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Analytic solutions to the central-spin problem for nitrogen-vacancy centers in diamond
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Due to interest in both solid-state-based quantum computing architectures and the application of quantum
mechanical systems to nanomagnetometry, there has been considerable recent attention focused on understanding
the microscopic dynamics of solid-state spin baths and their effects on the coherence of a controllable, coupled
central electronic spin. Using a systematic approach based on the spatial statistics of the spin-bath constituents,
we develop a detailed, purely analytic theory for the central-spin decoherence problem of a nitrogen-vacancy
center electron coupled to its native 1.1% bath of 13C nuclear spins. Our theory reproduces the experimental
and numerical results found in the literature, and provides a detailed theoretical description of the relevant
decoherence profiles, their associated rates, corresponding electron spin-echo envelope modulations features,
and an explicit analytic account of why the strength of an applied magnetic field has such a profound effect on
the coherence time of the central spin.

DOI: 10.1103/PhysRevB.90.075201 PACS number(s): 76.60.Lz, 75.40.Gb, 76.30.Mi

I. INTRODUCTION

The central-spin problem refers to a special class of open
quantum systems, in which a central spin (S) interacts with
a large number of strongly coupled spins in the environment
(E), as depicted in Fig. 1. This results in an irreversible loss of
quantum information from the central system, as quantified by
the decay of phase coherence between its corresponding basis
states, such that certain elements of the system are no longer
able to interfere with each other. In the case of pure dephasing
processes, for which there is no energy transfer between the
system and the environment, this results in a damping of the
off-diagonal terms of the associated reduced density matrix
of S,

TrE{ρ(t)}ij = Lij TrE{ρ(0)}ij , (1)

where TrE{. . .} denotes a trace over the environmental degrees
of freedom of the density matrix ρ, Lij = exp[−�ij (t)] is
often referred to as the decoherence envelope, and �ij as the
decoherence function. It is the derivation of these quantities in
the context of the central-spin problem with which we concern
ourselves in this work.

This problem has received renewed attention over the
last decade, due in no small part to localized electrons in
solids being promising candidates for qubits in quantum
computation, metrology, and communication systems, a result
of their long coherence times, ease of quantum control,
and already well-established fabrication techniques. In the
context of quantum information processing, the utility of
these systems hinges upon the requirement for spin coherence
times to be sufficiently long to ensure that the necessary
number of quantum operations [1] can be performed within
the associated coherence time. Examples of such systems that
have been suggested as building blocks for quantum computer
architectures include spins qubits in quantum dots [2,3],
donor impurities [4–7], and nitrogen-vacancy (NV) centers
in diamond [8]. In the context of metrology, with particular
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regard to parameter estimation, the NV center has emerged as a
unique physical platform for nanoscale magnetometry [9–13],
nano-NMR [14–16], bioimaging [17–19], electrometry [20],
thermometry [21], and decoherence imaging [22–26]. In each
case, the associated sensitivity is ultimately limited by the
coherence properties of the NV spin that arise from the
strong coupling to the surrounding bath of electron and/or
nuclear spins. In all of these applications and platforms,
a comprehensive understanding of the central-spin problem
is therefore necessary to make accurate predictions of the
quantum properties and behavior of the central spin arising
from the material properties of the surrounding environment.

The first modern approach to this problem, in the context of
phosphorus donors in silicon, involved treating the combined
effect of the spin-bath environment on the central spin as a
semiclassical magnetic field whose dynamic properties were
intended to mimic the magnetic dipole flip-flop processes
taking place amongst the environmental spins [27,28], and
has since found considerable application in the NV commu-
nity [10,29–34]. This approach, however, does not account for
the effect of the central spin on the surrounding environment,
restricting its application to cases in which environmental
spin-spin interactions are significantly stronger than couplings
between the environment and the central spin (as is the case
with NV centers in diamond nanocrystals [26], for example).
In order to account for the full interaction between the central
spin and its environment, quantum cluster expansion [35–37],
nuclear pairwise [38–40], correlated cluster expansion [41,42],
and disjoint cluster expansion [30] models have been devel-
oped, in which the environment is systematically clustered
into groups of strongly interacting spins, with each order of
the cluster hierarchy corresponding to successively weaker,
and hence less important, interactions.

The nitrogen-vacancy (NV) center (see Ref. [43] for an
extensive review) is a point defect in a diamond lattice
comprised of a substitutional atomic nitrogen impurity and
an adjacent crystallographic vacancy [Fig. 2(a)]. The energy
level scheme of the C3v-symmetric NV system [Fig. 2(b)]
consists of ground (3A), excited (3E), and metastable (1A)
electronic states. The ground-state spin-1 manifold has three
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FIG. 1. (Color online) Schematic of the central-spin problem
showing a central spin coupled to clusters of randomly distributed
environmental spins. The large central sphere represents the region
concentric on the central spin inside which we expect to find, on
average, less than one environmental spin.

spin sublevels (|0〉,|±1〉), which in zero field are split by
2.88 GHz. An important property of the NV system is that
under optical excitation the spin levels are distinguishable
by a difference in fluorescence, hence, spin-state readout is
achieved by purely optical means [44,45]. The degeneracy
between the |±1〉 states may be lifted with the application
of a background field, with a corresponding separation of
17.6 MHz G−1 permitting all three states to be accessible
via microwave control, however, the |±1〉 states are not
directly distinguishable from one another via optical means.
By isolating either the |0〉 ↔ |+1〉 or |0〉 ↔ |−1〉 transitions,
the NV spin system constitutes a controllable, addressable spin
qubit.

The large zero-field splitting is fortuitous in the present
context, in that it renders typical NV-environment spin-spin
couplings (of roughly MHz) unable to cause transitions in the
ground-state spin-triplet manifold. While the weak spin-orbit
coupling to crystal phonons (and low phonon density, owing to
the large Debye temperature of diamond) leads to longitudinal
relaxation of the spin state on time scales of roughly T1 ∼
10 ms at room temperature, the lateral relaxation (T2) of the
NV spin is determined by the dipole-dipole coupling to other
spin impurities in the diamond crystal and can occur on time
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FIG. 2. (Color online) (a) The nitrogen-vacancy (NV) center
point defect in a diamond lattice, comprised of a substitutional atomic
nitrogen impurity (N) and an adjacent crystallographic vacancy
(V). (b) The NV ground state spin sublevels are separated by
D = 2.87 GHz. Upon optical excitation at 532 nm, the population of
the |0〉 state may be readout by monitoring the intensity of the emitted
red light.

scales of 0.1–1 μs in naturally occurring type-1b diamond.
Such coherence times may be greatly extended with the use of
higher-grade diamond crystal, or with the application of spin-
echo [46] or higher-order dynamic decoupling sequences to
suppress the effect of the surrounding spin bath on the NV spin.
For example, the use of “ultrapure” diamond crystal with parts-
per-billion (ppb) concentrations of nitrogen electron donor
impurities (as compared with naturally occurring concentra-
tions of parts-per-million or more) leads to 13C nuclear spin
limited spin-echo coherence times of T2 ∼ 100 μs − 1 ms.
Such results are by no means fundamental, however, and may
be further improved with the use of isotopically pure diamond
crystal with reduced 13C concentrations [11]. As such, T2 may,
at least in principle, be as long as the longitudinal relaxation
time T1. These relatively narrow spectral properties of the NV−
ground state, together with its room-temperature operation and
optical readout, make it an ideal candidate for both single
spin-based magnetometry and electrometry. As such, the NV
spin coupled to a surrounding bath of 13C nuclear spins of
natural abundance (1.1%) is the primary physical system with
which we concern ourselves for this study.

Traditionally, the theoretical analysis of the central-spin
problem has been based on phenomenological assumptions
regarding the self-interaction dynamics of the surrounding
spin bath, namely, by replacing the bath with a classical
Ornstein-Uhlenbeck noise source [47,48]. This noise gives
rise to fluctuations in the Larmor frequency of the central
spin and leads to an eventual dephasing between its initially
coherent basis states, a process referred to as spectral dif-
fusion. Such approaches ignore the influence of the central
spin on the surrounding environment, and require ad hoc
assumptions regarding the decaying exponential form for
the autocorrelation function of the effective magnetic dipole
field 〈B(t)B(t ′)〉 ∼ 〈B2〉 exp(|t − t ′|/Tc), with the decay rate
being deduced from the effective environmental flip-flop
rates [27,28]. This assumption of a linear exponential decay
gives rise to a cubic exponential decay in the coherence of the
central spin under a spin-echo pulse sequence for times shorter
than the autocorrelation time (see Ref. [49] for a review). In
this work, we show that a magnetization conserving two spin
flip-flop models must have an autocorrelation function with
zero derivative at t = t ′, which cannot be satisfied by a function
of this form.

One of the earliest modern attempts at deriving the auto-
correlation time from consideration of microscopic physical
processes was given in Ref. [28]. Here, each magnetic dipole
coupled nuclear spin pair (consisting of spins m and n)
was treated as a bistable fluctuator, where the number of
transitions between states in a given time interval t is treated
as a Poissonian variable with parameter t/Tmn. The effective
flip-flop rate of the pair 1/Tmn could then be calculated using
their mutual dipolar coupling strength via perturbation theory,
resulting in a linear exponential decay of the autocorrelation
function. However, this still requires certain phenomenological
assumptions to be made about the associated density of states,
and does not address the microscopic reasons behind how
the Tmn quantities are distributed. Adopting this approach in
the context of NV based quantum sensing applications would
mean that, for a given T2 measurement of a NV spin coupled
to its native bath of 13C spins, one would be led to infer that the
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associated correlation time of the environment is three orders
of magnitude longer than its true value. As an example, using
the treatment of the nuclear spin bath in Ref. [10], typical
coherence times of T ∗

2 = 1 μs and T2 = 300 μs would imply
a correlation time of Tc = T 3

2 /[6(T ∗
2 )2] = 4.5 s. This is in stark

contrast to what would be expected from an examination of the
average nuclear-nuclear coupling strength of 1/nb ∼ 40 ms,
based on an average impurity density n ≈ 2 nm−3, and indeed
the correlation times of Tc ≈ 10 ms calculated in this work.
These problems are addressed and clarified in what follows, as
our results show that the spatial distribution of spins around the
central spin has a significant effect on the analytic form of the
autocorrelation function and, subsequently, that of the resulting
decoherence functions. This is critical to the development of
spin-based quantum technologies, as there have been many
quantitative predictions of better performance with the use of
pulse-based microwave control schemes [10,13,50], and the
exact analytic form of the spectral cutoff was shown to directly
affect the performance of such schemes [51,52].

In this work, we show that this discrepancy arises from
ignoring the backaction of the environment on the central spin.
This simplification can only be made when the interaction
strengths between the environmental constituents far exceed
the interaction between the central spin and this environment.
Such a regime is characterised by a very dense distribution
of environmental spins, while having the central spin exist
at a relatively large spatial separation from this distribution,
as is the case when using the NV to sense dense, external
environments [24–26], or for the case of a central nuclear spin
coupled to a bath of electron spins. When such a regime is
realized, correlations within the environment decay before the
influence of the central spin can have any effect, meaning the
latter can be ignored. This is not the case for a NV center
coupled to the naturally occurring 1.1% 13C nuclear spin bath
in diamond. Cases in which these couplings are of similar
magnitude, as with the P1 electron bath of type-1b diamond,
fall somewhere between these two limits, and are thus beyond
the scope of this work.

In response to the limitations of semiclassical models, fully
quantum mechanical approaches to the problem have been de-
veloped in the last decade using cluster expansion [35–37] and
correlated cluster expansion [41,42] methods. In the case of
the former, the randomly distributed spins are aggregated into
small, strongly interacting groups, meaning this method is well
suited to sparse distributions. The latter method shows better
convergence in cases where bath sites are densely populated
with impurities, or where the decoherence time of the central
spin is comparable to, or longer than, the autocorrelation time
of the environment, as is the case with a bath of electron spins.
In the opposite regime, as would be the case for an electron spin
coupled to a nuclear spin bath, these two approaches agree,
and to lowest nontrivial order they are in accordance with
earlier nuclear pair-correlation approaches [38–40]. In this
limit, at least for short times (t 	 T2), all of these approaches
are shown to be consistent with a quartic-exponential decay,
the likes of which may also be deduced using a generalized
semiclassical argument [23]. The numerical work in Ref. [35]
shows that numerical computation of the combined effect of
many randomly distributed nuclear spin clusters leads to an
approximately Gaussian decay of coherence in phosphorous

donor electron spins in silicon on time scales of t ∼ T2, the
likes of which have also been observed experimentally in NV
spins in ultrapure diamond [53]. In this work, we derive the
analytic forms of the decoherence functions on all relevant
time scales, showing agreement with the t 	 T2 and t ∼ T2

limits noted above.
In cases of relatively strong hyperfine interactions resulting

from low magnetic field regimes, direct dipole-dipole cou-
plings are either treated as a perturbation [37,54], or ignored
completely [55–58]. We note that such approaches are not
applicable to the system studied here, as the NV spin spends an
appreciable amount of time in its |0〉 state, during which the hy-
perfine interaction is effectively turned off. This, in turn, means
that environmental spins are free to evolve exclusively under
their mutual couplings, and information previously encoded
onto them from the central via the hyperfine interaction is free
to propagate throughout the environment (see Fig. 3). Despite
the techniques developed in the above references not being
relevant to the NV-13C system, it is important to appreciate the
distinction between what is meant by “low field” in the context
of the Ga:As and P:Si systems mentioned within, and that of
the system studied here. In the case of the former, the dominant
interaction between environmental constituents is due to
hyperfine-mediated flip flops, resulting from environmental
spins becoming increasingly coupled to the lateral components
of the central spin with decreasing magnetic field strength.
This is a consequence of the Zeeman energies of the central
electron approaching that of the surrounding nuclei, meaning
the two are able to exchange magnetization with appreciable
probability. Such effects are negligible in the case of NV
centers in diamond, owing to its 2.88-GHz zero-field splitting.
Here, the strength of the magnetic field determines whether

(a) NV spin in |+1〉 state

(b) NV spin in |0〉 state

FIG. 3. Schematic depicting the two-step process of NV spin
decoherence. In the first step (a), the NV spin is in its |+1〉 state, and
quantum information regarding the NV spin state is imparted onto
the environmental nuclear spins via the hyperfine interaction. This
process is effectively reversible, as the nuclei cannot interact due to
the strong hyperfine field of the NV. When the NV spin is flipped
into its |0〉 state (b), the hyperfine coupling is turned off and this
information is free to propagate throughout the lattice via the nuclear
dipole-dipole interaction, rendering its loss irreversible.
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the quantization axis of a given bath spin is determined by
its Zeeman interaction, or by its coupling to other spins. This
distinction that has a dramatic on the bath dynamics, and hence
the decoherence properties of the NV spin.

Finally, we remark that any short-time expansion is only
valid for times shorter than the reciprocal of the strongest
dipolar coupling frequencies in the system, and of particular
concern is that any two spins can be found arbitrarily close
together (or effectively so on the length scales of the system),
making an expansion in low orders of these couplings diverge.
In this limit, it is the dipolar interaction between environmental
spins that sets their quantization axis, not the Zeeman
interaction, invalidating the assumption of each cluster’s
magnetization being conserved with respect to the global z

axis. This is another instance where consideration of the spatial
distribution of spin impurities becomes important, and despite
being able to describe the decoherence in the compact forms
given by the works described above, no discussion has been
made regarding the statistical distributions of the spin-spin
coupling strengths. Instead, one is forced to resort to Monte
Carlo based numerics at this point. The possible outcomes for
various realizations of spatial distributions of spin impurities
for the case of a NV center coupled to a nuclear spin bath
have been numerically investigated in Refs. [30,59,60], and
that for electron donors and quantum dots in silicon in
Ref. [60]. An extensive numerical study of the dependence of
the coherence properties of a NV center on the strength of the
applied background magnetic field was conducted in Ref. [59],
taking both realistic hyperfine distributions and environmental
spin-spin interactions into account. In what follows, we
present a fully analytic, quantum mechanical description of
the effects of the entire range of magnetic field strengths on
a central spin coupled to a completely randomly distributed
spin bath. Not only do our results demonstrate remarkable
agreement with those of Ref. [59], we also analytically explain
many decoherence features within, such as the magnetic field
dependence of NV decoherence envelopes and associates
electron spin-echo envelope modulations (ESEEM) features.

II. THEORETICAL BACKGROUND

The Hamiltonian describing this system is given by

H = HS + HSE + HEZ + HEE, (2)

where HS is the self-Hamiltonian of the central electron spin,
which may include the coupling of the NV spin to its proximate
nitrogen nuclear spin, as well as zero field and Zeeman
splittings. The hyperfine interaction between the central spin
(S) and the environment (E) is described by HSE, which in
the present context is a point-dipole interaction, but may also
include Fermi-contact interactions in other systems. This is
described by

HSE =
∑

i

a

R3
i

[

S · 
Ei − 3

( 
S · Ri)(Ri · 
Ei)

R2
i

]
, (3)

where 
S and 
Ei are the spin-vector operators for the NV spin
and the ith environmental spin, Ri is their mutual separation,
and a = μ0

4π�
μSμE. The magnetic moments of the NV and

environmental spins are denoted μS and μE, respectively. The

large zero-field splitting is some three orders of magnitude
greater than any other coupling in this system, allowing us to
ignore any coupling to the lateral components (Sx and Sy) of
the NV spin.

The Zeeman (Z) interaction of the environmental spins is
described by HEZ = ∑

i

Ei · 
ωi , where 
ωi = γEB0 describes

the Zeeman field felt by spin i, having gyromagnetic ratio
γE = μE/�, due to a background field B0.

The nuclear spin-spin interactions (E) are described by

HEE =
∑
j<i

b

r3
ij

[

Ei · 
Ej − 3

( 
Ei · rij )(rij · 
Ej )

r2
ij

]
, (4)

where rij is the mutual separation of spins i and j , and b =
μ0

4π�
μ2

E.
In the case of large Zeeman couplings, some transitions

between environmental spin states due to the hyperfine
and dipolar interactions will be disallowed due to energy
conservation, ensuring that the total axial magnetization of the
spins involved in the interaction is conserved. However, at low
fields, the energy cost for these transitions may be easily paid
for by these interactions, meaning that axial magnetization
need not be conserved. In what follows, we refer to (non)axial
magnetization conserving transitions as being “(non)secular.”

For a given spin Ei , we may classify its parameter regime
in terms of the relative strengths of the energy scales con-
sidered above: spin-environment coupling (S), environment
self-coupling (E), and Zeeman splitting (Z), as determined
by the Hamiltonian components HSE, HZE, and HEE, respec-
tively. This gives rise to six distinct parameter regimes, as
summarized below, and depicted schematically in Fig. 4, and
parametrically in Figs. 6 and 7 for various examples of physical
systems.

For the sake of brevity, we label these six regions according
to the relative strengths of the environmental couplings. For
example, a label of ZSE (read Z>S>E) would imply that
both S-E and E-E couplings are secular (a consequence of
their quantization axis being set by the Zeeman field), and
that the spins couple more strongly to the NV than to each
other. Conversely, a label of ESZ would imply that both S-E
and E-E couplings are nonsecular, and that the spins couple
more strongly to each other than to the NV (see Fig. 5). The
geometric boundaries on these regimes are summarized in the
following.

In the ZSE regime, the nuclei are sufficiently far from both
the NV and each other that the Zeeman interaction dominates
over both the hyperfine and dipolar interactions, ensuring that
both classes of interactions must conserve axial magnetization.
The 〈H2

ZE〉 � 〈H2
SE〉 � 〈H2

EE〉 condition yields the following
constraints on the geometry of the cluster:(

a

ω

)1/3

� R � r

(
a

b

)1/3

,

R

(
b

a

)1/3

� r < ∞.

Clusters in the SZE regime are sufficiently close to the NV to
ensure that the hyperfine coupling dominates over the Zeeman
interaction, however, the associated nuclei are still far enough
apart to ensure that the Zeeman interaction is larger than
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FIG. 4. (Color online) Schematic showing the parameter regimes
relevant to the central-spin problem. (a) Ultrastrong coupling region,
in which the interaction between the NV center and an adjacent spin
is stronger than its 2.88-GHz zero-field splitting. This region is not
considered in this work. (b), (c) Strong coupling region, in which the
coupling of the spins to the NV center is stronger than their coupling
to a background field. In (b), the spins are weakly coupled to each
other and are representative of two possible regimes: SEZ and SZE.
In (c), the spins are strongly coupled to each other and thus represent
the ESZ regime. (d), (e) Weak coupling region, in which the coupling
of the spins to a background field is greater than their coupling to
the NV. In (d), the spins are weakly coupled to each other and hence
represent the ZSE and ZES regimes. In (e), the spins are strongly
coupled to each other and represent the EZS regime.

their mutual dipolar coupling. The 〈H2
SE〉 � 〈H2

ZE〉 � 〈H2
EE〉

condition ensures that

0 � R �
(

a

ω

)1/3

,

(
b

ω

)1/3

� r < ∞.

Clusters in the SEZ regime are both sufficiently tightly bound
and close to the NV to ensure that both hyperfine and dipolar
couplings dominate over the Zeeman interaction, however,
the associated nuclei are still far enough apart to ensure that
the hyperfine interaction is larger than their mutual dipolar
coupling. The 〈H2

SE〉 � 〈H2
EE〉 � 〈H2

ZE〉 condition ensures

R

Strong 
coupling 

sphere
r

2 spin 
cluster

Θ

θ

B

Probe spin

FIG. 5. (Color online) Schematic representation of a two-spin
cluster coupled to a central spin. The separation vector between the
cluster and the central spin is defined by the location of the closest spin
R. The structure of the cluster is defined by the separation vector(s)
of the cluster constituents r. Evaluation of the ensemble-averaged
quantities requires integration over R, and averaging over r.
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FIG. 6. (Color online) Plot showing the locations of the six
parameter regimes in R − r space for a naturally occurring 1.1%
13C nuclear spin bath. The location of the intersection point (blue
crosshairs) changes along the S = E coupling line for different
magnetic field strengths (the main plot depicts the case of 20 G,
and the sequence below depicts the 0.5, 5, 50, and 500 G cases). For
this spin bath, we see that only the regimes where S � E (i.e., SEZ,
SZE, and ZSE) are relevant.

that

0 � R � r

(
a

b

)1/3

, R

(
b

a

)1/3

� r �
(

b

ω

)1/3

.

The remaining three regimes ZES, EZS, and ESZ may be
quantified in an equivalent manner, however, the physical
constraints placed on R and r due to the diamond lattice
render these regimes impossible for a naturally occurring 1.1%
13C nuclear spin bath. This is illustrated in Fig. 6, where the
possible physical locations an environmental spin may occupy
are shown in the shaded region. The constraints on r arise
from the fact that no two spins may be within a distance of less
than one lattice site from each other; whereas having a large
separation means that there is little chance of the two spins in
question being part of the same cluster (this will be quantified
using the probability distributions for spin-spin separation
distances discussed in Sec. IV). Similarly, the constraints on
R arise from the lattice spacing, and the fact that the hyperfine
field vanishes at large R. In particular, we see that, while
changing the background field strength changes the relative
number of spins in the ZSE, SZE, and SEZ regimes, a 1.1%
13C nuclear spin bath will never occupy any regime for which
E � S. That is, in solving for this particular physical system,
we need not consider any of the ZES, EZS, or ESZ regimes.

This will not be true for all spin baths, however, as shown
by Fig. 7, in which 1.1%, 0.3%, and 0.01% 13C nuclear spin
baths are considered, together with naturally occurring type-1b
diamond containing an electron spin bath due to nitrogen donor
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FIG. 7. (Color online) Plot showing the locations of the six
parameter regimes in R − r space for 1.1%, 0.3%, and 0.01% 13C
nuclear spin baths and a naturally occurring electron spin bath arising
from nitrogen donor spins at ppm concentrations. For the latter
example, we see that only the regimes where E � S (i.e., ESZ,
EZS, and ZES) are relevant.

impurities at parts-per-million (ppm) concentrations. The latter
example presents a stark contrast to the 1.1% 13C case, as
the only appreciable regimes that need be considered here
are ZES, EZS, or ESZ, a consequence of the comparatively
strong electron-electron coupling of the environmental spins,
however, electron spin baths are not the focus of this work.

In the present context, we define the decoherence of the
NV as the loss of coherence between the |0〉 and |+1〉
states of the NV spin. This corresponds to the decay of the
off-diagonal terms in the corresponding density matrix, and
may be computed directly from the lateral (in the x-y plane)
projection of the NV magnetization vector L = 〈Sx + iSy〉. As
the decoherence generally leads to a decay of this signal, we
define a “decoherence function” �(t), such that we may write
L = e−�(t), and we refer to the time taken to reach �(t) = 1
as the “coherence time.” Our task is then to determine the
functional form of � in response to the separate parameter
regimes discussed above.

In order to determine the full decoherence behavior due to
all spins in the environment, we may break up the environment
into separate clusters consisting of strongly interacting spins
and ignore the comparatively weak interactions between
adjacent clusters. By virtue of the large zero-field splitting, and
the maximum hyperfine coupling for an adjacent 13C being of
order 40 MHz, the NV spin exists in a “pure dephasing” regime
in which only the relative phases of the spin states change and
the respective populations do not. This will not be true for
electron spin baths in the high-density limit, however, such
systems are beyond the scope of this work. We may then write
the Hamiltonian as H = ∑

k Hk, where Hk acts only on the
kth cluster. Since all of the Hk’s commute, the time-evolution
operator may be factorized as U(t) = ∏

k Uk(t). This implies
that the full decoherence function is then simply a sum over all
geometric configurations and locations of the environmental
clusters. We note that this result will break down near the

anticrossing of the NV spin states at roughly 1024 G, as the
nuclear spins will be able to exchange energy with the NV
spin. However, as the linewidth of the spin bath is of order
kHz, this effect corresponds to a very narrow magnetic field
interval of roughly 0.1 G and is therefore ignored.

As we will show, incorporation of higher-order clustering
has no effect on the leading-order behavior of the decoherence
function, and is thus not important for the decoherence
behavior in the presence of low-order pulse sequences such as
free-induction decay (FID) and spin echo. In the following, we
examine the decoherence functions associated with individual
clusters of environmental spins, and then move on to discuss
the statistics associated with how the environmental spins are
distributed spatially. These distributions will then be used to
compute the full decoherence behavior due to all clusters in the
environment. In doing so, we consider two types of averaged
quantities: the complete ensemble-averaged behavior of a large
number of NV centers, each exposed to a separate realization of
the environmental impurity distribution; and the “most likely”
single realization of this distribution.

In light of the multitude of possible outcomes for the
environmental spin distribution, and the large variation in the
spin-echo behavior that results from this [12], we have chosen
to place the majority of our focus on the ensemble-averaged
behavior (i.e., as averaged over a large number of realizations
of the environmental distribution), as is a standard approach
for studies of this problem. Moreover, large ensembles of NV
centers are fast becoming a common platform for sensing
magnetic fields that are both weak in magnitude and complex
in spatial variation [19,24,61], meaning a theoretical under-
standing of the ensemble’s collective behavior is necessary for
its correct implementation. In this case, we regard every lattice
site as having equal likelihood (1.1%) of being occupied by
an impurity, and we average over all possible outcomes of the
environmental distribution. In the case of a single realization,
however, there will be a certain length scale surrounding the
NV within which we do not expect to find any environmental
spins, leading to a significant difference between the short-time
behavior of the ensemble and that of a single realization of the
environmental distribution. While the large variation in the
possible realizations of this distribution make it difficult to
account for every possible outcome, this approach allows us
to investigate the short-time behavior of the system resulting
from not having every site occupied. We note that the size of
this void is essentially a free parameter, however, its properties
may be quantified using the spatial statistics developed below.
As we will see, this approach accurately accounts for the
differences in behavior observed in experiments on ensemble
and single-realization samples.

Owing to the lengthy quantitative development of the
material presented in this work, we give an upfront discussion
of the main results in the following section. The physics
underpinning these results and the associated consequences are
touched upon, however, all associated derivations and proofs
are deferred until the relevant Appendix.

III. SUMMARY OF MAIN RESULTS

In this section, we give a summary of the main results of
this work. This is done in the context of the three dynamic
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processes taking place in the NV-13C composite system that
are responsible for the decoherence of the NV spin. In each
of these three cases, we begin by first considering isolated
clusters of environmental spins, and then describe the effect
of the environment as a whole, by summing the contributions
from the individual clusters and averaging over all possible
geometric configurations using the spatial statistics developed
in Sec. IV. This allows us to rigorously determine both the time
scales and exact analytic forms of the line shapes associated
with each of the physical processes taking place in this system.

In the first instance, we examine the “natural” dynamics
of the 13C spin-spin environment (E-E) in the absence of the
hyperfine field from the NV spin, and how these dynamics
are influenced by their spatial distribution. We note that,
despite the absence of the NV’s influence, this scenario is
not as unrealistic as it may seem, as there is no effective
hyperfine field when the NV spin is in its |0〉 state, meaning
the environment is free to evolve as if the NV were not
present. The autocorrelation (or spin-spin relaxation) times
of the environment are found to be of the order of Tc ≈ 10 ms,
and are shown to be independent of the background magnetic
field strength. This is in contrast to the analytic shape of
the decay profile, which is shown to change dramatically
over the range of field strengths considered. This is shown
to be a consequence of whether the quantization axis of the
environmental spins is set by their mutual coupling or by the
external magnetic field. The details of this analysis may be
found in Sec. V.

Having discussed the dynamic properties of the unperturbed
spin-bath environment, the second and third cases are focused
on the effect such an environment has on the coherence
properties of a central NV spin. In the second case, we consider
the effect of this hyperfine field (S-E) on the surrounding
13C spins while ignoring the mutual spin-spin interactions
examined in the previous case. Such an approximation is only
valid for time scales that are much shorter than Tc, thus, we
restrict ourselves to consideration of the FID, which occurs on
time scales of T ∗

2 ∼1–10 μs. From this analysis, we show that
the FID of the central NV spin may be completely explained
using an environment of 13C spin that are uncoupled from one
another. FID profiles are shown to exhibit a Gaussian-shaped
decay for time scales less than that associated with the
maximum hyperfine coupling in the system, followed by an
abrupt transition to a linear-exponential decay. This leads
to dramatic differences between profiles associated with an
ensemble of NV spins and those due to single realizations of
the environmental spin distribution. In the case of the former,
the maximum possible hyperfine coupling is of the order of
100 MHz, meaning that the FID shows an exponential decay
on all experimentally relevant time scales. On the other hand,
in a typical realization of the environmental distribution, the
nearest spin is likely to be more than a nanometer away, giving
rise to hyperfine couplings of a few MHz or less. As such,
FIDs of single NV spins typically exhibit a Gaussian shape.
By increasing the strength of the external magnetic field, we
may control whether the quantization axis of the environmental
spins is set by the hyperfine coupling, or by the field itself. The
transition from the former to the latter results in an increase
in T ∗

2 by a factor of approximately 1.80 in the case of an

ensemble, and approximately 1.58 in the case of a typical
single realization of the environmental distribution. The details
of this analysis may be found in Sec. VI.

In the final case, having investigated both E-E and S-E
processes separately, we move on to the analysis of the
NV spin coherence in the presence of a spin-echo pulse
sequence, as detailed in Sec. VII. This decoherence results
from a combination of the E-E and S-E processes discussed
above in what is essentially a two-stage process: entanglement
between the NV spin and the surrounding spins is generated
via the hyperfine interaction when the NV is in its |+1〉
state, however, the hyperfine field simultaneously prevents
these spins from communicating with each other to any
appreciable degree. Information about the NV that is encoded
onto the environmental spins is therefore only able to propagate
throughout the bath once the NV spin is pulsed into its |0〉
state and the hyperfine field is removed. Our results show that
spin-echo coherence times may range from T2 ∼ 100 μs to
T2 ∼ 1 ms, depending on the strength of the background field;
a consequence of the transition from SEZ to SZE through
to ZSE regimes. We initially consider scenarios in which the
decoherence can be attributed to environments existing in each
of these regimes exclusively, and then move on to consider
the full dependence of the decoherence on the magnetic field
strength.

The analytic shape of the spin-echo envelopes shows a
complex time dependence. In all three regimes, an initially
quartic exponential decay (� ∼ t4) is exhibited on free-
precession time scales of t < T ∗

2 . In the purely SEZ regime,
this transitions to a cubic dependence (� ∼ t3) for times
T ∗

2 < t 	 T2, whereas the SZE and ZSE regimes exhibit
a (� ∼ t11/3) dependence on these time scales. Finally, as
free-precession time scales approach the coherence time T2 and
beyond, all three regimes exhibit a Gaussian decay (� ∼ t2).
It is the latter which is the most relevant to experiments
conducted on NV centers coupled to a 13C nuclear spin bath.

In analyzing the system’s response to a spin-echo pulse
sequence, we also perform a detailed analysis of the periodic
decays and revivals in the spin-echo envelope at moderate
background magnetic field strengths. These revivals occur at
half the Larmor frequency of the environmental spins, and
are referred to as electron spin-echo envelope modulation
(ESEEM). In addition to the revival frequency, both the
depths of the decay valleys and the widths of the revival
peaks show a very strong, nontrivial dependence on the
background magnetic field strength. Specifically, we find
that the depths to which these features decay scales as
|�ESEEM

ZSE | ∼ (354 G/B0)2 in the ZSE regime, meaning that the
peaks do not decay completely in this regime (see Fig. 15).
As the magnetic field is reduced to the SZE regime, not only
do the peaks decay completely, their heights transition to a
|�ESEEM

SZE | ∼ 860 G/B0 dependence on the background field
strength. At high fields, the peak widths show a dependence
of T

(ZSE)
W ∼ 61 μs G1/2/

√
B0, which transitions to T

(SZE)
W ∼

121 μs G2/3/B
2/3
0 in the SZE regime as was shown previously

in the numerical work of Ref. [59]. In this work, we show
that such behavior arises when considering time scales that
are longer than that characterizing the hyperfine interaction
(t ∼ T ∗

2 ), as is the case when ESEEM peak widths exceed T ∗
2
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TABLE I. Table summarizing the main results of this work. Note that consideration of the hyperfine field is not relevant to the discussion
of the unperturbed nuclear-nuclear dynamics of the environment, meaning that ZSE and SZE effectively describe the same regime. Similarly,
when discussing the purely hyperfine driven evolution of the environment, nuclear spin-spin couplings are not considered, meaning that SEZ
and SZE describe the same regime.

Nuclear-nuclear dynamics Low field (SEZ) Moderate field (SZE) High field (ZSE)

Fundamental time scales
Maximum nuclear spin-spin coupling Tb 300 μs 300 μs
Correlation time of effective nuclear field Tc 10 ms 10 ms

Autocorrelation function 〈B(t)B(0)〉/〈B2〉
Ensemble (0 < t � Tb) ∼1 − (t/Tb)2 ∼1 − (t/Tb)2

Ensemble (Tb 	 t ∼ Tc) ∼1 − (t/Tc) ∼1 − (t/Tc)5/3

NV-nuclear (hyperfine) dynamics

Fundamental time scales
Maximum hyperfine coupling Ta ∼10 ns ∼10 ns
FID time T ∗

2 (ensemble) 1.63 μs 2.92 μs
FID time T ∗

2 (typical single realization) 3.53 μs 5.58 μs

FID decoherence envelope LFID

Ensemble exp(−t/1.63 μs) exp(−t/2.92 μs)
Typical single realization exp[−(t/3.53 μs)2] exp[−(t/5.58 μs)2]

Combined dynamics

Spin-echo decoherence
Coherence time, T2 155 μs 780 μs 900 μs
Envelope LSE (0 < t 	 T ∗

2 ) exp[−(t/36 μs)4] exp[−(t/75 μs)4] exp[−(t/91 μs)4]
Envelope LSE (T ∗

2 < t 	 T2) exp[−(t/250 μs)3] exp[−(t/840 μs)11/4] exp[−(t/933 μs)11/4]
Envelope LSE (t ∼ T2) exp[−(t/155 μs)2] exp[−(t/780 μs)2] exp[−(t/900 μs)2]

ESEEM
Revival period 2π/(γEB0) N/A 1.8 ms G/B0 1.8 ms G/B0

Decay depth N/A 1 − exp(−860 G/B0) 1 − exp[−(354 G/B0)2]
Peak width TW N/A 121 μs G2/3/B

2/3
0 61 μs G1/2/

√
B0

(below approximately 200 G), making short-time expansions
of decoherence functions invalid.

Finally, we move on to discuss the validity of taking a
semiclassical approach to modeling this system, in which the
influence of the environment on the NV spin is replaced by
an effective magnetic field whose dynamics may be inferred
via consideration of the environmental interactions. We show
that such an approach, when applied to a 1.1% 13C nuclear
spin bath, gives results that are in direct conflict with both
experimental and numerical results, as well as the analytic
results of this work. The reason for this stems from the
hyperfine interaction being sufficiently large that its influence
on the environmental spins cannot be ignored. As such, while
the case of the native bath of P1 center electron spins remains
unsolved, we note that the physical reasons leading to the
failure of the semiclassical approach for the 13C case are also
directly applicable to the native electron spin bath of type-1b
diamond. A detailed discussion of the above results is given in
what follows.

IV. DISCUSSION OF RELEVANT DYNAMIC TIME SCALES

In this section, we discuss the spatial statistics associated
with how spins in the environment arrange themselves with
respect to one another. In the first instance, this gives us
an indication of the expected time scales associated with

the system dynamics, however, these statistics will later be
used to perform averages over the various possible geometric
configurations of spin clusters in the environment, allowing us
to derive collective autocorrelation and decoherence functions.
An overview of these time scales is given in Table I.

In Appendix B, we find the probability distribution for the
distance from a given spin in the bath to its kth nearest neighbor
to be

Pk(rk) = 4πnr2
k

(k − 1)!

(
4πnr3

k

3

)k−1

exp

[
−4πnr3

k

3

]
. (5)

This family of distributions will be used to determine the
collective dynamic behavior of the environment and allow
us to compare the contributions from the different orders of
clustering.

Computing the mean distance to the kth neighbor, we find

〈rk〉 =
(

4πn

3

)− 1
3 �

(
k + 1

3

)
(k − 1)!

. (6)

A plot of the time scales associated with the coupling of
a given 13C spin to its first 10 nearest neighbors versus
their corresponding mean separation distances, 〈rk〉 for k =
1, . . . ,10, is shown in Fig. 8. This relationship gives us an
indication of how large the geometric size of a cluster may
be (and hence the time scale) before next-nearest-neighbor
(NNN) interactions become important. As we can see, for the
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FIG. 8. (Color online) Plot of the time scales associated with the
coupling of a given 13C spin to its first 10 nearest neighbors vs their
corresponding mean separation distance.

case of a NV center coupled to a 13C nuclear spin bath, where
T2 < 1 ms, we need only consider two-spin interactions.

Time scales associated with the hyperfine interaction on
the other hand, are much faster, with nuclear spins in adjacent
lattice sites coupling to the NV spin with strengths of
∼100 MHz. Given that such time scales are significantly
shorter than the T ∗

2 ∼ 1–10 μs and T2 ∼ 1 ms coherence times
considered in this work (see Table I), the backaction of the NV
spin on the environment is an effect that cannot be ignored, as
is the case with semiclassical theories.

Having considered the approximate time scales of the
physical processes taking place in this system, we now move
on to describe the dynamical properties of these processes in
detail.

V. ENVIRONMENTAL SPIN-SPIN (E-E) INTERACTIONS
AND THE AUTOCORRELATION FUNCTION

Before deriving the decoherence functions associated with
the FID and spin-echo evolution of the NV spin, we take a
brief detour to examine the unperturbed dynamic behavior of
the nuclear spin-bath environment. We do this by describing
the effective semiclassical magnetic field felt at an arbitrary
point in the lattice due to the interacting environmental spins.
While the existence of such a field is not sufficient to describe
the induced decoherence behavior of the central spin, due to
the omission of the hyperfine influence, it does give us an
insight into the natural dynamic behavior of the spin bath, and
how it changes with the background magnetic field strength.
In this section, we derive the autocorrelation functions of
the effective magnetic field for both secular (high-field) and
nonsecular (low-field) flip-flop regimes. We conclude this
discussion of autocorrelation functions with an analysis of the
effect of the hyperfine coupling on the nuclear spins, showing
that its presence acts to suppress their flip-flip dynamics.

This analysis justifies why we may ignore the dipole-dipole
coupling between nuclei when the NV spin is in either of the
|±1〉 states.

A. Secular dynamics (Z � E) of a single cluster

When a background field of sufficient strength to set the
quantization axis of the spins in the cluster is applied, some
of the terms in the Hamiltonian describe spin transitions that
are no longer energy conserving and are hence disallowed (see
Appendix A). The effective magnetic field operator as felt by
the central spin is due to the axial components of the hyperfine
interaction

B2 =
Nk∑
j=1

(
A(j )

zx E (j )
x + A(j )

zy E (j )
y + A(j )

zz E (j )
z

)
, (7)

where Nk is the number of spins in the kth cluster. In describing
the purely axial dynamics of the nuclear spins, however,
we need only consider the Azz component (for the sake of
brevity, the full description is omitted but may be found in
Appendix A). For a two-spin cluster (Nk = 2), this leads to an
autocorrelation function of

〈B2(t)B2(0)〉ZE = A2
z,1 + A2

z,2 − �2
z sin2

(
B12t

2

)
, (8)

where B12 = b/r3
12[1 − 3 cos2(θ12)], and �x,y,z ≡ |Ax,y,z,1 −

Ax,y,z,2|. Since we are only concerned with couplings to the
axial (z) component of the NV spin, we have adopted the
shorthand notation of A

(j )
zz ≡ Az,j .

Equation (8) shows that there is always a static component
of the secular autocorrelation function present regardless of
the geometric arrangement of the spins in the cluster. The
total axial magnetization for a given cluster is constant, hence,
the NV only sees a fluctuating field if the two spins have
different hyperfine coupling strengths (Az,1 and Az,2). The
larger this difference, the greater the strength of the effective
fluctuating field, however, the axial flipping rate B12 decreases
with their spatial separation. If the spins are sufficiently close
together, such that their energy scale is dictated by their
mutual interaction, non-energy-conserving transitions become
permissable, and the secular condition is violated. This case is
dealt with in Appendix A 1 b.

These methods may be extended to obtain corrections for
three-spin interactions and higher. However, as will become
clear later in this section, incorporation of high-order cluster
sizes does not contribute to the leading behavior of the
autocorrelation function (see Appendix A 1 a). Instead, these
changes only become apparent on much longer time scales, as
was alluded to in Sec. IV.

B. Nonsecular dynamics (E � Z) of a single cluster

In the opposite limit of low magnetic field strength, where
the quantization axis of the nuclear spins is set by their mutual
coupling, we cannot ignore the nonmagnetization conserving
terms in the dipole tensor describing their interaction. The
retention of all terms in the nuclear-nuclear dipole coupling
tensor yields the following nonsecular autocorrelation function
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of the axial magnetic field:

〈B2(t)B2(0)〉EZ = (
A2

z1 + A2
z2

)[
1 − 4

3
sin2

(
3B12t

4

)]
. (9)

Note that, where the secular autocorrelation function only
had fluctuating components proportional to differences in
probe-spin couple strengths (�z) within a given cluster, the
nonsecular function contains terms that are present regardless
of the geometric arrangement of the cluster constituents. This
is a consequence of the fact that, for a nonsecular cluster,
the background field does not set the quantization axis of
the spins, hence, the total magnetization component along
the background field direction need not be constant. As we
will see in Sec. V C, when the contributions to the full
autocorrelation functions are summed over all clusters in
the environment, we see very large differences between the
dynamic behavior of spins in secular and nonsecular flip-flop
regimes.

C. Collective environmental autocorrelation functions

Having just obtained the autocorrelation functions corre-
sponding to the secular [Eq. (8)] and nonsecular [Eq. (9)]
evolution of an individual cluster, we can employ the spatial
statistics developed in the previous section to determine
the respective autocorrelation functions due to the sum of
all clusters in the environment. The explicit details of this
derivation are given in Appendix C, and from this, we find
the full autocorrelaton function for a secular environment to
be

〈B2(t)B2(0)〉ZE = 8
5

(
4
3πan

)2[
1 − 1

3M(t)
]
, (10)

where M(t) is related to the secular magnetization, as detailed
in Appendix C, and is given to leading order in t by

M(t) ∼ 4π
3
√

6

�
(

8
3

) (πbnt)5/3 − 8π√
3�

(
4
3

) (πbnt)2. (11)

This gives an autocorrelation time of

TZE = 9

4π2bn
≈ 9.6 ms. (12)

On the other hand, the collective autocorrelation function
for the nonsecular environment may be computed exactly,

〈B2(t)B2(0)〉EZ = 64
9 π2a2n2[1 − N (t)], (13)

where N (t) is related to the nonsecular magnetization, as
detailed in Appendix C. To leading order, this results in a
linear decay, given by

N (t) ∼ 4
9π2bnt, (14)

and gives the same autocorrelation time of

TEZ = 9

4π2bn
≈ 9.6 ms. (15)

While these regimes show an identical correlation time,
the nonsecular regime shows a much greater fluctuation
magnitude (see Fig. 9). This is a consequence of the fact
that axial magnetization must be conserved for a cluster in
a secular regime, meaning that the central spin can only
sense an effective field fluctuation if there is a difference
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FIG. 9. (Color online) Normalized secular (blue) and nonsecular
(green) autocorrelation functions.

in hyperfine couplings between the spins in that cluster. On
the other hand, for the nonsecular case, it is the cluster
geometry that sets their quantization axis, meaning that
transitions that do not conserve axial magnetization are now
allowed.

It is important to note that while these results hold on
time scales of order TZE,EZ, they are not strictly correct
for time scales associated with cluster sizes smaller than
the diamond lattice spacing, i.e., Tb ∼ l3/b ≈ 300 μs. The
M(t) ∼ t5/3 scaling at ultrashort time scales is the result of the
p(r) ∼ r2 scaling of the probability density function associated
with the distance between neighboring spins, which breaks
down on length scales of r ∼ l. By expanding Eqs. (A9)
and (A12) on time scales of order Tb, it is trivial to show
the initial quadratic scaling of both secular and nonsecular
autocorrelation functions.

A comparison of the collective autocorrelation functions
associated with the secular and nonsecular regimes is plotted
in Fig. 19(a), using 〈A2

z〉 = 4
5 ( 4π

3 an)2 and 〈�2
z〉 ≈ 4

5 (2an)2

(the angular brackets denote a summation over all clus-
ters, and an average over all possible arrangements of the
spins within the cluster with respect to each other). From
this, we see that not only is the magnitude of the decay
much greater in the nonsecular case, but the nonsecular
decay is purely linear at t = 0, indicating a self-similar,
Markovian regime at all time scales. On the other hand,
the secular case has zero derivative at t = 0, which is a
consequence of the axial magnetization of the cluster being
conserved due to the dominant Zeeman coupling of the cluster
constituents.

D. Suppression of nuclear dynamics due to hyperfine fields

In cases where a strong magnetic field gradient exists, two
nuclear spins will possess a mutual detuning between their
respective Zeeman energies given by δz = |ω1 − ω2|. As such,
we expect that the magnitude of their effective magnetic field
to be reduced. Solving for the autocorrelation function in this
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FIG. 10. (Color online) Plot showing the suppression of dipole-mediated nuclear spin dynamics due to the hyperfine field of the NV center.
Values of the suppression constant K [see Eq. (17)] are plotted in (a) and (b) for cases where the two nuclei occupy adjacent lattice sites,
with relative orientations of θ = 0◦ and 109◦, respectively. The fractional cumulative contribution of all nuclei within a distance R to the total
hyperfine field is shown in (c) for both the ensemble case (blue) and that of a typical realization of the environmental spin distribution (green).
This plot show that effectively all nuclei making an appreciable contribution to the hyperfine field also reside in the suppression region.

case, we find

〈B2(t)B2(0)〉 = A2
z,1 + A2

z,2 − �2
z

B2
12

B2
12 + δ2

z

× sin2

(
t

2

√
B2

12 + δ2
z

)
, (16)

showing a modulation in the fluctuation amplitude by a factor
of B2

12/(B2
12 + δ2

z ) as compared with Eq. (8), which becomes
significantly damped as the magnitude of the detuning ap-
proaches that of the mutual dipolar coupling strength. We
would not expect such a situation to arise as the result of
inhomogeneities in an applied background as the associated
detunings are simply not large enough over the distance of a
few angstroms, which would require a magnetic field gradient
of ∼(b/l3)/(lγE) ≈ 1 mT nm−1. Where significant detunings
can arise, however, are as the result of the hyperfine field
generated by the central NV spin. For nuclear spins up to a few
nanometers from the NV center (which are responsible for the
decoherence of the NV spin, as shown in Figs. 6 and 7), the
difference in hyperfine couplings between two adjacent lattice
sites is much greater than the associated dipolar coupling
between them, leading to a complete suppression of the
nuclear spin dynamics. We make this statement more precise
as follows.

When the detuning between the Zeeman energies of two
coupled nuclear spins is the result of the NV hyperfine field, we
have that δ2

z = �2
z = (Az,1 − Az,2)2. Equation (16) shows this

leads to a suppression of the associated fluctuation amplitude
by a factor of

K = B2

B2 + �2
z

. (17)

Consider the cluster arrangement depicted in Fig 5. As
the largest coupling strength comes from nuclei that occupy
adjacent lattice sites, we take r = l, where l = 1.54 Å is the
lattice constant for diamond. From Eq. (3), the axial hyperfine

coupling strengths are given by

Az,i = a

R3
i

[1 − 3 cos2(�i)], (18)

and the nuclear dipolar coupling strength is

B = b

l3
[1 − 3 cos2(θ )]. (19)

Using these quantities, we plot the magnitude of the sup-
pression constant K [Eq. (17)] in Fig. 10. These results
depict the worse case scenario (where the dipolar coupling
is maximal and the hyperfine detuning is minimal) for the
two possible cluster orientations of θ = 0◦ [Fig. 10(a)] and
θ = 109◦ [Fig. 10(b)], and show that the nuclear dynamics
is still strongly suppressed for NV-nuclear separations greater
than 1 nm, and as great as 2 nm in the θ = 109◦ case.

Naturally, as the NV-nuclear separation distance increases,
both the hyperfine field and the corresponding hyperfine field
detuning between adjacent lattice sites will decrease. For
large enough NV-13C separations, the dipolar coupling will
eventually dominate over the hyperfine detuning, however, the
reduced hyperfine coupling implies that spins in these regions
will necessarily be too weakly coupled to the NV to have any
effect on its evolution. To make this statement precise, consider
the fractional contribution of the hyperfine field from a lower
cutoff R0 to an arbitrary radial distance R as given by∫ R

R0

nA2
z d3R

/∫ ∞

R0

nA2
z d3R = 1 − R3

0

R3
, (20)

where n is the average density of 13C spin in the lattice. The
choice of R0 will depend on the diamond sample at hand. In
an ensemble average over many environmental distributions,
all lattice sites will be equally populated, meaning that we
must choose R0 = l as our lower cutoff. On the other hand,
in a single realization of the environmental distribution, we
would not expect to find a nuclear spin within a distance
of R0 = (3/4πn)1/3 = 0.5 nm, which we take as our lower
cutoff. We plot Eq. (20) for these two cases in Fig. 10(c),
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showing that there is effectively no contribution from spins
residing more than a nanometer from the NV center. It is
for this reason that nuclear-nuclear dipolar couplings may be
ignored for cases where the NV spin state is in either of its |±1〉
basis states. Furthermore, as the NV spin must be in either of
these states to feel the effect of the dipole field, this shows
that a semiclassical mean-field approach cannot reproduce the
decoherence behavior of a NV center coupled to a nuclear spin
bath. This will be explored further in Appendix E.

VI. NV-SPIN (S-E) INTERACTIONS
AND THE FREE-INDUCTION DECAY

Having discussed the environmental dynamics of the
nuclear spin flip flops as unperturbed by the presence of the
central spin, we now discuss the exclusive hyperfine dynamics
of environmental spins coupled to the NV without considering
their mutual dipolar couplings. Again, this is not sufficient
to explain the full decoherence behavior under spin-echo
and higher-order pulse sequences, however, it does gives us
an insight into how the hyperfine dynamics transition from
nonsecular to secular behavior with an increasing magnetic
field strength. Furthermore, given that FID time scales are
of the order of a few μs and thus too fast to see the
effects of dipolar couplings between environmental spins,
noninteracting spins are sufficient to explain all FID effects.

An experiment in which the central spin is left to evolve
under the action of the environment alone is referred to as a
free-induction decay (FID), and the majority of the associated
dephasing may be attributed to inhomogeneous broadening
from quasistatic components of the spin bath. In the case of
a NV center in either an electron or a nuclear spin bath, this
broadening is typically of the order of a few MHz, equating to
an effective magnetic field of a few μT. As such, coherence
times are typically of the order of T ∗

2 ∼ 1–10 μs, depending
on the sample at hand.

The exact FID decoherence function for an arbitrary
magnetic field strength is given in Appendix A 2, Eq. (A14).
Expanding this result for ω � Az, we find the contribution to
the FID from a single spin to be

L
(1)
FID

∣∣
ω�A

∼ cos

(
Azt

2

)
, (21)

and in the low-field limit (ω 	 Az) we find

LFID|ω	A ∼ cos

(
At

2

)
, (22)

where A =
√

A2
x + A2

y + A2
z .

There are a number of points worthy of discussion here,
particularly with regard to the comparative strengths of the
Zeeman and hyperfine couplings. In the infinite magnetic field
limit, this coupling is completely determined by the axial
hyperfine component Az alone. This is because the Zeeman
coupling is responsible for setting the quantization axis of the
nuclei, hence, the NV spin is unable to drive transitions in the
nuclear spins. On the other hand, in the zero-field case, it is
the hyperfine coupling thats sets the quantization axis of the
nuclei, meaning that their magnetization need not be conserved
with respect to the background magnetic field. This leads to
a greater effective hyperfine coupling, owing to the inclusion

of Ax and Ay terms. This is an important effect that carries
over into the analysis of higher-order pulse sequences, as it
distinguishes the ZSE regime from the SZE and SEZ regimes.

We now consider the FID behavior of the NV spin due to
the combined effect of all spin clusters in the environment.
We first discuss the limiting regimes of both high and low
magnetic fields as compared with the FID rate, and then move
on to consider the full magnetic field dependence. We note
that the time scales of the dipolar coupling in the environment
are extremely slow (recall TS = TN ∼ 10 ms) compared to
the T ∗

2 = 1 − 10 μs FID times discussed here. This allows
us to ignore the dipolar evolution, meaning that there are
only two regimes important to the study of FID behavior,
depending on the relative strengths of their Zeeman coupling
(Z) to the background field, and their hyperfine coupling
to the NV spin (S). Consequently, quantities derived in a
regime where the Zeeman coupling dominates are labeled
“ZS” and, similarly, quantities derived in a regime where the
hyperfine coupling dominates are labeled “SZ.” While this is a
somewhat simplistic situation compared with the six possible
regimes discussed in Sec. II, these considerations detail the
transition from secular to nonsecular hyperfine couplings with
decreasing magnetic field, leading to faster decoherence, and
are thus an important precursor to the spin-echo behavior to
be discussed in Sec. VII.

Using Eq. (D3), the leading-order behavior of the FID
decoherence functions in the ZS and SZ regimes [Eqs. (21)
and (22)] is given by

〈�ZS〉 ∼
〈
2 sin2

(
Azt

4

)〉
, 〈�SZ〉 ∼

〈
2 sin2

(
At

4

)〉
, (23)

respectively. Figure 11 shows the variation of the FID envelope
with the strength of the axial background magnetic field B0,
determined numerically, using a typical realization for the
spin-bath distribution. From this, we see a monotonic increase
of the FID time T ∗

2 , with increasing B0, which results in the
transition of the effective hyperfine coupling strength from A

to Az, as detailed in Eqs. (21) and (22). For magnetic fields
of 100 G < B0 < 1000 G, we observe what is essentially a
hybrid regime, in which the decoherence envelope looks like
that of the pure ZS and SZ regimes for times above and below
the Larmor period Tω ∼ 2π/γEB0, respectively. This can be
understood by recalling that spins in the SZ regime are those
closest to the NV center (R � a/ω), and are thus responsible
for the short-time evolution of the NV spin. This contribution
saturates beyond the Larmor period, however, from which
point onward, where the remaining time evolution is governed
by the weaker coupling to spins in the ZS regime.

A. FID at high magnetic fields (ZS)

For magnetic fields greater than ∼1000 G, every en-
vironmental spin will be in a regime where the Zeeman
coupling is greater than the hyperfine coupling to the NV
spin (SZ). To visualize the FID behavior in this regime, we
first employ a numerical cluster expansion method (to zeroth
order, since nuclear-nuclear interactions are not important),
from which an ensemble average is performed over some
106 realizations of the environmental spin distribution. The
resulting ensemble-averaged decoherence function 〈�ZS〉 is
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FIG. 11. (Color online) Plot showing the variation of the FID
envelope with the strength of the background magnetic field. The
transition from a SZ to a ZS regime occurs in the range of
100 G < B0 < 1000 G at times associated with the Larmor period
Tω ∼ 2π/γEB0.

plotted in Fig. 12(a). From this, we can see a linear scaling
of the decoherence function for times approaching the FID
time T ∗

2 (where 〈�ZS〉 ∼ 1) and beyond, however, a quadratic
scaling is shown for times much shorter than this. Furthermore,
the quadratic scaling is shown to persist for much longer in the
case of individual realizations than for the ensemble-averaged
function. The analytic origins of these features are discussed
in what follows.

To obtain the ensemble-averaged behavior, we must inte-
grate over all possible outcomes of the environmental impurity
distribution, which means that all lattice sites will be populated

with equal likelihood. The long-time behavior arises from the
low-frequency (∼1/T ∗

2 ) contributions to 〈�ZS〉, corresponding
to spins more than a few lattice sites (roughly a nanometer)
away from the NV, where the distribution effectively consti-
tutes a continuum. The short-time behavior, however, arises
from spins that occupy the lattice sites surrounding the NV,
where the bond length of the diamond lattice l is important,
i.e., on time scales of Ta = l3/a ≈ 50 ns. These features may
be reproduced by integrating �ZS over R from the diamond
bond length l to ∞, and over � from 0 to π (see Appendix D 1
for details). In the long-time limit, where t � ta , we find

〈�ZS〉|t∼T ∗
2

= 4π2

9
√

3
ant, (24)

showing a linear exponential free-induction decay

〈LZS〉 = exp

(
− t

T ∗
2

)
, (25)

where the free-induction decay time is T ∗
2 = 9

√
3

4π2an
= 2.92 μs.

For times shorter than Ta, we find a quadratic scaling in the
decoherence function, given by

〈�ZS〉|0<t	T ∗
2

∼ 2πa2nt2

15l3
=

(
t

960 ns

)2

. (26)

Both the long- and short-time analytic scalings are plotted
together with the numerical results in Fig. 12(a), showing
excellent agreement.

While this analysis accurately reproduces the experimental
results for FID experiments conducted on NV ensembles (see,
for example, Ref. [62]), experiments conducted on single NV
centers exhibit a Gaussian-shaped decay that typically persists
as long as T ∗

2 . To reproduce this behavior, we instead integrate
〈�ZS〉 from R0 to ∞, as we would expect to find less than one
impurity within a radius of R0 from the NV center. Following
the same steps as in the ensemble case above, we find an initial
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FIG. 12. (Color online) (a) Plot showing the behavior of the FID decoherence function in the high-field (ZS) regime 〈�ZS〉. The solid black
curve shows the numerical calculation over 106 realizations of the nuclear spin distribution, and the blue and red dashed curves depict the
short/quadratic and long/linear analytic limits (see main text). The solid green curve shows the behavior of a single realization of the nuclear
spin distribution, with the green dashed line showing the quadratic short-time behavior, that persists for times beyond T ∗

2 . The long-time limit
of the single realization behavior is identical to that of the ensemble case. (b) As in (a), but for the low-field (SZ) regime.
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quadratic scaling of

〈�ZS〉|(single)
t∼T ∗

2
= 8

45
π2a2n2t2 =

(
t

5.58 μs

)2

, (27)

followed by the same linear scaling as detailed in Eq. (24).
The crossover point of these two regimes occurs at t =
5/[2

√
3an] ≈ 11 μs, which is well past the point at which

decoherence has occurred, showing that the FID behavior of a
single NV center spin is dominated by a Gaussian decay.

B. FID at low magnetic fields (SZ)

Following on from the high-field limit of the previous
section, we now move on to discussing the FID behavior in
the low-field limit, the numerical result for which is shown in
Fig. 12(b). This analysis is performed in an identical manner,
save for the replacement of Az �→ A, as dictated by Eq. (23).
This leads to a slight increase in the FID rate but qualitatively
identical behavior as the ZS regime. For the long-time limit,
we obtain

〈�SZ〉|t∼T ∗
2

= π2

18
[6 +

√
3 arcosh(2)]ant, (28)

again showing a linear exponential free-induction de-
cay, where the free-induction decay time is now T ∗

2 =
18/{π2an[6 + √

3 cosh−1(2)]} = 1.63 μs. For times shorter
than ta , we again see a quadratic scaling in the decoherence
function, given by

〈�SZ〉|0<t	T ∗
2

∼ πa2nt2

3l3
=

(
t

607 ns

)2

. (29)

Finally, for the case of a typical single realization of the SZ
spin-bath distribution, we find

〈�SZ〉|(single)
t∼T ∗

2
= 4

9
π2a2n2t2 =

(
t

3.53 μs

)2

. (30)

Both the long- and short-time analytic scalings are plotted
together with the numerical results in Fig. 12(b), showing
excellent agreement.

It is interesting to note that in the single-realization case,
taking the ratio of the FID times for the high- and low-field
cases gives

T ∗
2,ZS

T ∗
2,SZ

=
√

5

2
≈ 1.58, (31)

in agreement with both the theoretical and experimental results
of Ref. [63], whereas for the ensemble case we have

T ∗
2,ZS

T ∗
2,SZ

= 3

8
[2

√
3 + cosh−1(2)] ≈ 1.80, (32)

showing the ensemble FID times experience a greater enhance-
ment from an increased magnetic field strength than those of
a single realization of the bath impurity distribution.

VII. COMBINED HYPERFINE AND DIPOLAR
INTERACTIONS, AND SPIN-ECHO DECAY

The relatively short coherence times of a FID experiment
may be extended by 2–4 orders of magnitude by applying an

appropriate sequence of π pulses (or “bit-flips”), under which
the quantum amplitudes of the |1〉 and |0〉 states are swapped.
In the simplest instance, we consider a Hahn-echo or spin-echo
pulse sequence, involving a single π pulse applied at time t/2
(halfway through the free-precession time t). The effect of
this sequence is to refocus any static components of the bath,
thereby extending coherence times by roughly 2 orders of
magnitude, with typical times of 400 μs–1 ms.

It is important to note that, due to the secular approximation
imposed on the NV center, this dominant S-E interaction is
only apparent when the NV spin is in the |+1〉 state. In this
case, the large hyperfine interaction results in the nuclei having
a large mismatch in their respective transition frequencies,
meaning their comparatively weak mutual dipole interaction
will be unable to cause a mutual flip flop (this effect is
discussed in Sec. V D). This is somewhat advantageous, as the
exponentiation of the full Hamiltonian, inclusive of all HSE,
HZE, and HEE terms, is not analytically possible in general.
On the other hand, when the NV spin is in the |0〉 state, there
will be no hyperfine coupling, and the environmental evolution
will be self-governed. This means that the environmental spins
are free to evolve unperturbed according to HZE and HEE.

In the previous sections, we discussed how treating the
dipolar-dipole coupled nuclear spin bath as a fluctuating
magnetic field does not explain the decoherence of the NV
spin, as the NV can only sense the effect of the nuclei if its
hyperfine field is simultaneously suppressing their activity.
On the other hand, treatment of the hyperfine interaction
exclusively, to the exclusion of the nuclear dipolar interaction,
only shows periodic entanglement between the NV spin and
the nuclei, with no permanent decay of NV spin coherence
on long time scales [see Appendix A 2, Eq. (A15)]. These
results imply that the NV spin coherence is essentially a
two-part process (see Fig. 3), in which quantum information
of the NV spin is first imparted to the independent nuclei via
the hyperfine interaction when the NV spin is in the |+1〉
state. This information may then be propagated throughout
the crystal via the nuclear dipole-dipole interaction, while the
NV spin is in the |0〉 state. As such, we must incorporate both
interactions in order to be able to analyze the true decoherence
behavior of the NV spin.

From Appendix A 3, the leading-order behaviors of the
decoherence functions for the ZSE, SZE, and SEZ regimes are
given by

〈�ZSE〉 ∼
〈

sin2

(
Bt

4

)
sin2

(
�z

4
t

)〉
,

〈�SZE〉 ∼
〈

sin2

(
Bt

4

)
sin2

(
�

4
t

)〉
, (33)

〈�SEZ〉 ∼
〈

8

15
sin2

(
3Bt

4

)[
sin2

(
At

2

)
+ sin2

(
At

4

)]〉
,

respectively.
The changes in behavior of the decoherence function �

as we move from high- to low-field mirror what we have
already observed when considering the environmental dipole-
dipole coupling and NV-environment hyperfine processes
exclusively. In the high-field (ZSE) case, the effect of the
environment is ultimately determined by the difference in
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FIG. 13. (Color online) Plot showing the agreement between numerical and analytic results for the decoherence of a NV center spin in
a 1.1% 13C nuclear spin bath. (a) Results for the ZSE regime. The black curve shows the numerical result for 〈�ZSE〉 computed using a
seventh-order cluster expansion method (with cluster sizes of up to seven spins) averaged over 106 realizations of the surrounding impurity
distribution. Analytic results for the short-, intermediate-, and long-time scalings are given by the blue, green, and red dashed curves, respectively.
The scaling exponent, found by numerically computing k = d[ln(〈�ZSE〉)]/d[ln(t)] is plotted as the blue solid curve (adjacent axis), and shows
the transition from 4 to 2.75 to 2, as consistent with the analytic results. (b) As in (a) but for the SEZ regime.

axial hyperfine couplings between the spins in the cluster
(�z), and is further modulated due to the interactions taking
place amongst these spins. As the field is decreased to the
SZE regime, the hyperfine interaction becomes dominant and
all hyperfine components coupling to Sz become relevant, as
was observed in the FID case above. Finally, as the magnetic
field is decreased below the coupling between adjacent nuclear
spins, their combined axial magnetization is no longer a
conserved quantity, and the effect transitions from a difference
in hyperfine couplings � to the full interaction A. This is
the same as was observed in the autocorrelation function of
the effective environmental magnetic field over the transition
between secular and nonsecular regimes.

A. Spin-echo decay at high magnetic fields (ZSE)

At magnetic fields in excess of a few hundred Gauss,
every 13C nuclear spin exists in the ZSE regime. Thus, to
compute the ensemble-averaged decoherence function for the
high-field case, we integrate �ZSE over the spatial distributions
of the environmental spins (as detailed in Appendix D 2 a).
A numerical calculation using the cluster expansion method
(with cluster sizes up to seven spins) order over 106 realizations
of the impurity distribution is shown in Fig. 13(a), from which
we see a number of complex features. In particular, the scaling
of �ZSE with t changes significantly between t = 0.1 and 1 ms
from �ZSE ∼ O(t2.75) to �ZSE ∼ O(t2). At very short times,
where t 	 T ∗

2 , we find �ZSE ∼ O(t4). The analytic origins of
these scalings are discussed in what follows.

We initially consider the long-time limit, where the deco-
herence function exhibits a quadratic scaling (equivalently, the
decoherence envelope exhibits a Gaussian decay). Such time
scales are still much shorter than the environmental correlation
time, however, meaning that we may expand �z for small
r , giving �z ∼ aαr

R4 . Integration of �ZSE over 0 � r, R � ∞

yields (see Appendix D 2 a for details)

〈�ZSE〉|t∼T2 ∼ π (ant)3/4(bnt)5/4, (34)

giving a spin-echo coherence time of

T ZSE
2 = [π (an)3/4(bn)5/4]−1/2 = 900 μs, (35)

in excellent agreement with the numerical results of Ref. [59].
Prior to this quadratic scaling, �ZSE exhibits a scaling of

∼O(t11/4), which, as we detail below, is the result of spin
impurities only being able to adopt discrete positions within
the lattice. Such effects become important at short time scales,
where the correspondingly small separation distances begin to
approach the atomic spacing in the crystal. We can reproduce
the effect of this spacing by choosing a lower cutoff for r of
the diamond bond length l = 1.54 Å (see Appendix D 2 a for
details), giving

〈�ZSE〉|T ∗
2 <t	T2 ∼ a3/4b2n2t11/4

l9/4
=

(
t

933 μs

)11/4

. (36)

This expression shows perfect agreement with the numer-
ical calculation in terms of both scaling and magnitude, as
depicted in Fig. 13. At longer time scales, the magnitude of
〈�ZSE〉 becomes much larger than the discrete correction term,
and we simply recover the expression given in Eq. (35). This is
to be expected: at long time scales, dipole-dipole interactions
from spin impurities occupying adjacent sites essentially
average out due to their high-frequency behavior, whereas
the more long-range interactions become important. As the
separation distance increases, the number of sites available for
occupation essentially approaches that of a continuum.

Finally, to deduce the short-time quartic scaling, we again
integrate over R and r from l to ∞, and compute the formal
short-time expansion, valid for t : at/ l3 	 1 and bt/ l3 	 1.
As the smallest possible separation distance is l, we are
only justified in making this expansion for t < 50 ns in the
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ensemble case. The resulting expression is, to leading order
(see Appendix D 2 a for details),

〈�ZSE〉|t	T ∗
2

= 1

80

(
πnabt2

l3

)2
[

1 −
6
√

3πl(4πn)1/3

360�
(

4
3

)
]

=
(

t

91 μs

)4

. (37)

We note that some variation will exist between individual
realizations of the impurity distribution, as most NV centers
will not have spin impurities on adjacent lattice sites, meaning
that the quartic scaling may persist for longer than in the
ensemble case. To show this, we instead perform the R integral
from a lower cutoff R0 = [3/(4πn)](1/3), defining the radius
of a spherical volume in which we would expect to find less
than one impurity on average for the ensemble case, meaning
we would not expect impurities at distances closer than this
in most individual cases. On the other hand, even the case
of an individual distribution involves the NV coupling to
many clusters, hence, there is a large enough sampling of
possible cluster configurations to justify an average over these
configurations. Integrating 〈�ZSE〉 over R from R0 to ∞, and
over r from l to ∞, we find

〈�ZSE〉|(single)
t	T ∗

2
= 1

90
π4a2b2n4t4

(
3
√

6

l(πn)1/3
− 4

√
3π

9�
(

4
3

)
)

=
(

t

393 μs

)4

, (38)

again showing a quartic scaling of 〈�ZSE〉 with t , but one that
persists for some 10–100 μs, as opposed to the 50 ns for the
ensemble case.

B. Spin-echo decay at moderate magnetic fields (SZE)

At magnetic fields between 0.01 and 100 G, every 13C
nuclear spin exists in the SZE regime. The procedure to
compute the ensemble-averaged decoherence function is the
same as for that above, however, we simply make the
substitution �z �→ � (see Appendix D 2 b for details). All
subsequent results scale accordingly, the most important of
which is T SZE

2 = 780 μs. Other notable properties that emerge
in this regime are the electron spin-echo envelope modulation
(ESEEM) peaks, which manifest as periodic decays and
revivals at half the Larmor frequency of the NV. As these
effects do not represent any true decoherence, we defer their
discussion until Sec. VII E.

C. Spin-echo decay at low magnetic fields (SEZ)

At magnetic fields below 0.01 G, every 13C nuclear spin
exists in the SEZ regime. The transition of the fluctuation
amplitude from � to A effectively decouples the S-E from the
E-E evolution in �SEZ, drastically changing the nature of the
resulting decoherence. This allows for a convenient separation
of the contribution of the hyperfine and dipolar coupling to the
overall decoherence. A calculation of the decoherence function
using a numerical cluster expansion to seventh order is shown
in Fig. 13(b) for 106 realizations of the impurity distribution,
from which a number of features are evident. As with the

ZSE and SZE regimes, we see quartic and quadratic scalings
at short and long times, respectively, but in contrast to the
other regimes, we se a cubic scaling at intermediate times.
Furthermore, the coherence times exhibited by the SEZ regime
are effectively an order of magnitude shorter than the other two
regimes. The analytic origins of these features are explained
in what follows.

As with the ZSE and SZE cases, we begin with the
consideration of the long-time dynamics of the SEZ regime.
As before, we need not worry about the discretized lattice at
these time scales, and we therefore integrate �SEZ over both
R and r from 0 to ∞ (see Appendix D 2 c for details), giving

〈�SEZ〉|t∼T2 ∼ 2

15
ab(π2nt)2 =

(
t

155 μs

)2

. (39)

Again, we see an overall Gaussian behavior at long time
scales, but a very different dependence on the hyperfine and
dipolar dynamics of the environment (�ZSE,SZE ∼ a3/4b5/4

versus �SEZ ∼ ab). This is a consequence of the changes in
behavior of the environmental autocorrelation function as the
environment transitions from secular to nonsecular dynamics.
The corresponding coherence time of the SEZ regime is
T SEZ

2 = 155 μs.
To derive the intermediate cubic scaling of 〈�SEZ〉, we note

that, as was the case with 〈�ZSE〉 and 〈�SZE〉, the integral of
sin2( 3Bt

4 ) over the cluster size distribution [Eq. (B3)] from l to
∞ has no closed form. As such, we simply expand P(r) for
small r , as detailed in Appendix D 2 c, giving

〈�SEZ〉T ∗
2 <t	T2 ∼ π3ab2n2t3[2(4γ − 5)πl3n + 3]

15l3

=
(

t

250 μs

)3

. (40)

To determine the short-time scaling, we again integrate
�SEZ over R and r from l to ∞, and use the same short-
time expansion as employed in the ZSE case. As the smallest
possible separation distance is l, we are only justified in making
this expansion for t < 50 ns in the ensemble case. The resulting
expression has (see Appendix D 2 c for details) an initially
quartic dependence on time given by

〈�SEZ〉|t<T ∗
2

∼ 5

48

(
πabnt2

l3

)2

[2(4γ − 5)πl3n + 3]

=
(

t

36 μs

)4

, (41)

where γ ≈ 0.577 is the Euler-Mascheroni constant.

D. Full magnetic field dependence

We now consider the full magnetic field dependence of
the coherence time of a NV center exposed to a 1.1%
13C nuclear spin bath. The full spin-echo envelope is the
product of contributions from the six parameter regimes, with
the dominant contribution coming from the ZSE, SZE, and
SEZ regimes, SC13 ≈ SZSESSZESSEZ, which implies the full
decoherence function is given by the sum of decoherence
functions due to each region,

〈�C13〉 = 〈�ZSE〉R>RZ
r>rZ

+ 〈�SZE〉R<RZ
r>rZ

+ 〈�SEZ〉R<RZ
r<rZ

,
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FIG. 14. (Color online) Magnetic field dependence of the NV spin coherence. (a) Coherence envelopes of a NV center coupled to a naturally
occurring 1.1% 13C nuclear spin bath corresponding to external magnetic field strengths from 10 μT to 10 mT. (b) Plot showing the dependence
of the coherence time on the strength of an external magnetic field.

where the Rz and rz quantities denote the Zeeman-dependent
integration domains in r − R space.

Figure 14(a) shows gradual transition of the decoherence
envelopes from the SEZ regime through to the ZSE regime
with increasing magnetic field. The full dependence of the
corresponding coherence times T2 is shown in Fig. 14(b),
where we see that coherence times of a NV spin coupled
to the naturally occurring 1.1% 13C nuclear spin bath can
be almost 1 ms for magnetic fields in excess of 100 G. Our
results show excellent agreement with the extensive numerical

investigation conducted in Ref. [59]. The persistent Gaussian
shape predicted by our theory is a radical departure from
currently accepted theories in the literature claiming either
a � ∼ (t/T2)3 and � ∼ (t/T2)4 dependence irrespective of
the physical origin of the spin bath. We have shown here that
the former is not valid for the case of a NV center immersed
in a 13C nuclear spin bath, except where spin densities are
well below those currently realized experimentally. The latter
is only valid in the short-time limit, and may be explained
as follows.
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FIG. 15. (Color online) Plots showing the effect of electron spin-echo envelope modulation (ESEEM) on the decoherence envelopes of
a NV center coupled to a 1.1% bath of 13C nuclear spin for different background magnetic field strengths. For extremely low fields (a), the
revival rate is slower than the overall decoherence rate, leading to an apparent increase in decoherence. As the magnetic field is increased, as
in (b)–(d), the revival rates increase proportionally, and the peak width decrease as TW ∼ B

−2/3
0 . At high magnetic fields (e), the depths of the

revivals begin to decrease, until they eventually disappear (f).
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E. Analysis of the electron spin-echo
envelope modulation (ESEEM)

One of the key features observed in experiments conducted
on NV spins in ultrapure diamond is the emergence of decays
and revivals in the spin-echo envelope at half the Larmor
frequency of the 13C spins [64], an effect referred to as electron
spin-echo envelope modulation, or ESEEM (see Fig. 15).
To this point, we have only concerned ourselves with the
decoherence arising from flip-flop processes in the bath and
have ignored the ESEEM contribution to the evolution. In
this section, we analyze this effect and show how resulting
properties such as the revival frequency, decay depth, and
revival peak width depend on the background magnetic field
strength. For background field strengths below approximately
B0 = 1 G, the revival frequency ωR = 1

2γcB0 = 1.75 kHz is
lower than the decoherence rate. As such, the notion of a decay
depth no longer makes sense, as there will be no subsequent
revival before decoherence has occurred. In the following, we
derive the analytic origins of these scalings.

Where the oscillations in the FID envelope occurred at the
Larmor frequency ω0, the revival frequency during a spin-echo
sequence is one half of the Larmor frequency, ωR = 1

2γEB0 =
17.5 MHz T−1 B0. Some broadening of this effect will occur
due to the distribution of axial dipolar couplings in the
bath, leading to a perceived increase in the decoherence rate;
however, this effect will be addressed in the following section.

Next, we detail the dependence of the depth of the decay
valleys on the magnetic field strength. A numerical calculation
of the maximum amplitude of the ESEEM component of the
decoherence function |�(ESSEM)(t)|max is plotted in Fig. 16(a).
From this, we see that the decay depths scale with the inverse

square of the magnetic field strength at high fields, but only
with the inverse at moderate field strengths.

Recall from Eq. (A23) that in the ZSE limit, the ESEEM
correction to �ZSE due to a single nuclear spin is given by

�
(ESEEM)
ZSE = 4

A2
x + A2

y

ω2
sin2

[
(Az + ω)

t

4

]
sin2

(
tω

4

)
. (42)

As this correction has been calculated in the ω � A limit, we
must distinguish between cases where all spins are in the ZSE
regime, and cases where distant spins from the NV are in the
ZSE regime, but closer spins are in the SZE regime due to their
dominant hyperfine interaction. For the former case, we have
that the Zeeman coupling is greater than the most strongly
coupled nuclear spin (i.e., where B0 > 162 G), giving

∣∣�(ESEEM)
ZSE

∣∣
max = −4

〈
A2

x + A2
y

ω2

〉

= − 2

15

(
8π

an

ω

)2

= −
(

354 G

B0

)2

, (43)

thus reproducing the ∼O(B−2
0 ) scaling of the numerical result,

as plotted in Fig. 16(a).
For the case where the field strength is low enough to

have spins in both the ZSE and SZE regimes, we must
determine the contribution from both. The ZSE contribution
to the decay may be determined by integrating Eq. (42) over
only the spins in this regime. To determine the SZE contri-
bution, we expand the ESEEM terms for ω 	 A as given in
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FIG. 16. (Color online) Magnetic field dependence of ESEEM features. (a) Plot detailing the magnitude of the modulation of the
decoherence function. The numerical result is plotted in black, whereas the moderate and high-field analytic limits are plotted in blue
and green, respectively. The saturation of the numerical result at low fields arises because the revival rate has decreased below the decoherence
rate, which also saturates at low field. The red curve shows the magnitude of the corresponding spin-echo envelope contrast due to ESEEM,
1 − L = 1 − exp(−�(ESEEM)), which saturates at unity when the decoherence function is greater than unity. (b) Plot detailing the dependence of
the width of the ESEEM peaks on the magnetic field strength. The numerical result is plotted in black, and the low-, moderate-, and high-field
analytic results are plotted in blue, green, and red, respectively. In the case of the high-field result, the decay depth is less than unity, hence the
width of the peaks is defined by the revival period instead of the decay time.
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Eq. (A24):

�
(ESEEM)
SZE = 4

A2
x,1 + A2

y,1

A2
1

[
1 − 2ωAz,1

A2
1

]

× sin2

(
tλ1

4

)
sin2

(
tω

4

)
, (44)

and integrate over only the spins in the SZE regime. The sum
of these two contributions gives

∣∣�(ESEEM)
ZSE/SZE

∣∣
max = 32πan

5ω
+ 448π (5

√
3π − 27)an

135ω

= 860 G

B0
, (45)

again in agreement with the numerical result [see Fig. 16(a)].
Finally, we analyze the dependence of the decay widths

Tw on the magnetic field. The numerical results in plotted
in Fig. 16(b) show these widths to scale as Tw ∼ B−0.67

0 at
moderate fields, as consistent with the scaling of B−0.63

0 in the
numerical results of Ref. [59]. At high fields, our numerical
results show a slight change in this scaling for a brief period,
with Tw ∼ B

−1/2
0 . If the magnetic field is increased further, the

decay depths will be less than unity [see Fig. 16(a)], meaning
the widths will be effectively characterized by half the revival
period TW ∼ 1

2TR, showing an inverse linear dependence on
the magnetic field strength, again consistent with the numerical
results. We do not consider the low-field regimes, as revivals
are not visible prior to the onset of decoherence. The analytic
origins of these results are discussed in the following.

In the high-field (ZSE) limit, we expand Eq. (42) about any
of the revival peaks, giving

〈
�

(ESEEM)
ZSE

〉 =
〈

1

64
t4

(
A2

x,1 + A2
y,1

)
(Az,1 + ω)2

〉

∼ 1

30
π2a2n2t4ω2, (46)

giving a decay width of TW = 61 μs G1/2/
√

B0.
To find the decay widths at low fields, we integrate Eq. (44).

This puts us in a regime where ω 	 an, meaning we must
integrate the resulting expression over R, and then expand for
1/an 	 t 	 1/ω, giving

〈
�

(ESEEM)
SZE

〉 =
〈
ω2t2

(
A2

x,1 + A2
y,1

)
sin2

(
1
4A1t

)
4A2

1

〉

∼ 1

192
π2ant3ω2[18 − 5

√
3 cosh−1(2)],

showing the revival peaks to have a cubic shape. The resulting
peak width is then

T
(SZE)

W = 121 μs G2/3

B
2/3
0

. (47)

While this result is consistent with both the numerical work of
our own, and that of Ref. [59], it differs from the analysis given
in Ref. [64], which claims a quartic shape for the peaks, leading
to a T

(SZE)
W ∼ O(B−1/2

0 ) dependence at moderate fields. This
analysis was performed using a short-time expansion with
respect to both Zeeman and hyperfine couplings, however,

such an expansion is not valid in the SZE regime where short
time with respect to TR ∼ 1/ω is still long compared with
T ∗

2 ∼ 1/an.

VIII. ON THE QUESTION OF WHETHER THE NUCLEAR
SPIN BATH MAY BE MODELED AS A CLASSICAL

MAGNETIC FIELD

In treating the influence of the surrounding spin bath on a
central spin, one commonly adopted approach [10,13,27–34]
is to replace the collective hyperfine field felt by the NV spin
with a semiclassical magnetic field whose internal dynamics
are dictated by the autocorrelation functions discussed above.
This field, the operator of which is denotedB(t), will produce a
time-dependent Zeeman shift given by Hz = 
B · 
S ≡ SzB(t)
and a corresponding free-time evolution operator of

Uf (t ′,t ′′) = e−iφ(t ′,t ′′)|1〉〈1| + |0〉〈0|, (48)

where φ(t ′,t ′′) = ∫ t ′′

t ′ B(t) dt . Such an approach is potentially
problematic, as it ignores the effect of the hyperfine couplings
on the evolution of the nuclei, which as we have shown are a
critical component of this evolution.

The phase shift of the central spin will always depend
on the pulse sequence employed, but a certain degree of
abstraction is achieved if we consider the second integral of
the environmental autocorrelation function G, defined by

d2

dt2
G(t) = 〈B(t ′)B(t ′′)〉. (49)

It then becomes a simple exercise to show, using Eq. (E5),
the pulse-sequence-specific decoherence functions are given
by appropriate linear combinations of dilated G functions,

�FID = 1
2

〈
φ2

FID(t)
〉 = G(t),

�se = 1
2

〈
φ2

se(t)
〉 = 4G(t/2) − G(t), (50)

and so on, showing that G essentially plays the role of a
classical “generalized decoherence function.”

Using the secular autocorrelation function [Eq. (C3)], we
find the corresponding semiclassical spin-echo decoherence
function for the ZSE regime to be

� ∼ 128

45

3
√

2(4 − 3
√

2)π14/3(ant)2(bnt)5/3

32/3�
(

14
3

)
− 64π5(ant)2(bnt)2

135
√

3�
(

4
3

)
=

(
t

120 μs

)11/3

−
(

t

180 μs

)4

, (51)

giving a coherence time of 127 μs. Notice that the effective
magnetic field emanating from the lateral components of the
nuclear spins has been suppressed to order A2

x,y/ω
2 by virtue of

double integration with respect to t of terms involving cos(ωt),
leaving only z − z components of the effective field in the
Z > E limit. This is consistent with the suppression of lateral
components seen in the transition from SZE to ZSE regimes
in the quantum mechanical analysis of this work.

Similarly, using the nonsecular autocorrelation func-
tion [Eq. (C7)], the semiclassical spin-echo decoherence
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FIG. 17. (Color online) Plots showing the decoherence en-
velopes calculated using a semiclassical approach based on the de-
termination of the autocorrelation function of the effective magnetic
field from the hyperfine coupling of the environmental nuclei to the
central spin. Qualitatively, this approach reproduces the effect of
increasing the magnetic field, in that the decoherence rates are much
faster for a nonsecular environmental regime than those of a secular
regime. However, the resulting coherence times are nearly an order of
magnitude shorter than those computed with the quantum mechanical
approach developed in this work, resulting from a mistreatment
of the hyperfine couplings, ultimately showing that a semiclassical
treatment of this problem is not adequate.

function corresponding to the SEZ regime is

� = 64
243π4(ant)2bnt, (52)

which has an associated coherence time of 45 μs.
The resulting spin-echo envelopes from this semiclassical

analysis are plotted in Fig. 17. From these results, we see
that the associated coherence times are almost an order of
magnitude shorter than those deduced using the quantum
mechanical approach developed in this work. We can attribute
this discrepancy to the semiclassical approach not taking into
account the backaction of the central spin on the environment,
leading to a number of consequences.

First, this allows for the environment to evolve freely under
its own influence at all times, irrespective of the spin state
(and hence the projected hyperfine field) of the NV, essentially
doubling the effective fluctuation rate of the semiclassical spin-
bath field. In previous work [23], we have shown that this
increases the spin-echo decoherence rate for systems that exist
in a slowly fluctuating regime, as is the case for the nuclear
spin bath considered here.

Second, the semiclassical approach overestimates the de-
pendence of the scaling of the temporal scalings of the resulting
decoherence functions, leading to scalings of � ∼ t11/3 and
� ∼ t3 associated with the secular and nonsecular nuclear
dynamics. This is again in contrast to the quantum mechanical
results, which show quadratic scalings for the three parameter
regimes applicable to this problem.

The third consequence is more critical. Whereas in the
quantum mechanical analysis, the hyperfine coupling entered

into the decoherence function as sin2(Azt/4), in the semiclas-
sical case the hyperfine coupling manifests as (Azt)2, showing
the latter to correspond to the short-time limit of the former.
This means the two approaches only agree on time scales that
are shorter than the FID time, implying that the semiclassical
approach is not valid in analyzing the spin-echo decay of a NV
center coupled to a nuclear spin.

IX. CONCLUSION

In this work, we have developed a quantum mechanical
methodology by which to analytically treat the decoherence
of a NV center spin coupled to a nuclear spin environment.
This approach, based on the microscopic spatial statistics of
environmental impurities, affords a natural decomposition of
the bath into six distinct parameter regimes as defined by the
relative strengths of the hyperfine, Zeeman, and mutual dipolar
coupling of the environmental spins, and avoids the need for
ad hoc assumptions regarding the environmental NV-nuclear
or nuclear-nuclear dynamics. This allows us to explicitly
determine the analytic form of the associated decoherence
functions in several regimes relevant to current experiments,
and to derive the dependence of quantities such as coherence
times and characteristic ESEEM features on the strength of a
background magnetic field. In doing so, we have demonstrated
excellent agreement with existing numerical and experimental
work.

ACKNOWLEDGMENTS

The authors would like to thank D. A. Simpson, C. D. Hill,
J. Wrachtrup, H. Fedder, F. Jelezko, L. P. McGuinness, B.
Naydenov, and V. Jaques for helpful discussions. This work
was supported by the Australian Research Council under the
Centre of Excellence scheme (Project No. CE110001027).

APPENDIX A: SINGLE-CLUSTER DYNAMICS
AND DECOHERENCE

Since the evolution during a free-precession interval is so
heavily dependent on the NV spin state, we can project this
Hamiltonian along both basis states. Thus,

H ≡ |1〉〈1|H1 + |0〉〈0|H0. (A1)

Because no hyperfine coupling exists when the NV is in the
|0〉 state, projection onto the distinct NV states allows us to
distinguish between the Hamiltonians associated with the |0〉
and |+1〉 states, namely, H0 and H1, respectively.

For a FID experiment, the time-evolution operator is given
by

UFID(t) = |1〉〈1| ⊗ exp(−iH1t) + |0〉〈0| ⊗ exp(−iH0t)

≡ |1〉〈1| ⊗ U1(t) + |0〉〈0| ⊗ U0(t), (A2)

where U1(t) and U0(t) are the projections of the time-evolution
operator onto the |+1〉 and |0〉 states of the NV spin,
respectively.

In general, we wish to consider the effect of different pulse
sequences, which involve periods of free evolution followed
by applied pulses at particular times. A general time-evolution
operator will contain exponents of the above Hamiltonians,
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however, these exponents will appear as different components
of the 2 × 2 matrix describing the central spin, depending on
the pulse sequence considered. To keep things general, we
write

U(t) =
(
K11(t) K10(t)
K01(t) K00(t)

)
, (A3)

however, just what the Kmn(t) are will depend on the pulse
sequence employed. For the FID case just mentioned, we
just simply have K11(t) = U1(t), K00(t) = U0(t), K10(t) =
K01(t) = 0.

The relatively short coherence times of a FID experiment
may be extended by 2–4 orders of magnitude by applying an
appropriate sequence of π pulses (or bit-flips, denoted F),
under which the quantum amplitudes of the |1〉 and |0〉 states
are swapped. In the simplest instance, we consider a Hahn-
echo or spin-echo pulse sequence, involving a single-π pulse
applied at time t/2. The effect of this sequence is to refocus any
static components of the bath, thereby extending coherence
times by roughly 2 orders of magnitude, with typical times
of 400 μs ms. The time-evolution operator for a spin-echo
experiment is

USE(t) = UFID(t/2)F UFID(t/2), (A4)

hence we make the identification

K10(t) = U1(t/2)U0(t/2),

K01(t) = U0(t/2)U1(t/2), (A5)

K11(t) = K00(t) = 0.

The density matrix ρ(t) at t = 0 is given by

ρ(0) = [|1〉〈1| + |1〉〈0| + |0〉〈1| + |0〉〈0|] ⊗ ME,

where ME denotes a purely mixed environmental state. The
in-plane magnetization at time t is found from

L = Tr{(Sx + iSy)ρ(t)}. (A6)

From this, we see that the FID and spin-echo signals are given
by

LFID = 1

2k
TrE{U0(t)U†

1 (t)},

LSE = 1

2k
TrE{U0(t/2)U1(t/2)U†

0 (t/2)U†
1 (t/2) }, (A7)

respectively, where k is the number of spins in the cluster.
The exact forms of the propagators will be determined by the
regime in question, allowing us to make asymptotic expansions
in terms of the relative coupling scales, such as an/ω, bn/ω,
and a/b, where n is the density of the spins in the bath.

1. Environmental autocorrelation functions
and frequency spectra

a. Secular nuclear dynamics

The full effective axial magnetic field operator as felt by
the central spin is due to the axial components of the hyperfine

interaction

B2 =
Nk∑
j=1

(
A(j )

zx E (j )
x + A(j )

zy E (j )
y + A(j )

zz E (j )
z

)
, (A8)

where Nk is the number of spins in the kth cluster. For nk = 2,
this leads to an autocorrelation function of

〈B2(t)B2(0)〉S = A2
z,1 + A2

z,2 + (
A2

x,1 + A2
x,2 + A2

y,1 + A2
y,2

)
× cos(tω) − [

�2
z + (

�2
x + �2

y

)
cos(tω)

]
× sin2

(
B12t

2

)
, (A9)

where �x,y,z ≡ |Ax,y,z,1 − Ax,y,z,2|.
These methods may be extended to obtain corrections for

three spin interactions and higher. However, despite being
interested in the short-time and relatively weak coupling
to the next-nearest neighbor, we cannot use perturbation
theory, as the couplings strengths still become infinite as the
next-nearest-neighbor separation goes to zero. A short-time
expansion of Eq. (A9) would diverge as r approaches 0,
hence, to use perturbation theory at a given order for all
possible geometric configurations (particularly when B2

12 �
A2

z1 + A2
z1, which defines the high frequency, and hence

short-time behavior of the dynamics), we require the leading
order of the relevant probability density function to be at least
O{r4}. As we will see in Appendix B, this corresponds to the
third-nearest neighbor and above. Hence, perturbation theory
cannot be applied until cluster sizes of four or greater are
considered.

In analyzing the dynamics of a three-spin cluster, we
initially assume that a strongly coupled pair exists, and
introduce a third impurity whose coupling to the initial two is
comparatively weak. We assume the two couplings involving
the third spin are of similar order and make small perturbations
about this condition. This is justified by the rapid falloff
of the dipole-dipole coupling, which ensures that any large
deviation from this condition will yield a two-spin cluster and
an effectively separate, uncoupled spin. From this, we find the
autocorrelation function of a single three-spin cluster to be

〈B3(t)B3(0)〉S = 〈B2(t)B2(0)〉z + A2
z3−

4

9

[
�13 sin2

(
3B13t

4

)

+�23 sin2

(
3B23t

4

)]
+ Larmor terms. (A10)

This result exhibits almost identical properties to the two-spin
cluster case, with a persistent static component, and fluctuating
components whose amplitudes are again proportional to the
respective hyperfine coupling differences.

b. Nonsecular nuclear dynamics

The Hamiltonian describing the dipolar coupling between
two spins when all possible terms are included is given by

HN = b

r3

[

E1 · 
E2 − 3

r2
(r · 
E1)(r · 
E2)

]
, (A11)
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which yields the following nonsecular autocorrelation function
of the axial magnetic field:

〈B2(t)B2(0)〉N = (
A2

z1 + A2
z2

)[
1 − 4

3
sin2

(
3B12t

4

)]

−2

3
�2

z

[
sin2

(
B12t

4

)
+ 1

2
sin2

(
B12t

2

)

− sin2

(
3B12t

4

)]
. (A12)

2. Single-spin clusters and free-induction decay

Single-spin clusters, by definition, do not include any
interaction with adjacent spins. The hyperfine and Zeeman
coupling components of the Hamiltonian as projected onto the
|0〉 and |+1〉 states of the NV spin are given by

H1 = AxEx + AyEy + (Az + ω) Ez, H0 = ωEz, (A13)

from which we determine the FID and spin-echo envelopes
using Eq. (A7):

LFID = cos

(
tλ

2

)
cos

(
tω

2

)
+ �

λ
sin

(
tλ

2

)
sin

(
tω

2

)
,

(A14)

LSE = 1 − 2
A2

x + A2
y

λ2
sin2

(
tλ

2

)
sin2

(
tω

2

)
, (A15)

where � = Az + ω and λ =
√

A2
x + A2

y + �2. In this section,
we will examine the behavior of these expressions in cases of
high and low magnetic fields, however, one can immediately
see that there is no spin-echo decoherence at both ω → 0 and
ω → ∞ limits. This is in direct contrast with experimental
observations, where the decoherence rate is maximal at zero
field, and decreases to a final, constant value at sufficiently
high magnetic fields. This implies that we must introduce
more complex spin-spin interactions to be able to explain
this discrepancy. Higher-order clusters are considered in the
following sections, hence, in this section we focus solely on
FID behavior.

Expanding the above result for ω � Az, we find the
contribution to the FID from a single spin to be

L
(1)
FID

∣∣
ω�A

∼ cos

(
Azt

2

)
− A2

x + A2
y

2ω2
sin

(
ωt

2

)
sin

(
1

2
(Az + ω)t

)
,

(A16)

and in the low-field limit (ω 	 Az) we find

LFID|ω	A ∼ cos

(
At

2

)
cos

(
ωt

2

)
+

[
Az

A
+ ω

(
A2

x + A2
y

)
A3

−3ω2
(
A2

x + A2
y

)
Az

2A5

]
sin

(
At

2

)
sin

(
ωt

2

)
,

(A17)
where A =

√
A2

x + A2
y + A2

z .

3. Two-spin clusters and spin-echo decay

In this section, we discuss how the full Hamiltonian
[Eq. (2)] may be simplified according to the parameter regimes
in question to solve for the corresponding evolution.

a. Secular dipole-dipole coupling with nonsecular hyperfine
coupling (ZSE), and secular dipole-dipole coupling (SZE)

As discussed earlier, when the NV spin is in the |+1〉 state,
the difference in the hyperfine couplings will yield sufficient
detuning to suppress any dipolar flip-flops, hence, we may
ignore the dipolar term in the projection of the Hamiltonian on
the |+1〉 spin state. Furthermore, the fact that the Zeeman
terms are much greater than the dipolar terms allows us
to ignore spin-spin interactions that do not conserve total
magnetization with respect to the background field 
ω and
make the secular approximation for the dipole-dipole coupling.
Thus, the relevant Hamiltonians for the ZSE and SZE regimes
are given by

H1 =
2∑

k=1

[Ax,kEx,k + Ay,kEy,k + (Az,k + ω)Ez,k],

(A18)
H0 = B(Ex,1Ex,2 + Ey,1Ey,2 − 2Ez,1Ez,2) + ω(Ez,1 + Ez,2).

Using Eq. (A7), the full spin-echo decoherence envelope of the
NV spin due to a two-spin cluster undergoing a secular flip-flop
process is given below in Eq. (A19). This expression is exact,
and the ZSE and SZE analytic limits have been employed in
the main text. This envelope will contain contributions from
flip-flop (FF, lateral and longitudinal), precession (P, lateral
only), and simultaneous flip-flop and precession (FF-P) pro-
cesses. For clarity, we outline these contributions separately,
whence

Lsec = 1 + LFF + LP + LFF-P. (A19)

The precession component is responsible for the decays and
revivals at moderate magnetic fields, and is given by

LP = −2
A2

x,1 + A2
y,1

λ2
1

sin2

(
λ1t

4

)
sin2

(
ωt

4

)
− 2

A2
x,2 + A2

y,2

λ2
2

sin2

(
λ2t

4

)
sin2

(
ωt

4

)

+ 4

(
A2

x,1 + A2
y,1

)(
A2

x,2 + A2
y,2

)
λ2

1λ
2
2

sin2

(
λ1t

4

)
sin2

(
λ2t

4

)
sin4

(
ωt

4

)
, (A20)
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the flip-flop processes are responsible for the decoherence of the NV spin,

LFF = Ax,1Ax,2 + Ay,1Ay,2 + �1�2

2λ1λ2
sin2

(
Bt

4

)
sin

(
tλ1

2

)
sin

(
tλ2

2

)
− 1

2
sin2

(
Bt

4

)[
1 − cos

(
tλ1

2

)
cos

(
tλ2

2

)]

− 2
(Ax,2Ay,1 − Ax,1Ay,2)2 + (�1Ax,2 − �2Ax,1)2 + (�1Ay,2 − �2Ay,1)2

λ2
1λ

2
2

sin2

(
Bt

4

)
sin2

(
tλ1

4

)
sin2

(
tλ2

4

)
, (A21)

and the hybrid processes are described by

LFF-P = 2
(�1Ax,2 − �2Ax,1)2 + (�1Ay,2 − �2Ay,1)2

λ2
1λ

2
2

sin2

(
Bt

4

)
sin2

(
tλ1

4

)
sin2

(
tλ2

4

)
sin2

(
tω

4

)

− Ax,1Ax,2 + Ay,1Ay,2

λ1λ2
sin2

(
Bt

4

)
sin

(
tλ1

2

)
sin

(
tλ2

2

)
sin2

(
tω

4

)

+ 2
A2

x,1 + A2
y,1

λ2
1

sin2

(
Bt

4

)
sin2

(
tλ1

4

)
cos2

(
tλ2

4

)
sin2

(
tω

4

)

+ 2
A2

x,2 + A2
y,2

λ2
2

sin2

(
Bt

4

)
sin2

(
tλ2

4

)
cos2

(
tλ1

4

)
sin2

(
tω

4

)
. (A22)

Using this result, and expanding to second order for
small Ax,y,z/ω, we obtain the contribution to the spin-echo
decoherence of the central spin due to a two-spin cluster:

LZSE = 1 − sin2

(
Bt

4

)
sin2

(
�zt

4

)
− �2

x + �2
y

ω2

× sin2

(
Bt

4

)
sin2

[
(Az,1 + ω)

t

4

]

− 4
A2

x,1 + A2
y,1

ω2
sin2

[
(Az,1 + ω)

t

4

]
sin2

(
tω

4

)
.

(A23)

We note that only the terms containing the dipole-dipole
coupling B represent any actual decoherence, with the pres-
ence of a finite magnetic field increasing the effect by a

factor of 1 + �2
x+�2

y

4ω2 . The final term corresponds to the lateral
dynamics (precession) of the nuclei, and hence does not
contribute any decoherence, for reasons analogous to those
discussed in Sec. A 2, however, it does detail the emergence of
the decay/revival behavior seen in spin-echo experiments on
electron spins coupled to nuclear spin baths. Specifically, we
see that the amplitude of the revivals increases with decreasing
magnetic field, as does their width.

Despite not contributing any true decoherence, the decays
and revivals at the Larmor frequency are susceptible to
inhomogeneous broadening from the axial couplings to all
other spins in the bath, leading to an additional dephasing
component in the evolution of the central spin. Such a
distinction is important, as it explains the major difference
between numerically calculated and experimentally observed
behavior of this system. This effect is considered in detail
in Sec. VII E. Further corrections to the Larmor broadening
due to larger cluster sizes may be calculated iteratively by
employing the spectral distribution when performing the
ensemble average, however, these corrections will lead to

terms with a dependence on t beyond that of leading order
and are thus not important.

As with the ZSE regime, the |+1〉 state of the NV spin
yields sufficient detuning to suppress any dipolar flip-flops,
hence, we may ignore the dipolar term in the projection of
the Hamiltonian on the |+1〉 spin state. We are working in a
regime where the Zeeman terms are still much greater than
the dipolar terms, allowing us to ignore spin-spin interactions
that do not conserve total magnetization with respect to
the background field. Thus, the Hamiltonian, and hence the
decoherence function for the SZE regime are identical to that
for the ZSE regime; however, we instead expand Eq. (A21) for
small ω/A1,2

x,y,z, giving

LSZE = 1 − sin2

(
Bt

4

)
sin2

(
�

4
t

)
− 4

A2
x,1 + A2

y,1

A2
1

×
[

1 − 2ωAz,1

A2
1

]
sin2

(
tλ1

4

)
sin2

(
tω

4

)

+ 4
(
A2

x,1 + A2
y,1

)
2

A4
1

[
1 − 4ωAz,1

A2
1

]
sin4

(
tλ1

4

)

× sin4

(
tω

4

)
, (A24)

where � ≡ |A1 − A2|. We note here that this expression is
very similar to that of the ZSE regime, however, the effective
hyperfine coupling strength has increased from �z to �. This
is a consequence of the quantization axis of the spins being set
by their hyperfine coupling rather than their Zeeman coupling.

b. Strong, nonsecular hyperfine coupling, nonsecular
dipole-dipole coupling (SEZ)

In this regime, we still have that the hyperfine couplings
dominate when the NV is in the |+1〉 state. When the
NV is in the |0〉 state, the dipolar couplings between the
environmental spins will dictate the evolution, as with the
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ZSE and SZE regimes; however, in this regime, the dipolar
couplings dominate over the Zeeman terms. This means that
the quantization axis of the spins is set by their mutual
interaction, and the cluster is thus not required to conserve
magnetization with respect to the background field. Including
all possible dipole interaction terms, we have

H1 =
2∑

k=1

[Ax,kSx,k + Ay,kSy,k + (Az,k + ω)Sz,k],

H0 = B[ 
S1 · 
S2 − 3(n · 
S1)(n · 
S2)], (A25)

where n is the unit vector separating spins 1 and 2. The
full spin-echo envelope for the SEZ regime is too large to
reproduce here, however, we may simplify things immensely
by averaging over the angular components of the cluster
geometry (θ , φ), giving

LSEZ = 1 − 8

15
sin2

(
3Bt

4

)[
sin2

(
At

2

)
+ sin2

(
At

4

)]
,

(A26)

where A =
√

A2
x + A2

y + A2
z . Notice that the hyperfine cou-

pling now emerges as A instead of �, which is a consequence
of the magnetization no longer being conserved with respect
to the background field. This results in a significantly larger
fluctuation amplitude, as 〈A2〉 = ( 4πna

3 )2, whereas 〈�2〉 =
(2na)2. The separation of hyperfine and dipolar processes also
means that we need not distinguish between A1 and A2, as their
relative locations are no longer important as far as the hyperfine
component of the evolution is concerned. As the contributions
of each spin will be summed over in an equivalent manner, we
simply put A1 = A2 = A. This is in contrast to the ZSE and
SZE cases, where the hyperfine couplings manifest as �z and
�, respectively, as the treatment of spin 2 will depend on the
location of spin 1.

In the following Appendix, we discuss the statistics
associated with the random distribution of spin impurities
in a spin-bath environment. These statistics will be used to
determine the combined effect on the coherence of the central
spin from all clusters in the bath.

APPENDIX B: SPATIAL STATISTICS OF RANDOMLY
DISTRIBUTED IMPURITIES

In this Appendix, we derive the probability density
functions associated with the distance between the nearest-
neighbor (NN), next-nearest-neighbor (NNN), and so forth,
impurities in the environment. These distributions will be
used to determine the collective dynamic behavior of the
environment and allow us to compare the contributions from
the different orders of clustering. We first consider the case of
a continuum distribution, in which spin impurities may adopt
any position in the lattice according to their spatial density.
We then consider the specific case of NV centers in diamond,
in which carbon atoms are arranged in a tetrahedral diamond
lattice.

For a given lattice site density (or carbon atom number
density) of nc, the volume V concentric on any one en-
vironmental spin impurity contains N ≈ ncV − 1 sites that
may be occupied by a second impurity. The probability of

finding X spins within V is then a binomial distribution
with N -independent trials, with each site having a probability
χ = 0.011 of being occupied by a nucleus of nonzero spin:

P(X|N,χ ) ≈ (V/V0)!

X!(V/V0 − X)!
χX(1 − χ )V/V0−X, (B1)

which, in the limit of low-spin concentrations χ 	 1, ap-
proaches a Poisson distribution

P(X|V,χ ) ≈ 1

X!
(ζ r3)X exp(−ζ r3), (B2)

where ζ ≡ 4πχ

3V0
, implying an average spin impurity density of

n = χ/V0. The probability that a sphere concentric on a given
environment spin contains at least one other spin is given
by which, by definition, is also the cumulative probability
function. As such, the probability of encountering a spin at r

(i.e., on the shell of V ) is given by

P(r) = d

dr
P(X > 0,r) = 4πnr2 exp

(
−4πnr3

3

)
. (B3)

In other words, P(r) is the probability density function for the
distance between two nearest-neighbor spins.

This analysis may be extended to compute the probability
distribution of the distance to the kth nearest neighbor.
Consider the region bounded by concentric spheres of radii
r1 and r0, the volume of which is 4

3π (r3
1 − r3

0 ). As above,
the probability that at least one impurity exists in this
region is 1 − exp[−ζ (r3

1 − r3
0 )], which has the corresponding

probability density function

P(r1) = 3ζ r2
1 exp

[−ζ
(
r3

1 − r3
0

)]
.

Similarly, the probability density function for the distance to
the kth impurity is

P(rk) = 3ζ r2
k exp

[−ζ
(
r3
k − r3

k−1

)]
.

Taking r0 = 0, the joint probability density function is

P(r1, . . . ,rk) =
k∏

j=1

pr (rj ) = (3ζ )kr2
1 . . . r2

k exp
[−ζ r3

k

]
.

To obtain the distribution for each rj , we successively integrate
over all r1, . . . ,rj−1, rj+1, . . . ,rk from 0 to rj+1.

Thus, given the location of some environmental spin, the
probability of finding its kth nearest neighbor at a distance of
rk is given by

Pk(rk) = 4πnr2
k

(k − 1)!

(
4πnr3

k

3

)k−1

exp

[
−4πnr3

k

3

]
. (B4)

Computing the first and second moments of this distribution,
we find

〈rk〉 =
(

4πn

3

)− 1
3 �

(
k + 1

3

)
(k − 1)!

(B5)

and 〈
r2
k

〉 =
(

4πn

3

)− 2
3 �

(
k + 2

3

)
(k − 1)!

. (B6)

A plot of the mean distance to the first 10 nearest neighbors,
〈rk〉 for k = 1, . . . ,10, is shown in Fig. 18(b). This quantity
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FIG. 18. (Color online) Probability distributions associated with
the distance of a given spin to its first 10 nearest neighbors.

gives us an indication of how large the considered region may
be (and hence the time scale) before NNN interactions become
important. As we can see, for the case of a NV center coupled
to a 13C nuclear spin bath, where T2 < 1 ms, we need only
consider two-spin interactions.

In the above analysis, we have assumed that a given
impurity may adopt any position within the environment, with
the only constraint being the overall average density with
which the impurities are distributed. However, as our primary
focus is on the NV center in diamond, this is not strictly
correct, as impurities may only occupy the atomic positions of
a diamond cubic crystal structure.

Let N (r) be the number of discrete lattice sites enclosed
within a sphere of radius r , concentric on some impurity,
and let νn ≡ ν(rn) denote the number of discrete lattice
sites at radius rn. Again invoking a binomial distribution,
the probability of encountering the nearest-neighbor impurity
1 spin at radius rn is the joint probability that one or more
impurities reside at rn and that there are no others within a
sphere of this radius,

Pn = [1 − (1 − χ )νn](1 − χ )Nn−1 . (B7)

The position vectors associated with the lattice sites in
a cubic diamond unit cell of side length 4 are {uk} =
{(0,0,0),(0,2,2)�,(3,3,3),(3,1,1)�}, where � denotes a cyclic
permutation of vectorial components.

If we let (l,m,n) ∈ N3 index each individual cell, then the
Cartesian coordinates of a given site are Uk = 4(l,m,n) + uk.

From this we find that the squared distance to the nth neighbor
is 4n if n is even, and 4n − 1 if n is odd. Both rn and νn are

given in Table II. Note that values of r2
n have been normalized,

however, the distance between adjacent lattice sites is given
by l = 1.54 Å.

This derivation of the discrete probability distribution
allows us to determine the extent to which the continuum
approximation is valid when computing ensemble averages of
the various quantities that follow.

APPENDIX C: ENVIRONMENTAL AUTOCORRELATION
FUNCTIONS AND FREQUENCY SPECTRA

In this section, we employ both the single-cluster autocor-
relation functions derived in Sec. V corresponding to secular
[Eq. (8)] and nonsecular [Eq. (9)] evolution of an individual
cluster, together with the spatial statistics developed in the
previous section (Appendix B), to determine the respective
autocorrelation functions due to the sum of all clusters in the
environment.

To obtain the correct short-time scaling of the secular
function, we note that it is only the small clusters (r 	
R0) that contribute to short-time dynamics of the system.
The constituents of larger clusters communicate on much
longer time scales and hence manifest as an effectively dc
signal. Another way to think of this is to view the ensemble
averages taken over the spatial distributions [Eq. (B3)] as a
Fourier transform, with the conjugate (frequency) variable
given by ξ ≡ 3br−3/2. The short-time behavior (t 	 1/bn)
of the autocorrelation function therefore corresponds to the
high-frequency behavior (ξ � bn) of the spectral distribution.

The secular autocorrelation function for a two-spin cluster
is proportional to the difference in hyperfine couplings of
the two nuclei. The leading-order behavior, corresponding
to the high-frequency limit associated with smaller cluster
sizes, comes from expanding these quantities for small r . In
the ZSE regime, the magnitude of the fluctuating component
only depends on the difference in the z − z components of the
respective hyperfine couplings

�z = |Az,1 − Az,2|

∼ 3ar

R4
{sin(θ ) sin(�)[1 − 5 cos2(�)] cos(φ − �)

+ cos(θ ) cos(�)[3 − 5 cos2(�)]}, (C1)

whereas in the SZE limit, this magnitude depends on all
couplings to the axial component of the NV spin

� =
√

A2
x,1 + A2

y,1 + A2
z,1 −

√
A2

x,2 + A2
y,2 + A2

z,2

∼ 1√
3 cos2(�) + 1

(4 cos(θ ) cos3(�)

+ sin(θ )[2 sin(�) + sin(3�)] cos(φ − �)). (C2)

TABLE II. Table of normalized squared distances between crystal lattice sites, and the associated number of sites at that distance.

Neighbor 1 2 3 4 5 6 . . . Odd n Even n

(×l2/3) r2
n 3 8 11 16 19 24 . . . 4n − 1 4n

νn 4 12 12 6 12 24 . . .
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Employing these expansions and averaging over the spatial
degrees of freedom using Eq. (B3), we find the collective
autocorrelation function for the secular environment to be

〈B2(t)B2(0)〉S

= 2
5

(
4
3πan

)2[
4 + 6 cos(ωt) − 1

3 [7 cos(ωt) + 4]M(t)
]
.

(C3)

The function M(t) is related to the secular magnetization, as
given by

M(t) = 1

3

{
3�

(
2

3

)
+ 6

√
6π11/6(bnt)5/6

[
(
√

3 − 3)ber 5
3

×
(

4

√
π

3

√
bnt

)
− (3 +

√
3)bei 5

3

(
4

√
π

3

√
bnt

)

+ 2
√

3bei− 5
3

(
4

√
π

3

√
bnt

)

− 2
√

3ber− 5
3

(
4

√
π

3

√
bnt

)]}
, (C4)

where ber(x) and bei(x) are the Kelvin functions, defined by
the real and imaginary parts of Jν(xe3πi/4), respectively, and
Jν(x) is the νth-order Bessel function of the first kind. This
gives an autocorrelation time of

TS = 9

4π2bn
≈ 9.6 ms. (C5)

To leading order in t we have

M(t) ∼ 4π
3
√

6

�
(

8
3

) (πbnt)5/3 − 8π√
3�

(
4
3

) (πbnt)2 . (C6)

On the other hand, the collective autocorrelation function for
the nonsecular environment may be computed exactly,

〈B2(t)B2(0)〉N = 64
9 π2a2n2[1 − N (t)]. (C7)

The function N (t) is related to the collective nonsecular
magnetization function, as given by

N (t) = 2
9

[
πbnt G

3,0
0,4

(
1
9b2n2π2t2|− 1

2 ,0, 1
2 ,0

) − 3
]
, (C8)

where G is the Meijer G function. To leading order, this results
in a linear decay, given by

N (t) ∼ 4
9π2bnt, (C9)

with the same autocorrelation time as that of the secular
autocorrelation function,

TN = 9

4π2bn
≈ 9.6 ms. (C10)

Having obtained the autocorrelation functions of the effec-
tive magnetic field, we can compute their Fourier transforms
to give their corresponding spectral distributions. We do this
by noticing that the role of the conjugate frequency variable
is played by ξ ≡ B = 3br−3/2. By transforming variables
from r to ξ , we identify the secular and nonsecular spectral
distributions to be

fS(ξ ) = KS

(
3b

2ξ

)2/3
b

2ξ 2
exp

(
−2nπb

ξ

)
,

fN(ξ ) = KN
b

2ξ 2
exp

(
−2nπb

ξ

)
, (C11)

respectively, where KS and KN are normalization con-
stants. The corresponding normalized spectra are plotted in
Figs. 19(b)and 19(c). The lack of any significant spectral
component near ξ = 0 is symptomatic of the cutoff imposed by
the statistics associated with the size distribution of two-spin
clusters. That is, since the exponential size cutoff associated
with two-spin clusters prohibits arbitrarily large cluster sizes,
there is no corresponding low-frequency region of the spectral
density. Recall from the spatial statistics associated with
higher-order cluster sizes [Eq. ( (B3))] that each successive
kth neighbor introduces an associated probability distribution
whose leading-order behavior scales as r3k−1/(k − 1)!. This,
in turn, contributes an additional factor of 1/ξ to the spectral
distribution for each successive order of clustering, with the
modal frequencies occurring at

ξ
(k)
S = 2πnb

k + 5
3

, ξ
(k)
N = 2πnb

k + 1
(C12)

for the secular and nonsecular cases, respectively. Incorpora-
tion of successively higher orders of clustering will resolve the
true low-frequency behaviour of the spectral distribution.

0 1 2 30

0.5

1

Normalised frequency, ξ/2nπb
10

−2
10

0
10

2
10

410
−10

10
−5

10
0

10
5

Secular spectrum
Non−secular spectrum

Normalised frequency, ξ/2nπb

N
or

m
al

is
ed

 s
pe

ct
ra

l d
is

tr
ib

ut
io

n

N
or

m
al

is
ed

 s
pe

ct
ra

l d
is

tr
ib

ut
io

n

(a) (b)

fN ∼ ξ-2

fS ∼ ξ-8/3

FIG. 19. (Color online) (a) Spectral distributions associated with the secular (blue) and nonsecular (green) spin-spin dynamics. (b) As in
(a), but plotted on a log-log scale to show the high-frequency scaling of the spectra.
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APPENDIX D: DECOHERENCE IN ULTRAPURE
SINGLE-CRYSTAL DIAMOND

The determination of collective decoherence functions
is performed by integrating the single-cluster decoherence
functions (see Appendix A) over the r − R domains as defined
by the background field. Recall that the full spin-echo envelope
is given by the product of all envelopes due to all clusters as
weighted by the relevant spatial distributions

L =
∏

i

Li, (D1)

and taking the natural logarithm of both sides gives

� = −
∑

i

ln(Li) �→ −〈ln(Li)〉, (D2)

where the final line above denotes the ensemble average taken
over all possible geometric cluster configurations. To compute
these averages, we employ a formal expansion for the natural
logarithm given by

ln(1 − x) = −
∞∑

k=1

xk

k
, (D3)

which holds for −1 � x < 1. This condition is auto-
matically satisfied since −1 � LZS, LSZ � 1, and 0 �
LZSE, LSZE, LSEZ � 1. For example, in the ZSE case, we have

�ZSE =
∞∑

k=1

1

k

[
sin2

(
Bt

4

)
sin2

(
�z

4
t

)]k

. (D4)

However, we are only interested in the leading-order behavior
of the ensemble-averaged decoherence function, to which all
terms for k � 2 do not contribute.

1. Free-induction decay

To obtain the FID decoherence functions for the ZS
and SZ regimes, we start with the single-spin decoherence
function as given by Eq. (23). Integration over R gives∫ ∞

l

4πnR2�ZS dR = 2

3
πl3n

[
1F2

(
−1

2
;

1

2
,
1

2
;

− a2t2[3 cos(2�) + 1]2

64l6

)
− 1

]
, (D5)

∫ ∞

l

4πnR2�SZ dR = 2

3
πl3n

[
1F2

(
−1

2
;

1

2
,
1

2
;

− a2t2[3 cos(2�) + 5]

32l6

)
− 1

]
, (D6)

where F is the generalized hypergeometric function. Expand-
ing these expressions to leading order for short and long times,
and integrating over the angular degrees of freedom gives the
collective decoherence functions discussed in Sec. VI of the
main text.

2. Spin-echo decoherence

We now move on to consideration of the spin-echo decoher-
ence due to all spin clusters in the environment. Using Eq. (D3),
the leading-order behavior of the decoherence functions for the
ZSE, SZE, and SEZ regimes are given by

〈�ZSE〉 ∼
〈

sin2

(
Bt

4

)
sin2

(
�z

4
t

)〉
,

〈�SZE〉 ∼
〈

sin2

(
Bt

4

)
sin2

(
�

4
t

)〉
, (D7)

〈�SEZ〉 ∼
〈

8

15
sin2

(
3Bt

4

)[
sin2

(
At

2

)
+ sin2

(
At

4

)]〉
,

respectively.

a. Spin-echo decay at high magnetic fields (ZSE)

As the spin-echo decoherence times are much shorter than
the environmental correlation times, we may expand �z for
small r , giving

�z ∼ 3ar

R4
[sin(θ ) sin(�)[1 − 5 cos2(�)] cos(φ − �)

+ cos(θ ) cos(�)[3 − 5 cos2(�)]] ≡ aαr

R4
. (D8)

To obtain the ZSE decoherence function in the long-time limit,
we integrate 〈�ZSE〉 [Eq. (D7)] over the spatial degrees of
freedom R and r , using Eq. (B3), giving

〈�ZSE〉 = (−1)15/16( 4
√−1 − 1)π19/8a

3/4
α

4
√

bnt�
(− 3

4

)
16 8

√
233/8

(bnt)3/8

[
(−1)3/8 + i)ber− 5

4

(
2

√
2π

3

√
bnt

)

+ ( 8
√−1 + (−1)3/4)ber 5

4

(
2

√
2π

3

√
bnt

)
+ (1 + (−1)7/8)bei− 5

4

(
2

√
2π

3

√
bnt

)

+ ( 4
√−1 + (−1)5/8)bei 5

4

(
2

√
2π

3

√
bnt

)]
+

(
2π

3

)3/4

sin

(
π

8

)
�

(
5

4

)2

(aαnt)3/4. (D9)

Expanding this expression for t � 1/an and t 	 1/bn, and
integrating over the angular degrees of freedom, gives the
decoherence function for t ∼ T2 [Eq. (34)].

To obtain the behavior of the decoherence function at
intermediate times, we must make a correction for the diamond
bond length to the nuclear-nuclear component of the evolution,
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while integrating over the hyperfine dynamics as above.
The associated integral is generally intractable for arbitrary
limits of r , however, as l 	 n−1/3 we may approximate the
probability distribution (B3) by its leading-order behavior
P(r) ∼ 4πnr2, giving

〈�ZSE〉 ∼
(∫ ∞

0
P(r) −

∫ l

0
4πr2

)
2πn

3
sin

(
π

8

)
�

(
1

4

)

×
(

aαrt

2

)3/4

sin2

(
3Bt

4

)
dr

= π2

20

√
2(

√
2 − 1)l15/4n2�

(
1

4

)
(at)3/4

×
[

1F2

(
−5

8
;

3

8
,
1

2
; −b2t2

16l6

)
− 1

]
. (D10)

Expanding this expression for t � 1/an and t 	 1/bn gives
the expression for the ZSE decoherence function at interme-
diate times [Eq. (36)].

To obtain the behavior of the decoherence function at short
times, we make a similar adjustment for the bond length in
the hyperfine interaction, and then expand for t 	 1/an and
t 	 1/bn, as given by Eq. (37) of the main text.

b. Spin-echo decay at moderate magnetic fields (SZE)

The procedure to compute the ensemble-averaged decoher-
ence function in the SZE regime is the same as that for the ZSE
regime, however, we make the substitution �z �→ �, leading
to what is essentially a redefinition of aα:

aα �→ 1√
3 cos2(�) + 1

(4 cos(θ ) cos3(�) + sin(θ )[2 sin(�)

+ sin(3�)] cos(φ − �)). (D11)

Following this redefinition, the computation of decoherence
functions in the SZE regime is the same as that for the ZSE
regime.

c. Spin-echo decay at low magnetic fields (SEZ)

To obtain the analytic limits of the SEZ decoherence
function, we follow the same progression as in the ZSE
and SZE limits above. The SEZ limit is somewhat simpler,
however, owing to the fact that the hyperfine and dipole-dipole
processes are decoupled from one another in the single-cluster
SEZ decoherence function [Eq. (D7)]. Integration over the
hyperfine component from l < R < ∞ yields∫ ∞

l

[
sin2

(
At

2

)
+ sin2

(
At

4

)]
R2dR

= 2

3
n

{
l3

[
1F2

(
−1

2
;

1

2
,
1

2
; −a2t2

16l6

)

+ cos

(
at

l3

)
− 2

]
+ atSi

(
at

l3

)}
. (D12)

Integration over r from l to ∞ in the dipolar interaction gives∫ ∞

l

P(r) sin2

(
3Bt

4

)
dr

= 1

4

[
2 − πbnt G

3,0
0,4

(
b2n2π2t2

4

∣∣∣∣−1

2
,0,

1

2
,0

)]

− 1

6
πn

[
−6btSi

(
3bt

2l3

)
− 4l3 cos

(
3bt

2l3

)

+ 3πbt + 4l3

]
, (D13)

where Si is the sine integral function, defined by Si(x) =∫ x

0 t−1 sin(t) dt . Taking the relevant limits of the dipolar and
hyperfine components, integrating over the angular degrees
of freedom, and substituting into the definition of 〈�SEZ〉
[Eq. (D7)], we find the long-, intermediate-, and short-time
limits of the SEZ decoherence to be as given in Eqs. (39)–(41),
respectively.

APPENDIX E: ON THE QUESTION OF WHETHER
THE QUANTUM SPIN BATH MAY BE MODELED

AS A CLASSICAL MAGNETIC FIELD

The time-evolution operator for a spin-echo experiment is

U = Uf (t/2,t)FUf (0,t/2), (E1)

and for an arbitrary pulse sequence with pulses applied at
tk = {t1,t2, . . . ,tn}, we have

U(t) = U(tn,t)F . . .FU(t1,t2)FU(0,t1)

≡ e−iφ1 |1〉〈1| + e−iφ0 |0〉〈0|, (E2)

where

φ1 = φ(0,t1) + φ(t2,t3) + · · · ,

φ0 = φ(t1,t2) + φ(t3,t4) + · · · (E3)

are the accumulated phases of the |1〉 and |0〉 states, respec-
tively.

Using this semiclassical approach for an initial probe spin
state of |ψ0〉 = 1√

2
(|0〉 + |1〉), we find the in-plane projection

of the magnetization to be

L = Tr{(Sx + iSy)U(t)ρ0U†(t)}
= 1

2 exp{i[φ∗
1 (t) − φ0(t)]}.

This quantity is an average over the quantum degrees of
freedom in the system, but we have not yet addressed the
statistics of the field B. First, we note that the amplitude
of B(t) at any given t is a sum over a large number of
sources and is therefore normally distributed. Furthermore,
at room temperature, thermal energies are much larger than
the coupling of environmental spins to static background
fields kBT � ω

√
S(S + 1), implying that 〈B〉 = 0 and hence

〈ϕ〉 = 0. To compute the ensemble average 〈S〉, we make
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the substitution to the normally distributed variable ϕ = φ∗
1 (t) − φ0(t), which, by definition, has standard deviation

√
〈ϕ2〉 − 〈ϕ〉2,

giving 〈S〉 = 1
2 exp(− 1

2 〈ϕ2〉) where

ϕ =
∑
k=0

[ ∫ t2k+1

t2k

−
∫ t2k+2

t2k+1

]
B(t ′) dt ′ (E4)

and

〈ϕ2〉 =
∑
k=0

∑
j=0

[ ∫ t2k+1

t2k

dt ′ −
∫ t2k+2

t2k+1

dt ′
][ ∫ t2j+1

t2j

dt ′′ −
∫ t2j+2

t2j+1

dt ′′
]
〈B(t ′)B(t ′′)〉. (E5)

We therefore define the semiclassical analog of the decoherence function � via

� ≡ 1
2 〈ϕ2〉. (E6)

The problem of determining � then reduces to finding an expression for the autocorrelation function of the effective magnetic
field, as was detailed in Appendices A and C.
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