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We develop a practical first-principles methodology to determine nonradiative carrier capture coefficients at
defects in semiconductors. We consider transitions that occur via multiphonon emission. Parameters in the theory,
including electron-phonon coupling matrix elements, are computed consistently using state-of-the-art electronic
structure techniques based on hybrid density functional theory. These provide a significantly improved description
of bulk band structures, as well as defect geometries and wave functions. In order to properly describe carrier
capture processes at charged centers, we put forward an approach to treat the effect of long-range Coulomb
interactions on scattering states in the framework of supercell calculations. We also discuss the choice of initial
conditions for a perturbative treatment of carrier capture. As a benchmark, we apply our theory to several
hole-capturing centers in GaN and ZnO, materials of high technological importance in which the role of defects
is being actively investigated. Calculated hole capture coefficients are in good agreement with experimental data.
We discuss the insights gained into the physics of defects in wide-band-gap semiconductors, such as the strength
of electron-phonon coupling and the role of different phonon modes.
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I. INTRODUCTION

Point defects drastically affect the performance of semicon-
ductor devices. In particular, they can act as charge traps and/or
recombination centers. In electronic applications, such as in
high-electron mobility transistors, charge traps deteriorate the
performance of the device and can lead to so-called device
dispersion [1]. In most cases, charge trapping or capture,
occurs nonradiatively, i.e., without the emission of a photon.
In optoelectronic applications, such as in light-emitting diodes
or photovoltaic cells, defects can act as recombination centers
for charge carriers. This so-called Shockley-Read-Hall (SRH)
recombination [2] is detrimental, as it decreases the efficiency
of the device. SRH recombination can also affect electronic
devices that rely on minority carrier transport, e.g., bipolar
transistors. SRH recombination is a sequence of two carrier
capture processes: one carrier is captured, and then the other
carrier recombines with it [2]. For both charge traps and
recombination centers, the important question is what are the
carrier capture coefficients (cross sections)?

For deep centers the nonradiative carrier capture occurs via
multiphonon emission (MPE) [2–4]. The main idea behind
MPE is that the transition between the delocalized bulk state
and the localized defect state can occur within the first order
of electron-phonon coupling because of a large local lattice
relaxation associated with the change of the charge state
of the defect [2–4]. The phonon selection rule �n = ±1 is
relieved, and emission of more than one phonon becomes
possible. Many researchers have contributed to the theoretical
foundations of MPE over the past six decades [4–15]. These
investigations have revealed that the results of calculations are
extremely sensitive to (i) the adopted theoretical model and
(ii) the details of the electronic structure of the defect, with
different approaches yielding variations of capture coefficients
over many orders of magnitude [16].

Concerning aspect (i), earlier theoretical works [4–15] have
made it clear that there is no single theoretical model that is
valid in all cases. A number of factors have to be considered
in choosing the appropriate description [4–15], including

the hierarchy of different time scales (carrier capture times
versus phonon lifetimes and periods of lattice vibrations), the
strength of electron-phonon coupling (linear versus higher-
order coupling schemes), the choice of a good starting point
for perturbation theory (electron and phonon wave functions),
and the number of different phonon modes that have to be
considered. This choice of description has to be considered for
each type of defect individually, a practice we will follow in
the current paper as well.

Aspect (ii), i.e., incomplete knowledge of the atomic and
electronic structure of the defect, turned out to be an equally
important issue. If this structure is not known, not only
does it affect the result within a given theoretical model,
but it impedes the choice of the correct model itself. Aspect
(ii) is thus closely linked to aspect (i). When the objective
was to understand general trends and interpret experimental
findings, calculations based on models that did not take the
specifics of the atomic and the electronic structure into account
were often very successful. An example of such work is
the seminal paper of Henry and Lang [4] on nonradiative
carrier capture in GaP and GaAs, semiconductors with room-
temperature band gaps of 2.22 and 1.42 eV [17], respectively.
The authors theoretically determined the temperature depen-
dence of capture cross sections and provided an estimate of
the range of high-temperature asymptotic values of these cross
sections. Using a semi-classical description of carrier capture,
they could explain the exponential dependence of cross
sections on temperature for many defects in both GaAs and
GaP, which proved that for these systems carrier capture was
indeed due to multiphonon emission. However, their model
was unable to offer specific predictions for individual defects,
and provided little insight into exceptions to the general
trends. In addition, these as well as other early calculations
required empirical input as well as drastic simplifications
regarding the local electronic structure and the nature of
relevant lattice vibrations. This seriously limited the predictive
power, especially for applications to new materials.

With the advent of accurate electronic structure methods,
mostly based on density functional theory (DFT) and related
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techniques, the situation is very different now [18,19]. State-
of-the-art approaches, such as hybrid functionals, provide a
very good description of both bulk band gaps and localized
defect states [20]. The availability of these methods, combined
with the general knowledge of MPE acquired over the past
six decades, raises the question whether nonradiative carrier
capture rates can now be determined completely from first
principles, allowing them to be used predictively, and whether
such calculations can expand our insights into the physics of
defects. This provides the motivation for our work.

Some progress has already been made in this area.
Schanovsky and co-workers studied nonradiative hole trapping
at defects in SiO2 and addressed the vibrational part of
the problem using first-principles calculations [21,22], but
actual values of the electron-phonon matrix elements remained
undetermined. McKenna and Blumberger [23] studied the
related problem of electron transfer between defect states
within the Marcus theory [24] and determined the electron-
phonon coupling matrix element between two localized defect
states in MgO directly from electronic structure calculations.
Shi and Wang [25] were the first to address both the vibrational
and the electron-phonon part of the carrier-capture prob-
lem completely from electronic structure calculations. They
presented an algorithm to calculate electron-phonon matrix
elements at defects, and applied the methodology to study
hole capture at the ZnGa-VN complex in GaN. Despite some
important contributions, this study also had some limitations.
First, the theory was applied to a defect for which direct
experimental data is not available [26]. Second, both ground-
state geometries of the defect and electron-phonon matrix
elements were determined using a semilocal functional within
the so-called generalized gradient approximation (GGA). Such
functionals underestimate bulk band gaps and tend to over-
delocalize defect wave functions. As discussed in Sec. III,
more accurate approaches are available that overcome these
drawbacks. Third, as we analyze in Sec. V, the theoretical
approach used in Ref. [25], the so-called adiabatic formulation
within the Condon approximation, can be questioned for
describing nonradiative capture at defects [10,12].

Overall, it is clear that the current status of modeling nonra-
diative capture at defects in solids is still unsatisfactory, espe-
cially when contrasted with the impressive advances in treating
electron-phonon coupling in defect-free crystals [27,28], or in
describing nonradiative processes in molecules [29].

In this work, we present calculations of carrier capture rates
via MPE entirely from first principles. The electronic structure,
the vibrational properties, and the electron-phonon coupling
are determined from accurate electronic structure techniques,
in particular, hybrid density functional theory. Specifically, we
present a method to calculate electron-phonon coupling matrix
elements at defects consistently within the hybrid functional
approach. Our calculations yield absolute carrier capture rates
without any fitting parameters. We apply the methodology to a
set of defects in GaN and ZnO, wide-band-gap semiconductors
with T = 0 K band gaps of 3.50 [30] and 3.44 eV [31],
respectively. We first study CN in GaN and LiZn in ZnO
because optical signatures of these two defects are well
established [32–38] and nonradiative capture coefficients are
available [35]. We also apply our methodology to the ZnGa-VN

defect in GaN to compare our results with those of Ref. [25].

This paper is organized as follows. The problem of
nonradiative carrier capture is described in Sec. II. In Sec. III,
we outline the theoretical formulation of the MPE, present
technical details of our computational toolbox, and discuss
how various quantities are calculated. In Sec. IV, we present
results for selected defects in GaN and ZnO and compare
with available experimental data and other computational
approaches. In Sec. V, we critically analyze our approach and
discuss insights gained into defect physics in GaN and ZnO.
Section VI concludes the paper.

II. DEFINITION OF THE PROBLEM

Without loss of generality, let us consider nonradiative
carrier capture of a hole by an acceptor defect. The process
is illustrated in Fig. 1 in two different representations: (a) a
band diagram and (b) a configuration coordinate (cc) diagram.
In the latter, a one-dimensional generalized coordinate Q is
used to represent atomic relaxations [16]. The excited state
of the system corresponds to the negatively charged acceptor
and a hole in the valence band (A− + h+), while the ground
state corresponds to the neutral state of the acceptor (A0). The
equilibrium geometries of the two charge states are different.
�E is the energy difference between the two states.

Carrier capture consists of two elementary steps: an energy-
conserving transition between two electronic states, process
(1), and vibrational relaxation, process (2) [Fig. 1(b)]. Vibra-
tional relaxation occurs on a timescale of a few picoseconds
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FIG. 1. (Color online) Nonradiative carrier capture at a deep
defect in two representations: (a) band diagram and (b) configuration
coordinate diagram. For illustration purposes, the defect is a deep
acceptor with a negative (doubly-occupied) and a neutral (singly-
occupied) charge state. �E is the ionization energy of the acceptor,
and Q is an appropriately chosen configuration coordinate. In (b),
process (1) is the change of the electronic state due to electron-phonon
coupling, process (2) is vibrational relaxation due to phonon-phonon
interactions.
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[39], while the electronic transition is much slower [4]. Thus
the electronic transition is the bottleneck for nonradiative
capture, and in this work we will only consider process (1).

Let p be the density of holes in the system. The total
concentration of defects is NA = N0

A + N−
A , where N−

A is the
density of negatively charged (ionized) acceptors, and N0

A is
the density of neutral acceptors. The holes are captured at a
rate [2]

Rp = CpN−
A p, (1)

where the units of Rp are cm−3 s−1; Cp is the hole capture
coefficient, with units [Cp] = cm3 s−1. An analogous equation
applies to electron capture processes.

In principle, carrier capture can occur both radiatively and
nonradiatively [5]. The two processes are in general competing
and can occur simultaneously. The rate of radiative transitions
increases with the energy of a transition as a power law;
for semiconductors, typical capture coefficients are of the
order C{n,p} ∼ 10−14–10−13 cm3 s−1 [16]. The dependence
of nonradiative capture rates on the energy of the transition
�E is usually nonmonotonic; capture coefficients can vary
over a very wide range C{n,p} ∼ 10−14–10−6 cm3 s−1 [4,16].
When capture coefficients are in the upper part of this range,
nonradiative transitions are dominant, and radiative transitions
can be neglected. This is the case for all capture processes that
we study in the present work.

The main goal of the theory is to determine nonradiative
electron and hole capture coefficients Cn and Cp from elec-
tronic structure calculations. In the literature, carrier capture
processes are often described in terms of capture cross sections
σ . The two quantities are related via C = 〈v〉 σ , where 〈v〉 is
a characteristic electron velocity. For nondegenerate statistics,
this velocity is the average thermal velocity. While Cn and
Cp are more fundamental quantities, capture cross sections
are useful because of their straightforward and intuitive
interpretation. Experimental values for capture cross sections
in a wide variety of systems [4,16] vary between 10−5 Å2

(weak coupling) and ∼103 Å2 (very strong coupling).

III. THEORETICAL FORMULATION AND
COMPUTATIONAL METHODOLOGY

A. Computational toolbox

To describe the atomic and the electronic structure of
defects and bulk materials, we use DFT with a hybrid
functional [40]. Hybrid functionals add a fraction α of Fock ex-
change to the exchange described by the generalized gradient
approximation, greatly improving the description of structural
properties and band structures, including band gaps. Both of
these aspects are particularly important for defects [38,41–43].
In addition, hybrid functionals can correctly describe the
polaronic nature of anion-bound holes derived from N and
O 2p states [38,41,44,45], which is crucial for the defects in
the present study.

We use the functional of Heyd, Scuseria, and Ernzerhof
(HSE) [40]. In this functional, the Fock exchange is screened
(screening parameter μ = 0.2 Å−1), and the sum rule for the
exchange hole is fulfilled by suitably modifying the semilocal
part of the exchange. We adapt the functional by tuning α to
reproduce the experimental band gaps, which has become a

common procedure [38,42,43]; the corresponding values are
α = 0.31 for GaN and α = 0.38 for ZnO. For α = 0 and
μ = 0, the HSE functional does not contain nonlocal exchange
and is identical to the generalized gradient approximation
functional of Perdew, Burke, and Ernzerhof (PBE) [46].

Our electronic structure calculations are based on the
projector-augmented wave (PAW) formalism [47], with PAW
potentials generated at the PBE level. We have used the
VASP code [48] with the implementation of hybrid functionals
described in Ref. [49]. A kinetic energy cutoff of 29.4 Ry
(400 eV) was used in all calculations. In the case of Zn,
3d states were included in the valence. The resulting lattice
parameters are a = 3.20 Å, c = 5.19 Å, and u = 0.377 for
GaN (in excellent agreement with the experimental [50] values
3.19 Å, 5.20 Å, and 0.377, respectively) and a = 3.24 Å,
c = 5.21 Å, and u = 0.379 for ZnO (experimental [50] values
3.25 Å, 5.20 Å, and 0.382).

Defects were modeled using the supercell methodol-
ogy [18]. The defect calculations used 96-atom wurtzite
supercells, with the lattice parameters optimized at the HSE
level. In the calculation of formation energies of charged
defects, as well as charge-state transition levels (ionization
potentials), finite-size corrections as proposed in Ref. [51]
were included. The Brillouin zone was sampled at one special
k point [52]. For test systems, these calculations produce
results for defect levels within 0.03 eV of those obtained with
a 2×2×2 mesh.

While most of our calculations were performed using
the PAW methodology, it makes calculations of electron-
phonon coupling matrix elements quite cumbersome. Such
calculations are greatly facilitated within the plane-wave
pseudopotential (PW-PP) formalism [53], which we adopted
for this purpose. Norm-conserving Troullier-Martins pseu-
dopotentials (PPs) [54] were generated at the PBE level
using the FHI98PP program [55]. 3d states were included
in the valence for both Zn and Ga. The energy cutoff for
plane-wave expansion of wave functions was set to 80 Ry
in GaN and 100 Ry in ZnO. We used the CPMD code, [56]
with the implementation of hybrid functionals discussed in
Refs. [57–59]. Brillouin-zone sampling in these calculations
was performed using a single � point. In order to reproduce
experimental band gaps, α values of 0.38 for GaN and 0.47 for
ZnO had to be used in these PP calculations, i.e., larger than
in the PAW calculations. We attribute this to the generation
of PPs at the PBE level, rather than consistently with hybrid
functionals (cf. Refs. [43,58–61]). However, for parameters for
which direct comparisons can be made, such as total energy
differences, equilibrium atomic configurations, or vibrational
frequencies, the PW-PP calculations are in gratifyingly good
agreement with the PAW results; for instance, charge-state
transition levels for the defects considered here differ by
0.09 eV or less.

B. Derivation of the capture coefficient

Let us consider a hole capture process at a single acceptor,
as in Fig. 1; the discussion can be easily adapted to other
cases. Let V be a large volume that contains P holes,
their density being p = P/V , and M−

A the total number
of hole-capturing defects in the appropriate negative charge
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state, with a density of N−
A = M−

A /V . The total density of
defects is NA = N0

A + N−
A . Under nonequilibrium steady-state

conditions, both electrons and holes can be present in the
system. Mobile carriers screen the Coulomb potential of
impurities, with a screening length λ. (For neutral impurities,
λ would be the extent of their short-range potential.) A few
distances λ away from each impurity the potential essentially
vanishes. We will assume that λ3NA � 1, implying that the
region where the potential is not negligible constitutes a very
small part of the solid. Since the hole density near the impurity
is obviously different from p, this assumption means that
the hole density in the space where the potential of impurity
atoms can be neglected is equal to the average density, i.e.,
p. A similar condition λ3p � 1 (i.e., λ � p−1/3) allows us to
assume that two holes do not interact with the same impurity
at the same time.

Computationally, the most convenient quantity to calculate
is the capture rate of one hole at one defect in the whole volume
V . Let the capture rate for such process be r ([r] = s−1). The
capture rate of P holes at all identical M−

A defects (all in
their negative charge states) in volume V is then γp = rM−

A P

([γp] = s−1). We can rewrite this equation as (γp/V ) = rV ×
(M−

A /V ) × (P/V ) = (rV )N−
A p. By comparing this equation

with Eq. (1), and noting that, by definition γp/V = Rp is the
capture rate per unit volume, we see that the hole capture
coefficient is given by

Cp = V r. (2)

From now on, we consider only one hole being captured by
one defect.

The general idea behind nonradiative processes due to
multiphonon emission is closely related to the concept of
electron-phonon coupling in bulk solids [62]. We briefly
review the main ideas, emphasizing the aspects specific to
defects. The many-body Hamiltonian of the entire system of
electrons and ions is

Ĥ = T̂I + T̂e + V̂II + V̂ee + V̂Ie, (3)

where T̂ represents kinetic energy, V̂ represents Coulomb
interaction, and the subscript “e” is for electrons and “I” for
ions. For an isolated system at zero temperature, the solution
of the Schrödinger equation Ĥ�n = En�n yields the energy
spectrum En and many-body wave functions 	n ({Q},{x}). {x}
represents all electronic degrees of freedom and {Q} represent
all ionic coordinates (which can be transformed to phonon
coordinates in the harmonic approximation). In most practical
situations, however, it is more useful to describe the system not
via eigenstates of the full Hamiltonian Ĥ , but via eigenstates
of a simpler Hamiltonian Ĥ0 that encodes the essential physics
of the system [62]. Eigenstates of Ĥ0 can be written as
a product of the electronic and the ionic part. The term
�Ĥ = Ĥ − Ĥ0 is then the perturbation that causes transitions
between eigenstates of Ĥ0. These transitions should be rare in
order to ensure that the Hamiltonian Ĥ0 captures the essential
physics of the system [62]. The part of �Ĥ that is due to the
ions and that induces transitions between different electronic
states, such as in the case of nonradiative carrier capture, is
the electron-phonon coupling �Ĥe−ph. The remaining piece

describes electron-electron and phonon-phonon interactions
that are not discussed further.

The time scale associated with carrier capture processes
in semiconductors is usually much larger than both phonon
lifetimes and periods of lattice vibrations (an assumption that
has to be verified a posteriori). As a result, the most convenient
starting point to describe a coupled system of electrons and
ions is the so-called static approximation [9,12,15]. In this
approximation, which we will adopt here, the total wave
function of the system can be written as � ({Q0},{x}) χ ({Q}),
where � ({Q0},{x}) is the electronic wave function calculated
for a chosen ionic configuration {Q0}, and χ ({Q}) is the
ionic wave function. The choice of {Q0} will be discussed
in Sec. III F.

Let the many-body electronic wave function that describes
a hole in the valence band (which is perturbed by the presence
of the defect) and a negatively charged defect be �i ({Q0},{x}).
This is the excited (initial) electronic state. The electronic wave
function that describes a hole trapped on a defect (yielding a
neutral charge state of the center) is �f ({Q0},{x}). This is
the ground (final) electronic state. The associated ionic wave
functions are χim ({Q}) and χf n ({Q}), where n and m are
quantum numbers for ionic states.

At finite temperatures T , free holes occupy various
electronic states according to the Fermi-Dirac or, in the
nondegenerate case, the Boltzmann distribution. As a result,
they cannot be described by a single initial state �i ({x}).
The carrier capture rate that is experimentally measured is the
weighted average over all initial electronic states. We adopt
an approximation that charge carriers can be represented by a
single initial electronic state; see Chapter 14.3 of Ref. [16] for
a more in-depth discussion. In the case of the nondegenerate
hole or electron gas, this special state represents particles with
a thermal velocity; in the degenerate case, the special state
represents particles at the Fermi surface.

In this work, we consider the interaction within the first
order of electron-phonon coupling. Under this assumption,
the capture rate r that enters into Eq. (2) is given by Fermi’s
golden rule (see, e.g., Sec. 14.2 of Ref. [16]):

r = 2π

�
g

∑
m

wm

∑
n

∣∣�H
e−ph

im;f n

∣∣2
δ(Eim − Ef n). (4)

Here wm is the thermal occupation of the vibrational state
m of the excited electronic state, and Eim and Ef n are total
energies of the initial and the final vibronic state. g is the
degeneracy factor of the final state; it reflects the fact that
there might exist a few equivalent energy-degenerate (or
nearly degenerate) atomic configurations of the final state. For
example, the neutral charge state of LiZn in ZnO can correspond
to four different lattice relaxations in which the hole is
localized on one of the four surrounding oxygens [63–66],
yielding g = 4. Similarly, g = 4 for GaN:CN [38]. We do
not distinguish between axial and azimuthal configurations
in the wurtzite structure. In the equation above, �H

e−ph

im;f n is
the electron-phonon coupling matrix element. In the static
approach [9,14], �Ĥe−ph = Ĥ ({Q},{x}) − Ĥ ({Q0},{x}).

To make the problem more tractable, subsequent approxi-
mations need to be employed. The first of those is the linear-
coupling approximation [16]. In this approximation, �Ĥe−ph
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is Taylor-expanded in {Q} around {Q0} (see Sec. III F), and
only the first-order terms are retained. The matrix element
�H

e−ph

im;f n is then given by

�H
e−ph

im;f n =
∑

k

〈�i |∂Ĥ/∂Qk|�f 〉︸ ︷︷ ︸
Wk

if

〈χim|Qk − Q0;k|χf n〉.

(5)
The sum runs over all phonon modes Qk , and Q0;k is the pro-
jection of the initial atomic configuration {Q0} along each of
the phonon coordinates. Wk

if is the electron-phonon coupling
matrix element pertaining to the phonon k. Equations (2), (4),
and (5) form the starting point for our computational determi-
nation of Cp.

C. Vibrational problem

The approximations introduced so far are fairly standard
and have been employed in previous work [2,9,12,15]. Here,
we introduce an additional approximation, relating to the
phonon coordinates, which will turn out to be essential for
making the calculations of electron-phonon matrix elements
feasible. In particular, we will consider only one special
phonon mode that replaces the sum over all vibrational degrees
of freedom in Eq. (5). The choice of the phonon mode is
motivated by the following reasoning. We are dealing with
deep levels, with ionization energies �E that are usually many
times larger than the energy of the longitudinal optical phonon
(which has the largest energy of all phonon modes). This is
the reason why a single phonon process is not sufficient to
couple the two electronic states, and an MPE is necessary.
The phonons that contribute most to the sum in Eq. (5) are
those that couple most strongly to the distortion of the defect
geometry during the carrier capture process. This is ensured
by the second factor in Eq. (5), since this expression vanishes
for those modes that do not couple to this distortion.

This approach is supported by results that have been
obtained in the case of radiative transitions. In the case
of luminescence at defects with strong electron-phonon
interactions, as quantified by their Huang-Rhys factors [5]
S � 1, it is possible to show numerically that replacing many
participating phonon coordinates with one carefully chosen
effective phonon mode is an excellent approximation [67].
This conclusion is in line with an empirical finding that
it is often possible to describe the temperature dependence
of broad defect luminescence bands considering only one
effective vibrational degree of freedom [16,32]. This special
mode corresponds to an effective vibration [21,67] where the
displacement of an atom α along the direction t = {x,y,z}
is proportional to �Rαt = Ri;αt − Rf ;αt , where R{i,f };αt are
atomic coordinates in the equilibrium configuration of the
excited (initial) and the ground (final) state. In this one-
dimensional model, the generalized configuration coordinate
Q for values of atomic positions Rαt that correspond to this
displacement is

Q2 =
∑
α,t

mα(Rαt − Rf ;αt )
2, (6)

where mα are atomic masses. The geometry of the ground state
(final state f ) corresponds to Q = 0, while the geometry of

the excited state (initial state i) corresponds to Q = �Q with

(�Q)2 =
∑
α,t

mα�R2
αt . (7)

In this description, the configuration coordinate of Eq. (6) has
units of amu1/2Å (amu - atomic mass unit). We will give a
brief description of changes of the defect geometry encoded
in �Q when discussing specific systems in Sec. IV. The plot
that shows the total energies in the ground and the excited
states E{i,f } as a function of Q is called the configuration
coordinate diagram (cc diagram) [16]; we have shown a
schematic example in Fig. 1(b). The frequency of the effective
vibration in the ground and the excited state is given as

�2
{i,f } = ∂2E{i,f }

∂Q2
. (8)

An auxiliary quantity (�R)2 = ∑
α,t �R2

αt , allows to define
the modal mass of the vibration via �Q = M1/2�R [21]. The
knowledge of M is useful for interpreting the value of � for
different defects [67]. A very useful dimensionless quantity is
the Huang-Rhys factor, defined as [5,67]

S{i,f } = 1

2�
(�Q)2�{i,f }. (9)

The case S � 1 corresponds to large lattice relaxations
associated with the change of the charge state. We note that
the special mode Q is not an eigenstate of the vibrational
Hamiltonian, but it serves as a very useful approximation and
has a clear physical meaning. Possible errors introduced by
the use of the one-dimensional approximation are critically
reviewed in Sec. V B.

D. Electron-phonon matrix elements

Thanks to the one-dimensional (1D) approximation de-
scribed in Sec. III C we have to determine only a single
electron-phonon coupling matrix element:

Wif = 〈�i |∂Ĥ/∂Q|�f 〉. (10)

At this stage, �{i,f } are still many-electron wave functions,
and Ĥ is the many-body Hamiltonian of the system. In an
independent-particle picture corresponding to the (general-
ized) Kohn-Sham approach of DFT, we will assume that the
many-body Hamiltonian and many-electron wave functions in
Eq. (10) can be replaced by their single-particle counterparts
ĥ and ψ{i,f }, i.e.,

Wif = 〈ψi |∂ĥ/∂Q|ψf 〉. (11)

Whereas wave functions �{i,f } describe the entire electronic
system, single-particle wave functions ψ{i,f } have a different
meaning: ψi corresponds to the hole in the valence band
perturbed by the presence of the defect, and ψf is the localized
defect state. Indeed, for perturbation theory to be physically
meaningful, both states ψ{i,f } have to be eigenstates of the
same Hamiltonian: the initial state has to correspond to the
perturbed hole state rather than a hole state in an unperturbed
bulk material.

To calculate electron-phonon matrix elements, we use
hybrid functionals within the PW-PP approach, as discussed
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in Sec. III A. Therefore ĥ contains nonlocal Fock exchange,
as well as the nonlocal part of pseudopotentials. These terms
would have to be calculated explicitly if Eq. (11) were used. To
avoid such a cumbersome procedure, it is extremely convenient
to use an alternative expression that follows directly from
perturbation theory (e.g., Eq. (28) in Ref. [27]):

Wif = 〈ψi | ∂ĥ

∂Q
|ψf 〉 = (εf − εi)

〈
ψi

∣∣∣∣∂ψf

∂Q

〉
. (12)

In this expression, the main effort in calculating the matrix
element boils down to the calculation of the derivative
∂ψf /∂Q. This is accomplished by evaluating the derivative
numerically via finite differences, as discussed for specific
defects in Sec. III F.

E. Bulk scattering states

The methodology outlined in Sec. III B above relies on
calculating the capture rate r for one hole, with a finite velocity,
at one defect in the entire (large) volume V . The role of all
other carriers is to screen the long-range Coulomb interaction
between the hole and the defect. The electron-phonon coupling
matrix element for one special phonon mode is determined
via Eq. (12), and the capture coefficient Cp is subsequently
determined via Eqs. (2), (4), and (5). Only one phonon
coordinate is retained in expression (5).

The problem with this formulation is the following. Actual
calculations are performed for a system with a relatively small
volume, the supercell with a volume Ṽ that is constrained by
computational limitations. While there is plenty of evidence
that the localized defect state ψf is accurately represented in
such supercell calculations, this is not necessarily the case
for the initial perturbed bulk state ψi . In particular, if the
capturing center is charged, the screened Coulomb interaction
between the defect and the carrier significantly affects the
capture processes. Such interactions are not well represented
in the supercell calculation. Let us picture, as an example, a
charge carrier with a vanishing kinetic energy being captured
at a repulsive center. As the size of the system V grows, the
particle is expelled further and further away from the defect. In
the limit of an infinite volume V , and zero kinetic energy of the
charge carrier, the capture rate would tend to zero. However,
in the supercell of volume Ṽ the carrier cannot be expelled
to infinity, and the capture rate remains finite, which is an
incorrect physical result. Similar considerations also apply to
attractive centers and emphasize the need for a correction term,
which we discuss here.

Let the electron-phonon coupling matrix element calculated
in the computational supercell be W̃if . It is calculated via the
equation, similar to Eq. (12):

W̃if = 〈ψ̃i | ∂ĥ

∂Q
|ψf 〉 = (εf − εi)

〈
ψ̃i

∣∣∣∣∂ψf

∂Q

〉
. (13)

Here, ψ̃i is the bulk wave function in the supercell of volume
Ṽ , chosen to be at the � point of the supercell. Let the corre-
sponding carrier capture coefficient, determined via equations
analogous to Eqs. (2)–(5), whereby all the parameters of the
real system are substituted with corresponding values from the
supercell calculation, be C̃p. Similar to the procedure proposed

in Refs. [68,69], we express the actual capture coefficient as

Cp = f (n,p,T ) C̃p, (14)

where f (n,p,T ) is a dimensionless scaling factor that depends
on the reference calculation used to determine the matrix
element W̃if , the charge state of the defect, as well as
environmental parameters: electron density n, hole density p,
and temperature T . Bonch-Bruevich [68] and later Pässler [69]
provided analytic expressions of f (n,p,T ) for both repulsive
and attractive centers. In the present section, we derive
an expression of f (n,p,T ) in the context of our supercell
approach. Our analysis follows that of Pässler [69] but is
adapted for use in conjunction with supercell calculations of
defects.

The function f (n,p,T ) can, in principle, be constructed
using a first-principles approach. However, such a calculation
would be very cumbersome and not particularly useful at this
point, keeping in mind that other, more limiting approxima-
tions have already been made. Instead we employ a model
calculation to determine f (n,p,T ).

Let us assume that the perturbed bulk wave function ψi

in the real physical system can be described as a product
of the wave function that reflects the atomic-scale behavior
ξi and the envelope wave function φi that changes on a scale
larger than the unit cell: ψi = ξiφi . We chose the normalization
condition for φi to be the same as for ψi . ξi is a fast-varying
dimensionless function. Such a description is in the spirit of
the effective-mass approximation [70]. The electron-phonon
coupling matrix element Wif can then be expressed as

Wif ≈ φi(0)〈ξi | ∂ĥ

∂Q
|ψf 〉 = φi(0)wif , (15)

where φi(0) is the value of the envelope wave function at the
defect site, and a new matrix element wif was introduced.
According to the methodology described in Secs. III B, III C,
and III D [see Eqs. (2), (4), (5), (11), and (15)] the capture
coefficient is then proportional to

Cp ∼ V |φi(0)|2 |wif |2. (16)

Here, V is the large volume of the material introduced in
Sec. III B. In the region where the potential of impurities is
negligible, |φi | = 1/

√
V . Because of the interaction with the

impurity, |φi(0)| can have a different value.
Let us assume that the perturbed bulk state in the com-

putational supercell can also be written in terms of a similar
product, i.e., ψ̃i = φ̃iξi . Because of its localized nature, the
defect wave function ψf is the same in the supercell of volume
Ṽ as in a large volume V . By definition, the same holds for
the “atomic” part of the bulk wave function ξi . As a result,

W̃if = 〈ψ̃i | ∂ĥ

∂Q
|ψf 〉 (17a)

≈ φ̃i(0)〈ξi | ∂ĥ

∂Q
|ψf 〉 = φ̃i(0)wif . (17b)

Accordingly,

C̃p ∼ Ṽ |φ̃i(0)|2|wif |2. (18)
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Therefore, from Eqs. (14), (16), and (18),

f (n,p,T ) = V |φi(0)|2
Ṽ |φ̃i(0)|2 . (19)

In practice, we use the following procedure. The value
V [φi(0)]2 is determined by considering a scattering problem
for a particle with a finite momentum k [71], which we take to
be the thermal momentum kT for the nondegenerate case. Far
from the scattering center the wave function is normalized as
required by the formulation of our problem (V [φi(r)]2 = 1 for
r → ∞). Within the s-wave approximation [71], the value of
the wave function at the origin is determined by a numerical
integration of the Schrödinger equation for the l = 0 angular
momentum component of the scattering wave function with
an asymptotic form that corresponds to our normalization.
The scattering potential that we use is

V (r) = Z

ε0r
erf(r/r0) exp(−r/λ). (20)

Here, ε0 is the low-frequency dielectric constant of the host
material, r0 is the extent of the defect wave function, and λ

is the screening length due to the presence of other charge
carriers, as discussed at the beginning of Sec. III B. In the case
of a nondegenerate gas, we use the Debye-Hückel screening
length that depends on T and on the carrier densities n and p,
explaining the overall dependence of f on these parameters.
At room temperature, the hole gas is nondegenerate up to
densities of p ∼ 1019cm−3 in both GaN and ZnO.

The value of V [φi(0)]2 is obtained by consideration of the
scattering problem with the potential in Eq. (20). We determine
r0 by comparing the behavior of the bulk wave function
in the presence of a charged defect in the actual supercell
calculation with the wave function obtained from a model
supercell calculation within the effective-mass approximation.
r0 is chosen so that the behavior of the envelope wave function
in the model supercell calculation accurately represents the
behavior of the envelope function in a real calculation. This
model supercell calculation also yields the value of Ṽ |φ̃i(0)|2.

For an attractive Coulomb potential (Z < 0), the problem
can be solved analytically [69,71]. When k � 1/a∗

B , where
a∗

B is the effective Bohr radius in the material, f (k) ∼ 1/k

(see Eq. (4.4) in Ref. [69]). For the potential in Eq. (20),
we find numerically that the behavior of carriers is also very
accurately described by a form f = A/k, in which k is the
average thermal momentum of holes and A is a constant. The
results show that f depends very weakly on λ, which in turn
depends on carrier density; therefore we can use a density-
independent scaling function. For the nondegenerate hole gas,
�k = (3kBmT )1/2 (kB is the Boltzmann constant), and thus the
scaling function depends only on temperature:

f (T ) = C

T 1/2
, (21)

where C is a constant determined numerically. For the two
attractive centers considered in the present study (GaN:CN and
ZnO:LiZn) we found C ≈ 150 K1/2 when the electron-phonon
matrix element W̃if is determined for a neutral charge state
for reasons discussed in Sec. III F. In the scattering problem,
we assumed effective hole masses mh = 1.0 for GaN [72,73],

and 0.6 for ZnO [74]. For attractive centers and temperatures
considered in this work (T < 1000 K), f > 1.

This result is intuitive and can be explained as follows.
Close to the defect the wave function of the hole has a larger
amplitude with respect to its asymptotic value far away from
the defect; in the classical reasoning, the hole spends more
time near the defect due to Coulomb attraction. The function
f reflects this enhancement. For example, the factor f is about
10 at room temperature.

The third defect considered in our work, GaN:(ZnGa-VN),
captures holes in a neutral charge state (see Sec. IV C), thus
there are no long-range Coulomb interactions between the
defect and the hole. However, the electron-phonon coupling
matrix element is calculated in the positively charged state
(96-atom supercell), as discussed in Sec. III F. In this case we
find f = 1.05. This implies that in the supercell calculation
the hole is repelled from the defect more than in the actual
situation.

In the case of repulsive centers, f depends sensitively both
on temperature [f ∼ exp(−a/T 1/3)] [68], and on the density
of charge carriers. Repulsive centers are not considered in this
work.

F. Initial state for perturbation theory

The actual quantity that is calculated is the capture
coefficient C̃p that corresponds to our computational setup.
The expression can be derived from Eqs. (2), (4), and (5),
whereby all quantities correspond to the parameters in the
supercell calculation (rather than the actual system) and only
one phonon mode is retained in Eq. (5):

C̃p = Ṽ
2π

�
gW̃ 2

if

∑
m

wm

∑
n

|〈χim|Q − Q0|χf n〉|2

× δ(�E + m��i − n��f ). (22)

W̃if is given via Eq. (13). For numerical evaluation, the
δ function is replaced by a smearing function of finite
width, a practice also employed in calculating luminescence
line shapes [67]. In this section, we address the following
questions: (i) which atomic configuration {Q0} should we
choose as a starting point for perturbation theory and (ii) for
which charge state should we calculate the electron-phonon
matrix element W̃if in Eqs. (13) and (22)?

During a nonradiative process the carrier in a delocalized
state is captured to a localized defect state. Thus in the
configuration {Q0}, a single-particle defect level should be
well defined and be in the bulk band gap. This is the single
most important criterion for the choice of {Q0}. Let us consider
acceptor defects GaN:CN and ZnO:LiZn as an example. As
before, we study the capture of a hole by a negatively charged
acceptor [process (1) in Fig. 1(b)]. Actual first-principles
calculations show that in the case of neutral acceptors in their
equilibrium geometries there is indeed one clearly distinguish-
able empty defect level in the band gap, representing a trapped
hole. In contrast, in the case of the negatively charged defect
in its equilibrium geometry, the supercell calculation produces
one or more diffuse single-particle defect states that have
moved down in energy and that couple strongly with bulk
states. However, when the calculation is performed for the
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same negatively charged acceptor but rather in the equilibrium
geometry of the neutral system, one doubly-occupied single-
particle defect state moves up in energy and into the band
gap. A defect state to which the hole is being captured can
be clearly identified again. The bottom line is that when {Q0}
corresponds to the equilibrium geometry of the neutral charge
state, a single-particle defect state can be clearly identified in
both the neutral and the negative charge states. This choice
of {Q0} thus yields good single-particle wave functions for
perturbation theory.

For this particular choice of {Q0}, the electron-phonon
coupling constant W̃if can be then calculated for either the
neutral or the negatively charged state. We find that the
W̃if values calculated for the two states differ by about 5%.
However, a different charge state for the calculation of the
electron-phonon coupling matrix element yields a different
scaling function f , as discussed in Sec. III E [Eq. (19)]. In the
end, the calculated capture rates are within 1% of each other.
This result is reassuring, and also tells us something about the
physics: the defect wave function does not change much when
the defect state is filled with an electron.

If the band structure is such that the highest occupied states
correspond to several closely spaced valence bands (which
is the case for the most commonly used semiconductors)
attention needs to be devoted to the choice of the valence
band that represents the hole wave function. For example, the
highest occupied states at the zone center of wurtzite-phase
semiconductors, such as GaN and ZnO, consist of the heavy-
hole (HH), light-hole (LH), and crystal-field split-off (CH)
bands [75]. The splitting between LH and HH is mainly due to
the spin-orbit interactions, and is only a few meV for these two
materials. Crystal-field effects are larger, and the CH band is
∼20 meV below the valence-band maximum (VBM) in GaN,
and ∼60 meV in ZnO [76]. Strain or effects of confinement in
quantum wells could modify the splitting and ordering of these
bands, and in an actual sample, the density of holes in each
band is determined by the thermal occupation. For example,
in bulk ZnO the CH band will be much less populated with
holes than the other two bands at room temperature, and this
can be relevant experimentally (see Sec. IV B). Since we do
not know a priori which valence band(s) will play the
most important role in specific experimental situations, we
explicitly calculate the electron-phonon coupling to all three
valence bands in the supercell.

The use of the supercell itself introduces an additional
complication, since the splitting between the bands and their
ordering can be significantly affected by the defect. We find
that the valence band that interacts most strongly with the
defect state is always pushed below the other two bands.
However, while the precise energetic position of the bands
may be affected, we find that the character of the valence
bands is generally retained in defect supercells, allowing
us to meaningfully calculate the electron-phonon coupling
matrix elements for the separate valence bands. While these
matrix elements could in principle be explicitly employed in
calculations that reflect specific experimental conditions, for
purposes of reporting our results in the present paper the matrix
element of Eq. (10) that enters into the final calculations is
defined as the mean-square average of the three separate matrix
elements.
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FIG. 2. Calculation of the electron-phonon matrix element W̃if

using Eq. (13) for GaN:CN and ZnO:LiZn. (a) Eigenvalues of defect
and bulk wave functions as a function of Q. (b) The overlap
〈ψ̃i(0)|ψf (Q)〉 as a function of Q.

Here, we illustrate the calculation of W̃if for two specific
defects, CN in GaN and LiZn in ZnO. The calculation of the
electron-phonon matrix element W̃if using Eq. (13) is shown
in Fig. 2. Panel (a) shows the single-particle eigenvalues
as a function of a generalized coordinate Q, where Q0,
corresponding to the geometry of the neutral defect state, is
set to 0. The eigenvalues are referenced to the VBM. In the
case of a defect immersed in infinite bulk the eigenvalues of
bulk states should not be dependent on Q. This condition is
fulfilled in our supercell calculations [Fig. 2(a)]. In contrast,
the defect state shows a pronounced linear dependence on Q.
For the calculation of W̃if the value of εf − εi at Q = 0 is
taken.

In Fig. 2(b), the overlap integral 〈ψ̃i(0)|ψf (Q)〉 is plotted
as a function of Q for all three valence bands. The derivative
〈ψ̃i |∂ψf /∂Q〉 used for the calculation of the matrix element in
Eq. (13) was determined from a linear fit to this dependence.
The coupling to one of the three valence bands can be as much
as two orders of magnitude larger than for the other bands, as
discussed above.

G. Brief summary of the methodology

To recap, we determine the carrier capture rate that is
specific to our supercell geometry using Eq. (22). Ṽ is the
volume of the supercell; g is the degeneracy of the final state;
W̃if are electron-phonon coupling matrix elements, given in
Eq. (13) [cf. Fig. 2]; �E is the energy difference between
the ground and excited state, and is given by the position
of the charge-state transition level above the VBM [18];
Q = Q0 = 0 is chosen to correspond to the equilibrium
atomic configuration of the ground state; the equilibrium
atomic configuration of the excited state is offset by Q = �Q

[Eq. (7)]. All these quantities are summarized in Table I.
In addition, we provide Huang-Rhys factors Sf [Eq. (9)]. δ

functions in the sum Eq. (22) are replaced by Gaussians with
widths σ = 0.8��f [67].
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TABLE I. Key parameters for the three defects studied in this work: total mass-weighted distortions �Q [Eq. (7)], ionization energies
�E, energies of effective vibrations ��{i,f } [Eq. (8)] (charge state is given in parentheses), Huang-Rhys factors for the final state [Eq. (9)],
degeneracy factor g of the final state [cf. Eq. (4)], electron-phonon coupling matrix elements W̃if [Eq. (13) and Fig. 2; the charge state of the
defect for which the matrix element is calculated is shown in parentheses], and volume of the supercell Ṽ in first-principles calculations.

�E (eV)

Defect �Q (amu1/2Å) Theory expt. ��i (meV) ��f (meV) Sf g W̃if (eV/amu1/2 Å) Ṽ (Å3)

GaN:CN 1.61 1.02 (this work) 0.85a 42 (−) 36 (0) 10 4 6.4 × 10−2 (0) 1100
ZnO:LiZn 3.22 0.80b, 0.49c, 0.46d 0.53e 36 (−) 25 (0) 28 4 3.9 × 10−2 (0) 1136
GaN:(ZnGa-VN) 3.33 0.90f, 0.88 (this work) − 26 (0) 22 (+) 30 1 1.0 × 10−2 (+) 1100

aReference [77].
bReference [64].
cReference [65].
dReference [66].
eReference [33].
fReference [25].

Finally, the actual carrier capture coefficient Cp is obtained
via Cp = f C̃p [Eq. (14)] with the scaling function f . As
discussed in Sec. III E, the calculation of f may require a
simulation in its own right; for the case of hole capture by a
negatively charged defect, when the reference system is that
of the neutral charge state, we use the form Eq. (21) for f .
This is the situation that occurs in the examples of GaN:CN

and ZnO:LiZn, to be discussed in Secs. IV A and IV B. For
the case of hole capture by a neutral defect, which applies
to GaN:(ZnGa-VN) to be discussed in Sec. IV C, the reference
system is that of a positive charge state and f = 1.05 for our
particular supercell.

IV. RESULTS

To illustrate our methodology, we study two defects in GaN,
namely, carbon on the nitrogen site (GaN:CN) and a complex
of zinc on a gallium site with a nitrogen vacancy [GaN:(ZnGa-
VN)], as well as one defect in ZnO, namely lithium on the
zinc site (ZnO:LiZn). Experimental identification of defects
is often very difficult and frequently controversial. In order
to check our methodology, we wanted to identify benchmark
cases where the experimental situation is clear cut. GaN:CN

and ZnO:LiZn serve this purpose.
Although the focus is on nonradiative transitions, lumi-

nescence experiments are frequently used to analyze rates
of the various processes, radiative as well as nonradiative.
There is general consensus that GaN:CN gives rise to a yellow
luminescence band [36,78,79], and ZnO:LiZn to an orange
luminescence band [37,66]. These two bands arise due to the
recombination of an electron in the conduction band and a hole
bound to a defect. In both of these cases, the acceptor level is
in the lower part of the band gap.

Nonradiative hole capture rates for deep acceptors can be
determined from luminescence experiments in the following
way [80]. In n-type samples, photogenerated holes are cap-
tured by acceptors in a predominantly nonradiative process
(this conclusion stems from the fact that the resulting capture
rates are orders of magnitude higher than possible radiative
capture rates, as discussed in Sec. II). Subsequently, these
captured holes recombine with electrons in the conduction

band, a process believed to be predominantly radiative, giving
rise to the aforementioned luminescence bands [80].

When the temperature is increased, the radiative transition
is quenched because captured holes are re-emitted back into
the valence band. Therefore the measurement of the thermal
quenching of a particular luminescence band as a function
of temperature provides information about the hole emission
coefficient Qp. The parameters needed to determine Qp

using this procedure are the radiative lifetime τrad = 1/Cnn,
measured separately from time-dependent photoluminescence
decay, and the quantum efficiency of the band with respect
to all other recombination channels [80]. The hole capture
coefficient Cp is determined from Qp using the detailed
balance equation [2,80]. For acceptors in GaN and ZnO
nonradiative hole capture coefficients determined in this way
are summarized in Ref. [35].

The GaN:(ZnGa-VN) defect, finally, has been included in
order to compare our approach to that of Ref. [25], where
nonradiative hole capture at this defect was studied.

A. CN in GaN

1. GaN:CN and yellow luminescence

Carbon is one of most abundant impurities in GaN, espe-
cially if grown by metal organic chemical vapor deposition,
where organic precursors are used. A clear link has been
established [36,78] between the concentration of carbon and
the intensity of a yellow luminescence (YL) band that peaks at
about 2.2 eV. Contrary to earlier suggestions of carbon being
a shallow acceptor, Lyons et al. have shown, using hybrid
density functional calculations, that carbon on the nitrogen
site is in fact a deep acceptor [79]. Calculations [77,79,81]
yield a (0/−) charge-state transition level �E = 0.9–1.1 eV
above the VBM. In conjunction with a large lattice relaxation,
this corresponds to a peak very close to 2.2 eV for the
optical transition whereby a neutral defect captures an electron
from the conduction band. Recently, we have employed
first-principles calculations to determine effective parameters
(average phonon frequencies and the Huang-Rhys factors,
see Sec. III C and Table I) that describe the shape and
temperature dependence of luminescence bands. In the case
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FIG. 3. (Color online) Calculated 1D cc diagram for hole capture
at the CN defect in GaN [process (1) in Fig. 1(b)]. Symbols: calculated
values; solid line: parabolic fit. The defect in its negative charge state
captures a hole, thus becoming neutral. �E is the energy difference
between the minima of the two potential energy curves, �Erel is the
relaxation energy in the ground state, �Eb is the “classical” barrier
for the nonradiative process, and �Q is the displacement between
the two potential energy curves [Eq. (7)].

of CN, excellent agreement with experimental results [35,36]
was demonstrated [67].

2. Configuration coordinate diagram

A 1D cc diagram relevant for the capture of holes at
GaN:CN is shown in Fig. 3. The excited state corresponds
to the defect in the negative charge state and a hole in the
valence band, and the ground state corresponds to a neutral
charge state. The configuration coordinate Q was described
in Sec. III C, and is the same as used in our calculations of
luminescence line shapes [67]. In the case of GaN:CN [79],
the biggest contribution to �Q comes from the relaxation
of C and Ga atoms, which results in the shortening of C-Ga
bond lengths, by 8% along one direction and 1% along the
other directions, as the charge state changes from neutral to
−1. A smaller contribution to �Q comes from the outward
relaxation of next-nearest N atoms. Potential energy surfaces
in the two charge states were mapped along this configuration
coordinate. The separation between the minima of the two
potential energy surfaces �E corresponds to the energy of the
(0/−) charge-state transition level with respect to the VBM.
Our calculated value for �E = 1.02 eV is slightly larger than
the one reported in Ref. [79] due to more stringent convergence
criteria. The minima of the two potential energy surfaces are
offset horizontally by �Q = 1.61 amu1/2 Å [Eq. (7)]. An
important parameter is the relaxation energy in the ground state
�Erel [Fig. 3]. For C0

N, calculations yield �Erel = 0.37 eV.
The two potential energy curves intersect at �Eb = 0.73 eV

above the minimum of the excited state. We might thus expect
that the nonradiative carrier capture is a temperature-activated
process, since the coupling between two potential energy
surfaces is always most efficient close to the crossing point [3].

3. Calculated hole capture coefficients

The real situation is not so straightforward because of
the occurrence of two competing factors. On the one hand,
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FIG. 4. “Nominal” nonradiative hole capture rate C̃p [Eq. (22)]
at the CN defect in GaN as a function of temperature. Solid line:
calculations; dotted line: a fit according to Eq. (23).

when the temperature is raised, higher-lying vibrational levels
χim of the excited electronic state [see Eqs. (4) and (22)]
become populated. Vibrational levels that are closer in energy
to the crossing point of the two potential energy curves yield
larger contributions to the overall rate. Thus, if this was the
only factor, the nonradiative capture rate for GaN:CN would
increase as a function of temperature. On the other hand,
however, the scaling factor f (T ) decreases with temperature,
as per Eq. (21), because an increasingly faster hole has less
chance of being captured by a negative acceptor.

It is instructive to consider the first effect separately. In
Fig. 4, we show the calculated nonradiative hole capture rate
if the second effect is completely neglected, i.e., for f = 1.
This is the capture rate C̃p that is discussed in Sec. III E. The
process is indeed temperature-activated. At high temperatures,
the dependence is often fitted to a function of the form

C̃p(T ) = C0 + C1exp(−�E′
b/kT ) (23)

with a temperature-independent part and a temperature-
activated part. The use of such a form is at the core of
the famous Mott-Seitz formula for temperature quenching of
luminescence bands [3]. The fit is shown in Fig. 4. From
the fit one can derive an effective barrier �E′

b = 0.23 eV,
which is significantly smaller than the “classical” barrier
�Eb = 0.73 eV. This is a typical result and happens because
of the quantum-mechanical tunneling [3] that is considered in
the quantum treatment but absent in a classical description.

The actual hole capture coefficient, including the scaling
factor [Eq. (21)], is presented in Fig. 5 (solid black line).
At T = 300 K, our calculated value is Cp = 3.1 × 10−9

cm3s−1. To determine the sensitivity of the final result on
the parameters of our calculation, we have also determined
the capture coefficient for �E = 1.02 ± 0.05 eV (Fig. 5). A
change in �E by just 0.05 eV translates into a change of
Cp by a factor of ∼3–4 (black dashed lines in Fig. 5). Since
�Erel < �E (cf. Fig. 3), larger values of �E yield larger
barriers �Eb and therefore smaller capture coefficients Cp.
The strong dependence of nonradiative transitions on �E

is well documented [3] and was recently emphasized again
in Ref. [25]. This sensitivity stems from the temperature-
activated behavior discussed in the preceding paragraphs. We
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FIG. 5. (Color online) Black solid line: calculated nonradiative
hole capture rate Cp at the CN defect in GaN, for �E = 1.02 eV,
as determined from our first-principles calculations. Black dashed
lines: the same for �E = 1.02 ± 0.05 eV. Red solid and dotted
line: the same, but for �E = 0.89 eV, modeling the decrease of
�E at high temperatures. Blue dotted horizontal lines and diamonds:
experimental data from Ref. [35]; the latter were determined for
several different samples in the temperature range 500–700 K.

can consider the range of capture coefficients Cp shown in
Fig. 5 to represent a theoretical “error bar” regarding the 0 K
value of �E that is used in the calculation.

4. Comparison with experiment

In Refs. [35,77], the hole capture coefficient Cp for CN

was determined in the temperature range 500–700 K, at which
quenching of the luminescence occurs. Cp was assumed to
be weakly dependent on temperature in this range, and the
values obtained for different samples were Cp = 3 × 10−7 and
6 × 10−7 cm3 s−1 [35]. These results are shown by horizontal
dotted lines and diamonds in Fig. 5. At T = 600 K, i.e.,
the midpoint of the 500–700 K temperature range where the
quenching occurs, our calculated value for �E = 1.02 eV is
Cp = 3.1 × 10−8 cm3 s−1, i.e., about an order of magnitude
smaller than the experimental result. The corresponding values
for �E = 0.97 eV and 1.07 eV are 8.0 × 10−8 and 1.0 × 10−8

cm3 s−1 (cf. Fig. 5). Thus variations of �E by 0.05 eV do not
remove the difference between theory and experiment.

The apparent discrepancy between experiment and theory
can be explained as follows. The calculated �E of 1.02 eV
corresponds to the ionization potential of the CN acceptor at
T = 0 K, while the comparison with experiment is made for
T ≈ 600 K. At 600 K, the bulk band gap of GaN shrinks from
its T = 0 K value of 3.50 eV to about 3.24 eV [30]. This
decrease of the band gap will affect the ionization potential of
the acceptor. We are not in a position to address this fully from
first principles, but we can obtain a zero-order estimate of the
effect of temperature on �E by assuming that (i) the (0/−)
charge-state transition level remains the same on the absolute
energy scale when the band gap changes [43,81,82], and (ii) the
VBM and the conduction-band minimum are equally affected,
i.e., that as a function of temperature they move symmetrically
on the same absolute energy scale. Based on these assumptions
we estimate a decrease of the ionization potential by about
0.13 eV in going from 0 K to 600 K. In Fig. 5 we have included

a curve for Cp as a function of T for �E = 0.89 eV (red solid
and dashed curve). This curve is physically meaningful only at
temperatures around 600 K, corresponding to a significantly
reduced value of �E. At T = 600 K, the calculated value
Cp = 3.1 × 10−7 cm3s−1 is in excellent agreement with the
experimental data [35,77].

We thus find that significant variations of the calculated
Cp can result from the temperature dependence of �E.
When comparing calculations with experiments carried out
at elevated temperatures this can make a difference in Cp of
about an order of magnitude. This dependence has not been
studied in the past, neither theoretically nor experimentally.
Our findings indicate that this will be a fruitful area of future
work on nonradiative carrier capture. However, even in the
absence of a rigorous analysis of the temperature dependence,
we can conclude that our calculated values of Cp are in very
good agreement with experimental data.

B. LiZn in ZnO

1. ZnO:LiZn and orange luminescence

LiZn in ZnO is one of the most studied defects in ZnO.
While it was initially hoped that LiZn might be a shallow
acceptor leading to p-type doping, it is now clear that this
defect is a very deep acceptor. Meyer et al. suggested that
LiZn gives rise to a broad orange luminescence (OL) band
peaking at about 2.1 eV [37]. The ionization energy was
deduced to be at least 0.5 eV. The analysis based on the
thermal quenching of luminescence lines confirms this and
yields values for the ionization potential �E = 0.46–0.55 eV
[33,35]; the different values are for different ZnO samples.
Recent theoretical work based on the application of the
generalized Koopman’s theorem [83] and on hybrid density
functionals [63–66] has confirmed that LiZn is indeed a deep
acceptor with a ionization energy >0.3 eV. The neutral charge
state of the defect corresponds to a small polaron bound to an
oxygen atom that is adjacent to Li.

2. Configuration coordinate diagram

The calculated 1D cc diagram relevant for hole capture
by a LiZn defect in ZnO is shown in Fig. 6. The calculations
were consistently performed with the HSE hybrid functional
(mixing parameter α = 0.38) and resulted in a value �E =
0.46 eV [66]. In the negative charge state the defect has
C3v symmetry, with an axial Li-O bond length of 2.00 Å,
only slightly larger than the azimuthal Li-O bond lenghts of
1.96 Å. In the neutral charge state the Li atom undergoes a very
large displacement of about 0.4 Å [63–66]. This results in the
increase of one of the Li-O bond lengths to 2.61 Å, and the
decrease of the remaining three to about 1.87 Å. The hole is
bound to the oxygen atom involved in the long bond [64–66];
three Zn atoms closest to this oxygen relax outwards by about
0.16 Å.

Note that in contrast to GaN:CN, in the case of ZnO:LiZn,
�Erel > �E. Therefore the two potential energy curves
intersect for Q < �Q. Another difference with GaN:CN is that
the potential energy curves for ZnO:LiZn are very anharmonic.
The solid curves in Fig. 6 present parabolic fits to the potential
energy values, while dashed lines are fits to a fourth-order
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FIG. 6. (Color online) Calculated 1D cc diagram for hole capture
at the LiZn defect in ZnO. Physical quantities as in Fig. 3. Symbols:
calculated values; solid lines: parabolic fit; dashed lines: a fit to a
fourth-order polynomial. Note that for the neutral charge state the
parabolic fit is performed only for Q > 0.

polynomial. We need to make an important point here: while
we use the harmonic approximation in the present work, there
is no requirement that the parabolic fit to the potential energy
surface be performed for the entire range of Q values. Indeed,
in order to capture the most essential physics we should focus
on those Q values that are relevant for the transitions under
investigation, i.e., the range of Q values where the potential
energy curves cross. Therefore, in Fig. 6, the potential energy
curve for the neutral charge state has been fitted to a parabolic
curve only for Q > 0. The effective phonon frequencies
derived from the parabolic fits are included in Table I.

3. Calculated hole capture coefficients and
comparison with experiment

The calculated hole capture coefficient Cp for LiZn in ZnO
is shown in Fig. 7 (black solid curve). Our room-temperature
value is Cp = 1.3 × 10−6 cm3 s−1. In Ref. [35] the capture
coefficient was determined from the quenching of the OL. The
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FIG. 7. (Color online) Solid black line: calculated nonradiative
hole capture coefficient Cp at the LiZn defect in ZnO, for �E =
0.46 eV, as determined from our first-principles calculations. Black
dashed lines: the same, but for �E = 0.46 ± 0.05 eV. Blue dashed
lines and diamonds: experimental data from Ref. [33].

quenching occurred in the temperature range 225–300 K, and
fitting yielded values Cp ≈ 5 × 10−6 cm3 s−1, as indicated in
Fig. 7 (diamonds and horizontal dashed line). To determine
the sensitivity of the final result on the value of �E, we have
calculated Cp for �E = 0.46 ± 0.05 eV. As seen in Fig. 7,
changes in �E by 0.05 eV result in changes in Cp by about
a factor of 2. However, in contrast to GaN:CN, smaller �E

yield larger Cp values. This can be understood by considering
the 1D cc diagram in Fig. 6. Since �Erel < �E for all three
values of �E, larger �E yield smaller barriers �Eb, and thus
larger capture coefficients Cp.

The temperature dependence of �E that was important
for GaN:CN at 600 K, is not substantial for ZnO:LiZn at
300 K. At 300 K the band gap of ZnO is lower by about
0.03 eV compared to its 0 K value. Considerations similar to
the one performed for GaN:CN would yield a change in �E by
0.015 eV, translating into a change of Cp by at most 10%.

Both theory and experiment thus confirm that the coefficient
Cp for ZnO:LiZn is larger than that for GaN:CN by about
an order of magnitude. The main reason is the fact that
the potential energy curves for ZnO:LiZn intersect close to
the minimum of the excited state (Fig. 6), rendering the
nonradiative process more likely even at low temperatures.
In addition, we find that the temperature dependence of Cp is
significantly weaker for ZnO:LiZn than in the case of GaN:CN.
This is because the “classical” barrier �Eb for the nonradiative
transition is very small for ZnO:LiZn (Fig. 6). Overall, we
can again conclude that first-principles calculations of hole
capture coefficients at ZnO:LiZn agree very favorably with
experimental data.

C. ZnGa-VN in GaN

1. Defect properties and configuration coordinate diagram

To compare our methodology with the approach used in
Ref. [25], we have also studied hole capture by a neutral ZnGa-
VN complex in GaN, the example that was studied in that work.
In contrast to GaN:CN and ZnO:LiZn, GaN:(ZnGa-VN) is a deep
donor with (+2/+) and (+/0) charge-state transition levels in
the lower part of the band gap. Its defect wave function is
derived mostly from Ga states. To the best of our knowledge,
no direct experimental data are available for this defect.

The approach of Shi and Wang is based on the adiabatic
approach to nonradiative transitions, employing the formula
derived by Freed and Jortner [8]. This should be contrasted to
the static approach used in the current work. The distinction
between the two approaches will be discussed in Sec. V C. The
calculation of Ref. [25] includes the coupling to all phonon
modes.

A 1D cc diagram for ZnGa-VN, relevant for hole capture
by a neutral center, is shown in Fig. 8. The values are again
calculated with a hybrid functional with α = 0.31. Referenced
to the atomic positions in the neutral charge state, the four
cation atoms surrounding the vacancy experience an outward
relaxation in the positive charge state: the Ga atoms move by
about 0.20 Å, while the Zn atom moves by about 0.12 Å.

Our calculated value of �E = 0.88 eV, corresponding to
the (0/+) charge-state transition level, was used in Fig. 8. Our
calculated �E value is close to the value �E = 0.90 eV of Shi
and Wang [25], but this agreement is to some extent accidental,
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FIG. 8. (Color online) 1D configuration coordinate diagram for
hole capture at the ZnGa-VN defect in GaN. Physical quantities as in
Fig. 3. Symbols: calculated values; solid lines: parabolic fit.

since the details of the calculations differ: Shi and Wang’s value
was determined based on a supercell of 300 atoms, without
any finite-size correction, using HSE calculations with α =
0.25 but based on atomic geometries determined at the PBE
level. We estimate that their value after inclusion of finite-size
corrections would be 0.82 eV. As a check we performed the
calculations using the hybrid functional with α = 0.25. Using
the geometry obtained at the HSE level, we obtain a value of
0.67 eV for the (0/+) charge-state transition level. If instead
the geometry is obtained at the PBE level, the value is 0.64 eV.

2. Hole capture coefficients

In Fig. 9, we compare the results of Shi and Wang [25]
with our present results. Shi and Wang’s values of Cp are
presented as a function of T for two different values of
�E, namely 0.6 and 1.0 eV, that encompass the theoretical
values quoted above. The two sets of calculations agree
quite well with each other if we focus on the temperature
dependence of Cp and the trends as a function of �E.
However, our calculated room-temperature values for Cp,
namely 2.4 × 10−9–2.9 × 10−8 cm3 s−1 are consistently about
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FIG. 9. (Color online) Nonradiative hole capture rate at the ZnGa-
VN defect in GaN for different values of �E. Solid line and dashed
lines: this work; symbols: results from Ref. [25].

an order of magnitude larger than those of Shi and Wang,
Cp = 2.6×10−10–2.9 × 10−9 cm3 s−1 for values of �E that
range between 0.6 and 1.0 eV. Also, our first-principles value
for the room-temperature capture coefficient for this defect,
obtained for �E = 0.88 eV (black solid line in Fig. 9),
Cp = 1.0 × 10−8 cm3 s−1, is about 16 times larger than the
corresponding value of Shi and Wang [25].

It is important to try and identify the origin of these
discrepancies, in order to assess whether they are due to
differences in the computational approach and/or differences
in the methodology. This type of analysis helps in establishing
the validity and reliability of the overall approach and provides
important insights. One of the differences between the two
calculations is the treatment of the electronic structure of
the defect. In our approach all the parameters have been
determined consistently using the hybrid functional with
α = 0.31 that yields the correct band gap. In Ref. [25], most
of the results, such as the ground-state geometries, phonon
spectra, and electron-phonon coupling matrix elements, were
determined using the semilocal PBE functional. The two sets
of calculations yield, in particular, very different relaxation
energies �Erel for the ground state. In our approach, this
relaxation energy is 0.67 eV, while the value of 0.43 eV was
used in Ref. [25]. Unfortunately, we were not able to reproduce
this result. Still, to gain insight into the sensitivity to the
underlying electronic structure we repeated our calculations
using a hybrid functional with a fraction α = 0.25 instead of
α = 0.31. This yielded �Erel = 0.62 eV. The calculated values
of Cp decrease by up to a factor of 2, bringing our results in
better agreement with Ref. [25].

Another difference between our approach and that of Shi
and Wang [25] is the inclusion of the scaling factor f ,
discussed in Sec. III E. In the case of the ZnGa-VN complex in
GaN, the coupling between the hole state at the � point and the
defect state is evaluated for a positively charged supercell. If
we consider a particle with zero kinetic energy interacting with
a repulsive potential, the particle would be repelled to infinity.
Therefore the matrix element W̃if as well as the product W̃ 2

if Ṽ

will tend to zero as a function of increasing supercell size
[cf. Eqs. (17a), (17b), and (18)]. As a result, performing the
calculation of electron-phonon coupling for increasingly larger
supercells will not lead to converged results, but rather result
in a decreasing value of the coefficient Cp. It is to combat such
effects that the scaling factor f [Eq. (19)] has been introduced
in the first place [68,69]. This effect was not considered in
Ref. [25] and hence their values obtained for a 300-atom
supercell are underestimated. Using the information provided
in Ref. [25], we estimate that the values of Cp in Ref. [25] are
probably too small by a factor of about 1.5. Proper inclusion
of the scaling factor f would bring the values of Shi and
Wang [25] closer to ours.

The two sources of discrepancies considered so far still do
not account for the fact that our results are more than one
order of magnitude larger than those of Shi and Wang [25].
One might argue that the consideration of all phonon degrees
of freedom in Ref. [25] is, in principle, more accurate than
the reduction of the problem to a single effective phonon
frequency, as we do in the present work. However, the
analysis we will present in Sec. V B indicates that one should
expect the 1D model to underestimate the true result. This
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consideration therefore does not resolve the discrepancy either.
More careful scrutiny traces the difference between the two
approaches to the core assumptions of the method employed
in Ref. [25], which was originally proposed by Freed and
Jortner [8]. The formula of Freed and Jortner is derived
from the so-called adiabatic approach within the Condon
approximation [10,12]. This approach has been recognized
to underestimate nonradiative capture rates [10,12], an issue
to be addressed in Sec. V C.

V. DISCUSSION

In this section, we critically analyze our theoretical ap-
proach and compare calculated capture coefficients to those in
other materials.

A. The strength of electron-phonon coupling

In this section, we discuss the strength of electron-phonon
coupling at defects considered in this work, as expressed
by the matrix elements W̃if (Table I). It is informative to
estimate the maximum possible value of this matrix element,
for typical values of �E and �Q. According to Eq. (13),
we have to find the maximum value of 〈ψ̃i |∂ψf /∂Q〉, where
ψ̃i is the perturbed valence band and ψf is the defect state.
Let us assume that for Q = �Q (Q = 0 corresponds to the
equilibrium configuration of the ground state) the defect state
acquires completely the character of the perturbed valence
band, albeit still localized on Md atoms, with the total
number of atoms in the supercell being Mb. We can then
use our knowledge about the degree of localization of ψ̃i

and ψf , along with the normalization of the wave functions,
to estimate the matrix element. Replacing the derivative by
its finite-difference expression, we see that the maximum
value of 〈ψ̃i |∂ψf /∂Q〉 is ∼ √

Md/Mb/�Q. Therefore a large
W̃if would correspond to W̃if ≈ �E

√
Md/Mb/�Q as per

Eq. (13).
Taking typical values for �E and �Q from Table I,

assuming that Md ≈ 4, Mb = 96, and also that coupling to
only one valence band is present, we obtain W̃if ≈ 1–7 × 10−2

eV/(amu1/2 Å). As shown in Table I, the actual values for the
defects considered here are all within this range. Our estimate
of the maximum value of W̃if yields important insight: for
the defects considered, electron-phonon coupling pertaining
to the special mode Q from Eq. (6) is, in fact, very strong. In
the case of hole capture studied in this work, the coupling is
very effective for the acceptor defects with electronic states
derived from anion 2p orbitals (GaN:CN and ZnO:LiZn), but
is also quite significant for the donor defect [GaN:(ZnGa-VN)]
with electronic states derived mainly from the cation (Ga) 3s

states.

B. 1D versus multidimensional treatment

The nonradiative capture processes studied in this work
have been analyzed employing 1D configuration coordinate
diagrams. Here, we critically review the range of applicability
of this approach.

It is known that different phonons have different functions
during a nonradiative transition [8,84]. Vibrational modes that
couple the two electronic states very efficiently, i.e., those that

yield large electron-phonon matrix elements, are called the
“promoting” modes, whereas the modes that couple strongest
to the distortion of the geometry during the transition are called
the “accepting” modes [84]. A particular mode can, of course,
be both “accepting” and “promoting.”

The 1D treatment of Sec. III C essentially considers only
the “accepting” modes, reducing the treatment to one effective
mode that has the strongest possible “accepting” character,
being completely parallel to the distortion of the defect
geometry during the transition [Eq. (6)]. For the nonradiative
transition to be effective this mode must also have a lot of
“promoting” character, i.e., it must couple the two electronic
states by producing a sizable electron-phonon matrix element
Wif (or W̃if ). One therefore expects the calculated transition
rate in the 1D treatment to be somewhat smaller than the real
one; i.e., the 1D approximation should provide a lower bound.

As we have shown in Sec. V A, for all the defects studied
in this work the “accepting” mode is characterized by a
large electron-phonon matrix element, and therefore has a
lot of “promoting” character. This justifies the use of the 1D
approach for such defects. Still, it should be acknowledged
that our calculated capture coefficients might be slightly
underestimated. In order to include all phonon modes in
a rigorous theoretical treatment, an efficient algorithm to
calculate electron-phonon coupling matrix elements for hybrid
functionals is urgently needed. While the method used in the
present work [cf. Eq. (13) and Fig. 2] is one algorithm to
determine those elements, it is computationally too demanding
if all phonons need to be included.

C. Static and adiabatic formulation of nonradiative transitions

The first-principles methodology presented in this work is
based on the static-coupling approach [9,14,15]. In Sec. III B
we stated that this approach is applicable when carrier capture
rates are much smaller than phonon lifetimes and periods of
lattice vibrations [9]. Now we are in a position to verify this
assumption. Note that as per Eq. (1), carrier capture rate can
mean two separate things. For a given hole its capture time by
any acceptor of the type A is τp = 1/(CpN−

A ) (measured in
seconds). However, for a given acceptor in its negative charge
state, the time it takes to capture a hole is τA = 1/(Cpp). It is
the latter quantity that is of importance when determining the
range of validity of the static approach.

For GaN:CN and ZnO:LiZn, we compared the calculated
values to the experimental results summarized in Ref. [35].
In these experiments, typical hole densities were p ≈ 1013

cm−3 [32]. Using the calculated values for Cp (cf. Figs. 5, 7,
and 9), we estimate hole capture times τA ≈ 10−4–10−7 s.
These values are much larger than typical periods of lattice
vibrations 2π/� ≈ 10−13 s (0.1 ps), or phonon lifetimes,
which are at most a few picoseconds [39]. Thus the transition
between the two electronic states [process (1) in Fig. 1(b)] is
indeed the time-limiting step in carrier capture. This transition
is a rare event; once it happens, the emission of phonons due
to phonon-phonon interaction [process (2) in Fig. 1] occurs
almost instantaneously. The range of validity of the static
approach can be judged for different defects separately. For
example, in the case of hole capture by GaN:CN at room
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temperature, we estimate that the static approach is valid for
hole densities up to p ∼ 1019–1020 cm−3.

In parallel with the static approach, which we advocate
and justified above, a lot of theoretical work on nonradiative
carrier capture employed the so-called adiabatic coupling
scheme [5,8]. In this approach, one chooses Born-
Oppenheimer wave functions �({Q},{x})χ{Q} as a starting
point for perturbation theory. This choice should be con-
trasted to the choice made in the static approach, namely
�({Q0},{x})χ{Q}, where {Q0} is a specific fixed atomic
configuration (see Sec. III B). Many early formulations based
on the adiabatic approach also assumed that the electron-
phonon matrix elements were independent of {Q} [5,8], which
is the Condon approximation for nonradiative transitions.
However, already in the 1970s it was noticed that the adiabatic
approach within the Condon approximation yielded capture
rates significantly smaller than the static approach applied to
the same system [9]. This result was very surprising at the
time; indeed, it was expected that far from the intersection
of potential energy surfaces the two descriptions should yield
very similar physics.

The issue was resolved in the early 1980s by Huang [10],
Gutsche and co-workers [11,12], and Burt [13]. The discrep-
ancy was found to originate in an inconsistent application of the
adiabatic approach. These authors demonstrated that within the
leading order the adiabatic approach does give the same answer
as the static approach, provided the adiabatic approach is
applied consistently. This can be achieved in one of two ways:
(i) by going beyond the Condon approximation in the adiabatic
treatment [10]; or (ii) by considering all nondiagonal terms
in the Hamiltonian [12]. In particular, erroneous omission of
nondiagonal terms can lead to significantly smaller values
of capture rates in the adiabatic approach [12]. This was
exactly the problem of prior theoretical treatments that were
based on the adiabatic approach together with the Condon
approximation [5,8].

The discussion up to this point applies to the case where
nonradiative transitions occur far from the intersection of
two potential energy surfaces. However, when transitions
close to the crossing point are important (as is the case
for ZnO:LiZn and GaN:CN, cf. Figs. 6 and 8), the adiabatic
approach within the Condon approximation fails altogether. In
the adiabatic approach, an avoided crossing occurs between
the two potential energy surfaces, leading to a strong variation
of electronic wave functions and making potential energy
surfaces very anharmonic. In such a situation, adiabatic
wave functions are probably not a good starting point for
perturbation theory [9]. The static coupling scheme, on the
other hand, is still applicable in the regime close to the
intersection of the potential energy surfaces [9,14].

In our opinion, the application of the adiabatic coupling
scheme in Ref. [25], versus the static scheme employed in the
present work, is the major reason for the differences between
our results and those of Ref. [25] (Fig. 9). The results of
Ref. [25] were obtained based on the formula of Freed and
Jortner [8], which uses the adiabatic coupling scheme within
the Condon approximation and will thus tend to underestimate
the values for capture coefficients [10–13].

The theoretical foundations of nonradiative capture
due to multiphonon emission were laid in Refs. [4–15].

References [10–13], in particular, contain important lessons
about the proper application of various approaches. Unfortu-
nately, activity in this field stagnated, partly due to the difficulty
of obtaining sufficiently accurate results with the computa-
tional methods that were available at the time. The current
power of accurate electronic structure methods creates a fertile
environment to achieve the goal of a quantitative determination
of carrier capture rates completely from first principles.

The analysis presented here finds its roots in similar dis-
cussions in the papers from the 1970s and 1980s cited above.
It relates to the underlying theory for describing nonradiative
capture and does not in any way diminish the achievements
of Ref. [25]. Importantly, Shi and Wang [25] proposed an
efficient new algorithm to calculate electron-phonon coupling
constants. The algorithm considers all phonon degrees of
freedom and can in principle also be used in conjunction with
the static approach used in the present work. An extension of
the algorithm to hybrid functionals would be highly desirable.

D. Comparison with other materials

It is instructive to compare our results of capture coefficients
to those in other materials. However, one should keep in
mind that for any given defect the resulting capture rate
depends on many parameters, including: (i) details of the
cc diagram, for example, “classical” barriers for nonradiative
capture �Eb (cf. Figs. 3, 6, 8), (ii) the strength of electron-
phonon coupling [Eqs. (4) and (22)], (iii) the charge state
of the defect [cf. Eqs. (14) and (21)], and (iv) temperature.
Furthermore, many experimental papers report capture cross
sections σ rather than capture coefficients C. As discussed
in Sec. II, the two are related via C = 〈v〉 σ , where 〈v〉 is a
characteristic carrier velocity. In the case of nondegenerate
carrier statistics, the characteristic velocity is the average
thermal velocity 〈v〉 ∼ √

T , which introduces an additional
temperature-dependent prefactor in the expression for σ . These
considerations indicate that the comparison of carrier capture
characteristics of different defects in different materials should
be approached with caution. However, some conclusions can
still be drawn.

Let us consider a specific material, and look at carrier
capture cross sections for a wide range of defects. Those
cross sections will depend on the specific defect, as well as
on temperature. However, one could argue that the maximum
value of capture cross section across all defects and across all
temperature ranges (say, for temperatures where nondegener-
ate carrier statistics apply), would be indicative of the strength
of electron-phonon coupling in the host material.

In their seminal paper, Henry and Lang studied capture
cross sections at defects in GaP and GaAs [4]. The measure-
ments were performed by deep-level transient spectroscopy
over the temperature range 100–600 K, comparable to the
temperature range discussed in the present work. Both electron
and hole capture was studied. Capture cross sections at
various defects ranged from 10−5 to about 100 Å2 for these
temperatures. One could cautiously conclude that ∼100 Å2 is
the maximum capture cross section for any defect system in
GaP and GaAs.

For the three defects studied in the present work, calculated
hole capture cross sections vary from 0.1 to 200 Å2 in GaN
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(Figs. 5 and 9), and from 1000 to 2000 Å2 in ZnO (Fig. 7) for a
similar temperature range. In particular, we find σ = 180 Å2 in
GaN:CN at T = 600 K, and σ = 1000 Å2 for ZnO:LiZn at T =
225 K. As discussed in Sec. IV, these results are in agreement
with the experimental data of Ref. [35]. While our data set is
limited, it is clear that carrier capture cross sections in ZnO and
GaN tend to be larger than those in GaP and GaAs. We attribute
this to the larger strength of electron-phonon interactions in
wide-band-gap materials such as GaN and ZnO, compared
to GaP and GaAs. This strength directly affects the matrix
elements, as discussed in Sec. V A.

These trends for nonradiative capture at defects are in
accord with the knowledge of electron-phonon interactions
in bulk solids. Let us take the interaction of free carriers with
longitudinal optical (LO) phonons as an example. The strength
of this interaction can be characterized by a dimensionless fac-
tor, the Fröhlich parameter αF = e2/�

√
m/(2�ωLO)(1/ε∞ −

1/ε0) (in SI units) [85]. For holes, αF ≈ 0.15 in GaAs and
αF ≈ 0.2 in GaP, while αF is about 1.0 in GaN and 1.5 in
ZnO, indeed indicative of stronger interaction.

VI. CONCLUSIONS

In conclusion, we have developed a first-principles method-
ology to study nonradiative carrier capture by means of
multiphonon emission at defects in semiconductors. All the
parameters, including the electron-phonon coupling, have
been determined consistently using hybrid density functional
calculations, which yield accurate bulk band structures as well
as defect properties. Significant simplifications occur due to
the implementation of a 1D model, for which we provided
extensive justification, and which also yields useful insights
into the defect physics. We applied our methodology to several

hole-capturing centers in GaN and ZnO. The resulting capture
coefficients are large, and in agreement with experimental
data. We conclude that state-of-the-art electronic structure
techniques, when combined with reliable methodological ap-
proaches, are capable of accurately describing carrier capture
processes. The methodology thus allows generating reliable
information for defects for which experimental information
is incomplete—which seems to be the case for the majority
of defects that are potentially relevant for charge trapping
or SRH recombination in semiconductor devices. The com-
bination of a first-principles approach with experiment can
also be a powerful aid in the identification of defects. Fi-
nally, our first-principles approach allows making predictions
for new materials for which no experimental data are yet
available.
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