nα,m3,↑ = 1. This means that Ri(N = 5) = Di/2,

u11 = 1, and u1−1 = 0 so that only ν = 1 has to be retained
in the sum over ν for occupied orbitals. We then denote the
energy of intermediate states |I2〉 = dA,m1,↑ |F1〉 ,dB,m1,↑|F̃1〉
by E2i,+1(N = 5) ≡ E21(N = 5), which reads

E21(N = 5) = E0 + 5UdB − 8JH,B − 4UdA + 12JH,A

(B60)

and E23(N = 5) is obtained by an exchange of indices
α = A ↔ B. These values should be substituted in the
denominators of the sums over occupied states in Eq. (B57).

If in addition the two TMIs are identic, so are the
Hubbard and Hund constants for both. Then, E21(N =
5) = E0 + Ud + 4JH = E0 + U + 56JH /9 and we obtain the
first term of Eq. (9) of Ref. [20] for the Mn2+-Mn2+
superexchange.

3. Gertsma contribution

The Gertsma contribution to superexchange arise from
the intermediate configuration (after the second hop)
dNA−1p2dNB−1, with no doubly occupied orbital, in which
the Coulomb operator Ŵ is diagonal. The calculation is then
straightforward, and the total contribution reads

JG = − 1

4SASB

∑
β,β ′,n,n′

occ.∑
m1,m3

1

�A,β + �B,β ′

(
1

�A,β

+ 1

�B,β ′

)

×
(

1

�A,β ′
+ 1

�B,β

)
tA,m1,β,ntB,m3,β,ntA,m1,β ′,n′ tB,m3,β ′,n′ .

(B61)

In any case, this contribution involves only sums over occupied
d orbitals of TMIs.

4. Interaction between two identical ions

In the case when two TMI have the same kind, i.e., Nα =
Nα′ , Udα = Udα′ , JH,α = JH,α′ , Eq. (B3) reduces to

Jdd = − 1

2S2

(
r2 �21 − D1/2

�2
21 − R2

1

+ 1

�eff

) occ.∑
mA,mB

RmAmB

+ r2

2S

JH

�2
22 − R2

2

occ.∑
mA

unocc.∑
mB

(
RmAmB

+ RmBmA

)
,

(B62)

where RmAmB
and �eff are defined in Eqs. (3) and (7),

respectively:

�21 = Ud + JH

(
N

2
+ 1

)
, (B63)

�22 = Ud + JH

(
N − 5

2

)
, (B64)

R1 = JH

2
(6 − N ), R2 = JH

2
(N + 1), (B65)

D1 = JH (N − 4), (B66)

D2 = −D4 = JH (N − 1). (B67)

Equation (B62) is equivalent to Eq. (2). We may see that the
antiferromagnetic contribution has the order of magnitude
JAFM ∼ T 2/Ud , whereas the ferromagnetic contribution is
JFM ∼ JHT 2/U 2

d ∼ JAFMJH /Ud . The effective hopping be-
tween TMI Tmm′ depends on the geometry of metal-ligand-
metal bonds.

APPENDIX C: CALCULATION OF HOPPINGS

According to the Harrison model [33], the hopping tα,p,β,q

between the pth d function of metal ion α = A,B and the qth
p function of ligand β = 1,2 is expressed via direction cosines
l,m,n of the direction of the vector Rα − Rβ , and two Slater-
Koster [32] parameters Vpdσ (R),Vpdπ (R), which depend on
sorts of metal ion and on the distance R = ∣∣Rα − Rβ

∣∣. Starting
from the Slater-Koster paper, the hopping matrix elements
are denoted as tα,p,β,q ≡ Eq,p(l,m,n). We use the following
symmetry relations:

Ey,xy(l,m,n) = −Ex,xy(m,−l,n),

Ey,zx(l,m,n) = −Ex,yz(m,−l,n),

Ey,yz(l,m,n) = Ex,zx(m,−l,n),
(C1)

Ez,xy(l,m,n) = −Ex,yz(n,m,−l),

Ez,zx(l,m,n) = −Ex,zx(n,m,−l),

Ez,yz(l,m,n) = −Ex,xy(n,m,−l),

in order to obtain all hoppings that are given in Table III. In
this table the cubic harmonics are used for the d functions,
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TABLE III. p−d hoppings expressed via direction cosines l,m,n

of the vector radii pointing from the ligand to the d ion.

Ex,xy = √
3l2mVpdσ + m(1 − 2l2)Vpdπ

Ex,yz = lmn(
√

3Vpdσ − 2Vpdπ )
Ex,zx = n[

√
3l2Vpdσ + (1 − 2l2)Vpdπ ]

Ex,x2−y2 = √
3l(l2 − m2)Vpdσ /2 + l(1 − l2 + m2)Vpdπ

Ex,3z2−r2 = l[n2 − (l2 + m2)/2]Vpdσ − √
3ln2Vpdπ

Ey,xy = −[
√

3m2(−l)Vpdσ − l(1 − 2m2)Vpdπ ]
Ey,yz = n[

√
3m2Vpdσ + (1 − 2m2)Vpdπ ]

Ey,zx = lmn(
√

3Vpdσ − 2Vpdπ )
Ey,x2−y2 = √

3m(l2 − m2)Vpdσ /2 − m(1 + l2 − m2)Vpdπ

Ey,3z2−r2 = m[n2 − (l2 + m2)/2]Vpdσ − √
3mn2Vpdπ

Ez,xy = lmn(
√

3Vpdσ − 2Vpdπ )
Ez,yz = √

3n2mVpdσ + m(1 − 2n2)Vpdπ

Ez,zx = l[
√

3n2Vpdσ + (1 − 2n2)Vpdπ ]
Ez,x2−y2 = √

3n(l2 − m2)Vpdσ /2 − n(l2 − m2)Vpdπ

Ez,3z2−r2 = n[n2 − (l2 + m2)/2]Vpdσ + √
3n(l2 + m2)Vpdπ

which should be expressed via our basis function using
Eq. (A5).

The coordinate systems for metal ions A and B may have
different axes directions because they are fixed by local crystal
field, i.e., by the geometry of local surrounding. In the W
structure, the Z axis is directed along the c crystal axis for all
ions, and the X,Y axes direction may differ. The hoppings
entering Eq. (B3) should be written in the same “global”
coordinate system which have their origin in the ligand β

site. Let us denote the angle between local X axis of the metal
ion and the global X axis as φ. The cubic harmonic in the
global system is related to the harmonic in the local system by
the expression

d′
c = Dφdc, (C2)

where the transition matrix is

Dφ =

⎛⎜⎜⎜⎝
cos 2φ 0 0 − sin 2φ 0

0 cos φ − sin φ 0 0
0 sin φ cos φ 0 0

sin 2φ 0 0 cos 2φ 0
0 0 0 0 1

⎞⎟⎟⎟⎠ .

(C3)

Now for the hopping matrix we may write

Tβα = EDφB−1 (C4)

or
tα,p,β,q = tβ,q,α,p =

∑
k,l

EqkDkl(B
−1)lp, (C5)

where the B matrix is defined in Eqs. (A4) and (A5). The sum
over l goes over the cubic harmonics in the local coordinate
system of ion α, and the sum over k goes over the cubic
harmonics in the global coordinate system, index p refers to a
d function in the local trigonal basis, and index q refers to a p

function in the global coordinate system.
We give in the following the coordinates of each TMI in W

structure with respect to the ligand of interest, as function of
a, c, and u parameters:

−→
R 5A =

⎛⎜⎜⎝
a/2

√
3

−a/2
c(1/2 − u)

⎞⎟⎟⎠ ,
−→
R 5B =

⎛⎜⎜⎝
a/2

√
3

a/2
c(1/2 − u)

⎞⎟⎟⎠ ,

(C6)

−→
R 1A =

⎛⎜⎝ 0
0

−cu

⎞⎟⎠ ,
−→
R 5C =

⎛⎜⎝ 0
0

c(1 − u)

⎞⎟⎠ .

We have omitted the R1C bond because it is just R5A with the
x and y signs changed. Direction cosines to enter in Slater-
Koster matrix are defined by l = xβ,α/Rβ,α , m = yβ,α/Rβ,α ,
and n = zβ,α/Rβ,α .

[1] H. Ohno, Science 281, 951 (1998).
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