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We study correlated quantum impurity models that undergo a local quantum phase transition (QPT) from
a strong coupling, Fermi liquid phase to a non-Fermi liquid phase with a globally doubly degenerate ground
state. Our aim is to establish what can be shown exactly about such “local moment” (LM) phases, of which the
permanent (zero-field) local magnetization is a hallmark, and an order parameter for the QPT. A description of
the zero-field LM phase is shown to require two distinct self-energies, which reflect the broken symmetry nature
of the phase and together determine the single self-energy of standard field theory. Distinct Friedel sum rules for
each phase are obtained, via a Luttinger theorem embodied in the vanishing of appropriate Luttinger integrals.
By contrast, the standard Luttinger integral is nonzero in the LM phase but found to have universal magnitude.
A range of spin susceptibilites are also considered, including that corresponding to the local order parameter,
whose exact form is shown to be RPA-like, and to diverge as the QPT is approached. Particular attention is
given to the pseudogap Anderson model, including the basic physical picture of the transition, the low-energy
behavior of single-particle dynamics, the quantum critical point itself, and the rather subtle effect of an applied
local field. A two-level impurity model that undergoes a QPT (“singlet-triplet”) to an underscreened LM phase is
also considered, for which we derive on general grounds some key results for the zero-bias conductance in both
phases.
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I. INTRODUCTION

Since its inception more than half a century ago [1], the
Anderson impurity model (AIM)—a single, correlated level
coupled to a metallic conduction band—has played a central
role in understanding strongly correlated electron systems [2],
with a resurgence of interest in recent years arising from the
advent of quantum dot devices [3]. Its essential physics in the
regime where the impurity/dot is in essence singly occupied, is
that of the Kondo effect: the impurity spin degree of freedom
is completely quenched on coupling to the metallic conduction
band, and a strong coupling (SC), many-body singlet ground
state arises.

Yet the metallic AIM is atypical in one important sense. The
system is a Fermi liquid (FL) for any value of the interaction
strength: the model lacks a local (or boundary) quantum phase
transition (QPT) to a phase in which the local spin degree
of freedom is incompletely quenched. Local QPTs occur of
course at T = 0, and in the absence of a field that would
otherwise destroy them. The familiar situation is sketched in
Fig. 1, with generic interaction strength (U ) as the abscissa and
the QPT occurring at a critical Uc. The transition separates
two distinct phases. One is perturbatively connected to the
noninteracting limit, and in that general sense is thus a Fermi
liquid. Separated from it by the QPT, the other is not then
perturbatively connected to the noninteracting limit. As such,
it is a non-Fermi liquid (NFL) phase.

Continuous quantum phase transitions between FL and
NFL phases are in fact quite typical in quantum impurity
physics. For single-level models, examples include the pseu-
dogap AIM [4–24] (where the conduction band density of
states has a soft gap at the Fermi level), as well as the gapped
AIM [25]; while many examples arise in multilevel and mul-
tiimpurity models, including, e.g., single-channel two-level
impurity systems, which undergo a QPT to an underscreened
spin-1 phase [26–28], and impurity models for double [29] and

triple [30,31] quantum dot devices. In all these cases, the NFL
phase is “common” in the sense that it occupies a finite fraction
of the model parameter space (i.e., does not require fine-tuning
of parameters to be realized [32]). The associated QPTs are
diverse in character, ranging from a quantum critical point with
a fixed point (FP) distinct from that characteristic of either the
FL or NFL phases, through a critical end-point of a line of
FPs characteristic of one or other phase (Kosterlitz-Thouless
transitions), to a simple first-order level-crossing transition.
The NFL phases are commonly (globally) doubly degenerate
states, characterized as such by a degenerate SU(2) spinlike
degree of freedom. The latter is typically a “real” spin, whence
we refer to them as local moment (LM) phases; although it can
arise also from underlying charge degrees of freedom [29].

These degenerate LM phases are the primary focus of
the present paper and are certainly nontrivial—the local spin
degree of freedom is not “free,” but incompletely quenched
by coupling to the conduction band. Part of our motivation
arises from the local moment approach (LMA) [33–35], where
the notion of local moments enters centrally from the outset,
and which provides a rather successful description of the
pseudogap [8,10,15,16,19], gapped [25] and metallic [33–36]
AIMs, as well as correlated lattice-fermion models [37] within
the framework of dynamical mean-field theory [38,39]. Yet,
the LMA is, of course, approximate (and in the first instance,
local moments enter explicitly at mean-field level). Our aim
here by contrast is to show what can be deduced exactly about
LM (as well as SC) phases, unfettered by approximations.

For any impurity model, the Hamiltonian has the form
H = Himp + HCB + Hhyb, where Himp refers to the impurity
itself, HCB to the conduction band, and the hybridization term
Hhyb couples the impurity and conduction band degrees of
freedom. For most of the paper, we consider explicitly the
case of a single-level impurity (and for T = 0 unless specified
otherwise). This is in part for notational simplicity, since much
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FIG. 1. A zero-field QPT (T = 0) occurs at a critical interaction
Uc. It separates an FL (or strong coupling) phase for U < Uc, which
is adiabatically connected to the noninteracting limit, from an NFL,
local moment phase for U > Uc. Solid lines denote low-energy scales
characteristic of each phase, which vanish as the QPT is approached
and set the scale for crossover to quantum critical behavior at finite
T or field.

of the following can be generalized to multilevel impurities
(which we consider in Sec. X). The free impurity Hamiltonian,
with level energy ε and local Coulomb interaction U , is then
Himp = ∑

σ (ε − σh)d†
σ dσ + Un̂↑n̂↓ (with σ = ± for ↑/↓

spins), where n̂σ = d†
σ dσ is the local σ -spin number operator

and h = 1
2gμBB denotes a magnetic field. The conduction

band HCB = ∑
k,σ (εk − σh)c†kσ ckσ , where for generality we

include a field acting on the band states, and the hybridization
term is Hhyb = ∑

k,σ (Vk d†
σ ckσ + H.c.) [40].

A. Overview

As the paper is quite broad ranging, we first give an
overview of it. Section II begins by considering the T = 0 local
(impurity) magnetization m(h); in particular its h dependence
in the LM phase (Sec. II A) and the nonvanishing permanent
local moment m(h = 0+) that is both a characteristic signature
of the phase and a natural order parameter for the QPT.

The behavior of m(h) has strong implications for the
structure of single-particle propagators in the LM phase,
particularly at zero field (Sec. II B). Here, reflecting the
spin-degeneracy of the ground state, we show that a description
of the zero-field propagator requires consideration of the
two distinct self-energies, which reflect the broken symmetry
nature of the LM phase and which together determine the
conventional single self-energy of standard field theory. This
“two-self-energy” description also underlies the LMA [33–35]
(where it is used to describe both LM and SC phases), but here
it is exact.

In Sec. III, we obtain the Friedel-Luttinger sum rules which
relate a scattering phase shift to the corresponding “excess”
charge (Sec. II C) and a Luttinger integral. Luttinger’s theorem
holds in the SC, FL phase, i.e., the Luttinger integral vanishes
(“universally,” throughout the phase). In Sec. III A, we show
that for U > Uc in the LM phase, the corresponding Luttinger
integral appropriate to the two-self-energies likewise vanishes;
whence a Friedel sum rule arises for each phase, with important
consequences considered in Sec. V ff. By contrast, Sec. III B
considers again the zero-field LM phase, with a phase shift
defined in terms of the conventional single self-energy. Here

we show that while a Friedel-Luttinger sum rule again arises,
the associated Luttinger integral, IL, cannot be argued to
vanish.

Following a brief discussion (Sec. IV) of the simple atomic
limit—an uncoupled, correlated level—we turn in Secs. V–
VIII to the pseudogap AIM (PAIM) [4–24], where the SC and
LM phases are separated by a quantum critical point (QCP) [7].
Beginning with zero field, the implications of the respective
Friedel sum rules for SC and LM phases are considered in turn
(Secs. V A and V B). The generic physical picture of the SC
to LM transition is thereby shown to be that, immediately on
entering the LM phase, the entire system acquires (or loses)
a single additional electron, which is fully spin-polarized for
even an infinitesimal field; but that precisely at the QCP there
is no spin-density on the impurity, which by contrast is on the
verge of acquiring a permanent local moment.

The conventional Luttinger integral in the LM phase is
then considered (Sec. V C), and its magnitude shown to
be universal but nonvanishing, |IL| = π

2 . In Sec. V D, the
asymptotic low-energy LM phase single self-energy (and
hence single-particle spectrum) is obtained, with the resultant
low-ω behavior seen to be symptomatic of the NFL nature
of the phase. The corresponding low-ω asymptotics for the
two-self-energies inherent to the broken-symmetry LM phase
are then deduced (Sec. VI), by self-consistently adapting
Luttinger’s original analysis [41], based on the underlying
all-orders skeleton expansion for the two self-energies.

Section VII considers the universal scaling of single-
particle dynamics close to the transition, where the low-energy
scales characteristic of each phase vanish (e.g., the Kondo
scale for the SC phase), and, relatedly, the interacting QCP
itself (Sec. VII A), including spectral signatures of both the
symmetric and asymmetric QCPs [7] (for which we supple-
ment analytical considerations with numerical renormalization
group calculations). The effects of a nonzero local field h are
considered in Sec. VIII. While the pristine local QPT between
SC and LM phases is destroyed for any finite h, we show
that the situation here is subtle, and physically rather rich, due
to an underlying bulk level-crossing “transition” that is quite
distinct from the local QCP.

Moving away from the PAIM per se, Sec. IX considers a
range of static spin susceptibilities which probe the transition
between LM and SC phases. The susceptibility corresponding
to the local order parameter is first considered, viz., the T = 0
local (impurity) susceptibility in response to a local field h,
as h → 0. Its exact functional form is obtained, and shown
both to be “RPA-like” (Sec. IX A) and to diverge as the
QPT is approached and the permanent local moment vanishes.
Results are then obtained for the h = 0 local susceptibility as
T → 0 (Sec. IX B), followed (Sec. IX C) by the corresponding
local and global spin susceptibilities in response to a globally
applied uniform field; all of which are naturally Curie-like in
form, but with coefficients vanishing with different powers of
the order parameter as the QPT is approached.

Finally, in Sec. X, we turn briefly to multilevel impurity
systems; notably to a two-level impurity (or quantum dot)
coupled to metallic leads in one-channel fashion [26–28]
which, due to a Hund’s rule coupling, undergoes a QPT from
a SC phase to an underscreened LM phase. Here we derive
and understand on general grounds some key results, hitherto
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inferred numerically [27], for the T = 0 zero-bias conductance
and the conventional Luttinger integral in the LM phase, with
|IL| = π

2 again shown to arise.

II. LOCAL MOMENTS AND LOCAL PROPAGATORS

In considering LM and SC phases, and the key differences
between them, our natural initial focus is the T = 0 local
magnetization, m(h). The field h may be applied either locally
to the impurity, or globally (i.e., acting also on conduction
band states); at present, we do not need to specify which, but
will do so when necessary.

We begin with generalities applicable to both phases. The
local m(h) and local charge n(h) are defined by

m(h) =
∑

σ

σnσ (h), n(h) =
∑

σ

nσ (h), (1)

where nσ (h) = 〈n̂σ 〉 is given by

nσ (h) =
∫ EF=0

−∞
dωDσ (ω,h) = − 1

π
Im

∫ 0

−∞
dωGσ (ω,h)

(2)

in terms of the local spectral density Dσ (ω,h) =
− 1

π
ImGσ (ω,h), and where Gσ (ω,h) ≡ Gr

σ (ω,h) is the re-
tarded impurity Green function given by [2]

Gσ (ω,h) = [ω+ − ε + σh − �σ (ω,h) − �σ (ω,h)]−1 (3)

(ω+ = ω + iη and η = 0+), with �σ (ω,h) the local inter-
action self-energy. �σ (ω,h) denotes the usual one-electron
impurity/conduction band hybridization [2]; if the field h

is applied purely locally, it is independent of h (and σ ),
�σ (ω,h) ≡ �(ω) (= ∑

k V 2
k [ω+ − εk]−1). With the field sign-

convention chosen, εσ = ε − σh, ↑ spins are favored over ↓
and hence sgn(m(h)) = sgn(h). Since H is invariant under
σ ↔ −σ and h ↔ −h, it follows that

Gσ (ω,h) = G−σ (ω, − h). (4)

From Eqs. (1) and (2) the magnetization

m(h) = −m(−h) (5)

is thus naturally odd in h, while n(h) = n(−h) is even.

A. Local moment phase

The above holds whether the phase is SC or LM. What
distinguishes the two is of course the low-field behavior
of the local magnetization. In a SC phase, m(h) vanishes
continuously as h → 0. In a LM phase by contrast, the
system possesses a permanent (zero-field) local moment, with
magnitude denoted by |μ̃|. Hence, as illustrated schematically
in Fig. 2, application of a field h in some arbitrary direction
leads to a nonvanishing magnetization along that direction,
which we refer to as an A-type LM state for h > 0 and B-type
for h < 0; such that as h → 0±,

m(h → 0±) = ±|μ̃|. (6)

The local magnetization is thus discontinuous across
h = 0, which is one hallmark of a LM phase. For h = 0 by

FIG. 2. (Top) Schematic of T = 0 local magnetization m in a
LM phase: m(h) = −m(−h) vs. h for fixed U > Uc. As h → 0±,
m(h) → ±|μ̃|, with |μ̃| the magnitude of the permanent local
moment. (Bottom) Qualitative behavior of m as a function of U

and h, with the critical Uc indicated.

contrast,

m(h = 0) = 0 (7)

reflecting simply the fact that the h = 0 ground state is locally
doubly degenerate (with a permanent moment that is “equally
probably up or down”) [42].

An obvious order parameter for the zero-field QPT between
LM and SC phases is thus the local moment |μ̃| = m(h = 0+),
since it is nonzero in the LM phase U > Uc but vanishes in
the SC phase; and we make the natural assumption that it
vanishes continuously as U → Uc+ from the LM phase. Two
brief points should be noted here.

(a) The local moment |μ̃| is of course a familiar order pa-
rameter within a static mean-field approximation (unrestricted
Hartree-Fock), which is, however, well known to overestimate
the tendency to local moment formation, and is hence liable to
predict spuriously a QPT to a LM phase (as it does, e.g.,
for the metallic AIM [1]). We emphasize that the present
work has nothing to do with mean-field theory. Nevertheless,
where a QPT between SC and LM phases genuinely occurs,
an appropriate order parameter for it is certainly the h → 0+
local magnetization—the local moment |μ̃| [as demonstrated
explicitly in Sec. V B for the pseudogap AIM, from numerical
renormalization group (NRG) calculations, see Fig. 3].

(b) As mentioned above, the magnetization m(h) is nonzero
for any h 
= 0, whether for U > Uc or U < Uc. The pristine
QPT is thus strictly destroyed on application of a finite field:
physically, the ground state for h 
= 0 in the U > Uc LM phase
is no longer doubly degenerate, the field “picking out” one or
other of the A and B components according to whether h ≷ 0.
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1. Structure of propagators

The above behavior in the LM phase has important
implications for the structure of the local propagators which,
via Eqs. (1) and (2), determine the magnetization. For
h > 0, Gσ (ω,h) ≡ GAσ (ω,|h|), where the broken symmetry
propagator GAσ (ω,|h|) reflects the LM state corresponding to
m(h) > 0 for all h > 0, and with m(0+) = +|μ̃|. For h < 0,
by contrast, Gσ (ω,h) ≡ GBσ (ω, − |h|) refers to m(h) < 0 for
all h < 0, with m(0−) = −|μ̃|; such that, from the invariance
of H under σ ↔ −σ and h ↔ −h [43],

GAσ (ω,|h|) = GB−σ (ω, − |h|). (8)

In other words,

Gσ (ω,h) = θ (h)GAσ (ω,|h|) + θ (−h)GBσ (ω, − |h|) (9)

with θ (x) the unit step function [such that θ (0) = 1
2 ]. In

parallel to the discontinuity in the magnetization across
h = 0, the propagator Gσ (ω,h) in the LM phase is like-
wise discontinuous across h = 0, i.e., Gσ (ω,h = 0+) =
GAσ (ω,0) and Gσ (ω,h = 0−) = GBσ (ω,0), where GAσ (ω,0)
and GBσ (ω,0) = GA−σ (ω,0) [Eq. (8)] do not coincide ∀ω in
the LM phase—as implied by the very existence of a permanent
moment [see Eqs. (15) and (17)].

Precisely at h = 0 by contrast, Eq. (9) gives

Gσ (ω,h = 0) = 1
2 [GAσ (ω,0) + GBσ (ω,0)] (10a)

= 1
2 [GA−σ (ω,0) + GB−σ (ω,0)] (10b)

= G−σ (ω,0) (10c)

reflecting the fact that in the absence of a field the ground
state is doubly degenerate. Moreover, since GAσ (ω,0) =
GB−σ (ω,0), Eq. (10) shows that Gσ (ω,0) is indeed rotationally
invariant (σ -independent), as it must be at zero field.

Since Gσ (ω,h) is discontinuous across h = 0, so too is the
spectrum Dσ (ω,h) = − 1

π
ImGσ (ω,h). In particular,

Dσ (ω,h = 0+) = DAσ (ω,0),

while for h = 0, by contrast, Dσ (ω,0) is given [Eq. (10)] by

Dσ (ω,h = 0) = 1
2 [DAσ (ω,0) + DBσ (ω,0)] (11)

with DBσ (ω,0) = DA−σ (ω,0) 
= DAσ (ω,0). Hence, on
switching on even an infinitesimal field, the ω dependence
of the single-particle spectrum must change abruptly. Such
behavior is indeed found in NRG studies of LM phases in a
range of different problems, including, e.g., the underscreened
spin-1 phase arising in two-level quantum dots [27,28], where
it is evident in an abrupt redistribution of spectral weight in
the Hubbard bands of Dσ upon application of even the tiniest
magnetic field [28].

Now return to Eq. (2) for nσ (h). From Eq. (9), it is of form

nσ (h) = θ (h)nAσ (|h|) + θ (−h)nBσ (−|h|) (12)

with nAσ (|h|) = − 1
π

Im
∫ 0
−∞ dωGAσ (ω,|h|) [and similarly for

nBσ (−|h|)], such that

nB−σ (−|h|) = nAσ (|h|) (13)

from Eq. (8). The local charge n(h) = ∑
σ nσ (h) follows using

Eqs. (12) and (13) as n(h) = [θ (h) + θ (−h)]
∑

σ nAσ (|h|) =

∑
σ nAσ (|h|), with the resultant n(h) = n(−h) thus continuous

across h = 0. We also define the obvious magnetization

mA(|h|) =
∑

σ

σnAσ (|h|) (14)

such that mA(|h|) > 0 for all h � 0 and U > Uc, with

mA(0) = |μ̃| (15)

the permanent moment; and likewise mB(−|h|) =∑
σ σnBσ (−|h|), such that mB(−|h|) = −mA(|h|) from

Eq. (13). Hence from Eqs. (1), (12), and (14), the local mag-
netization m(h) = θ (h)mA(|h|) + θ (−h)mB(−|h|) is given
simply by

m(h) = [θ (h) − θ (−h)]mA(|h|). (16)

This form naturally recovers the symmetries of Eqs. (5)–(7),
and just embodies formally the behavior sketched in Fig. 2
(top). It shows in particular that m(h) in the LM phase is
entirely determined (for any field h) by

mA(|h|) = − 1

π
Im

∑
σ

σ

∫ EF=0

−∞
dωGAσ (ω,|h|), (17)

which is calculable from the spectral densities DAσ (ω,|h|) =
− 1

π
ImGAσ (ω,|h|) of the broken symmetry propagators.

In fact, as generally employed in the following (and
for any field h ≷ 0), B-type propagators can be eliminated
from further consideration, and only the A-type propagators
need be considered: from Eqs. (9) and (8), Gσ (ω,h) can be
written as

Gσ (ω,h) = θ (h)GAσ (ω,|h|) + θ (−h)GA−σ (ω,|h|) (18)

and hence for nσ (h) [from Eqs. (12) and (13)],

nσ (h) = θ (h)nAσ (|h|) + θ (−h)nA−σ (|h|). (19)

2. Self-energies

The propagator GAσ (ω,|h|) is given by the Dyson equation
in terms of its self-energy �Aσ (ω,|h|):
GAσ (ω,|h|) = [ω+ − ε + σh − �σ (ω,h) − �Aσ (ω,|h|)]−1

(20a)

= [ω+ − ε + σh − �σ (ω,h) − �[{GAσ ′ }]]−1.

(20b)

Here, �[{GAσ ′ }] indicates that �Aσ is a functional of (the time-
ordered) GA↑ and GA↓, obtained as a functional derivative
of the Luttinger-Ward functional (as exploited below) and
given diagrammatically by the skeleton expansion [44]. As
such, for any h � 0, the Dyson equation (20b) amounts to
a self-consistency condition, which given �Aσ = �[{GAσ ′ }],
in principle, determines the {GAσ (ω,|h|)} (and in turn the
{�Aσ (ω,|h|)}).

Now consider any field h 
= 0, say h > 0 for speci-
ficity, for which Eq. (9) gives Gσ (ω,h) = GAσ (ω,|h|).
Since the propagators Gσ (ω,h) and GAσ (ω,|h|) are co-
incident, so too (trivially) are the associated self-energies
[Eqs. (3) and (20)], i.e., �σ (ω,h) ≡ �Aσ (ω,|h|), or equiva-
lently �[{Gσ ′ }] ≡ �[{GAσ ′ }]. There is nothing particularly
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subtle here: Gσ (ω,h) = GAσ (ω,|h|) simply reflects the fact
that for h > 0 (and h 
= 0 generally) the ground state of the
system in the LM phase is no longer doubly degenerate; the
field is “picking out” as the ground state the appropriate spin
component (as illustrated in Fig. 2). Although the transition is
strictly destroyed on application of a field, it is nevertheless
natural to retain the “A” label in GAσ (ω,|h|) and �Aσ (ω,|h|) for
U > Uc; in recognition of the fact that Gσ (ω,h) as a function
of ω is discontinuous across h = 0 and to indicate that as h

vanishes the system possesses the permanent local moment
that is symptomatic of the LM phase.

B. Zero field

But now let us consider h = 0, of particular interest
since here the transition at U = Uc between SC and LM
phases is pristine. This case is quite subtle. From Eq. (18),
the (spin-independent) zero-field propagator is Gσ (ω,0) =
1
2 [GAσ (ω,0) + GA−σ (ω,0)]. This is a two-self-energy (TSE)
description of Gσ (ω,0), since Gσ (ω,0) is thereby specified
in terms of the two distinct self-energies �A↑(ω,0) and
�A↓(ω,0). Gσ (ω,0) is, however, given by Eq. (3) in terms
of the single self-energy �(ω) ≡ �σ (ω,0) (= �−σ (ω,0)),
whence a direct comparison between Eq. (3) and Eq. (20)
for 1

2 [GAσ (ω,0) + GA−σ (ω,0)] specifies the exact relation
between �(ω) and the two self-energies �A↑(ω,0), �A↓(ω,0)
characteristic of the LM phase:

�(ω) = 1

2
[�A↑(ω,0) + �A↓(ω,0)]

+
[

1
2

(
�A↑(ω,0) − �A↓(ω,0)

)]2

G−1
0 (ω,0) − 1

2

[
�A↑(ω,0) + �A↓(ω,0)

] (21)

with
G0(ω,0) = [ω+ − ε − �(ω)]−1 (22)

the noninteracting propagator [and �(ω) = �σ (ω,0)]. The
ramifications of this will be considered in Secs. III ff, but
here we make three initial comments.

(i) We emphasize that it is the self-energies �Aσ that are
directly calculable from many-body perturbation theory in the
LM phase, e.g., by the implicit self-consistency (20b) as men-
tioned above. In particular (see Sec. III), it is these self-energies
to which classic methods of many-body theory [41,44,45]
apply (as will be exploited in subsequent sections). In this
sense �(ω) = �σ (ω,0)—the conventional single self-energy
in the LM phase for h = 0—is a derivative quantity, being
calculable via Eq. (21) from a knowledge of the �Aσ (ω,0).

(ii) It is nonetheless the single self-energy �σ (ω,0) of
Eq. (3) that is traditionally considered (and referred to as “the”
self-energy), even in an LM phase. This single self-energy (for
any h) is also directly calculable using NRG [46–49], via the
ratio [50] �σ (ω,h) = Fσ (ω,h)/Gσ (ω,h), where (in standard
notation) the correlation function Fσ (ω,h) = 〈〈[dσ ,HI ]; d†

σ 〉〉,
with HI the interaction part of the Hamiltonian (HI = Un̂↑n̂↓
for a single-level AIM). Both Gσ (ω,h) and Fσ (ω,h) are
directly computable from NRG [50], enabling �σ (ω,h) to
be obtained, and thus in particular the zero-field �(ω) ≡
�σ (ω,0).

(iii) We point out that the self-energies �Aσ (ω,0) are also
directly calculable from NRG—they can be obtained by just

the same method but in the limit h → 0+. We have thus used
the full density matrix (FDM) generalization [51,52] of NRG
to calculate separately both �σ (ω,0) and the �Aσ (ω,0), for the
LM phase of the pseudogap AIM, and have thereby confirmed
that the relation between them, Eq. (21), is indeed satisfied by
the numerics.

While our emphasis here has naturally been on the LM
phase, we would also point out that all equations, from
Eqs. (6)–(20), hold equally for the SC phase U < Uc on
simply dropping the A or B labels (and of course setting
|μ̃| = 0). In this case, the relevant equations reduce either
to trivial identities, or to one or other of Eqs. (3)–(5) and (7).
The minor point here is that the notation used for the LM
phase reduces very simply to that appropriate in the SC phase.
Note also for h = 0 in particular that on dropping the A
labels, precisely the same self-consistency condition as for the
LM phase [Eq. (20b)] determines the propagators Gσ in the
SC phase; but simply with different self-consistent solutions
thereto, according to whether U < Uc or > Uc.

One aspect of the preceding discussion merits further brief
comment. Conventional diagrammatic field theory for the
zero-temperature, t-ordered propagators assumes the global
ground state |
0〉 of the full H to be nondegenerate [53,54].
In the presence of a field, however small, that is indeed the
case whether U > Uc or < Uc. But in the absence of a field,
while the global ground state is nondegenerate in the SC phase
U < Uc, it is doubly degenerate in the LM phase for U > Uc.
It is essentially for this reason that, to gain a tangible handle
on the zero-field LM phase, it is necessary to consider the
general case of h 
= 0; with the degenerate zero-field LM phase
obtained from the limits h → 0±, as described above.

C. “Excess” charge and magnetization

We have so far considered the local (impurity) nσ (h). Of
well known importance in any quantum impurity problem [2]
are of course the so-called “excess” quantities, namely, the
difference in a particular property calculated with and without
the impurity present. Central among these is nimp,σ (h), the
difference in the number of σ -spin electrons in the entire
system, with and without the impurity: nimp,σ (h) = 〈∑k n̂kσ +
n̂σ 〉 − 〈∑k n̂kσ 〉0, where 〈· · ·〉0 denotes an average in the
absence of the impurity (and n̂kσ = c

†
kσ ckσ , n̂σ = d†

σ dσ ).
The importance of nimp,σ arises in large part because the
Friedel(-Luttinger) sum rule applies to it, as shown in Sec. III.
Using standard equation of motion methods [55], nimp,σ (h) is
easily shown to be [2]

nimp,σ (h) =
∫ 0

−∞
dω�ρimp,σ (ω,h), (23)

where the excess density of states �ρimp,σ (ω,h) is given by

�ρimp,σ (ω,h) = − 1

π
Im

{
Gσ (ω,h)

[
1 − ∂�σ (ω,h)

∂ω

]}
(24)

in terms of the local propagator Gσ (ω,h). The corresponding
excess magnetization and charge are then given obviously
[cf. Eq. (1)] by

mimp(h) =
∑

σ

σnimp,σ (h), nimp(h) =
∑

σ

nimp,σ (h). (25)
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Now focus on the LM phase (all relevant formulae
for the SC phase again follow from those appropriate to
the LM phase, simply by dropping the A or B labels).
Since the local propagator enters Eq. (24), it takes the
same form as Eq. (9) for Gσ , namely �ρimp,σ (ω,h) =
θ (h)�ρimp,Aσ (ω,|h|) + θ (−h)�ρimp,Bσ (ω, − |h|), where [cf.

Eq. (8)] �ρimp,Aσ (ω,|h|) = �ρimp,B−σ (ω, − |h|) such that

only �ρimp,Aσ (ω,|h|) need ever be considered. The basic
excess quantities thus have exactly the same form as for their
purely local counterparts [Eqs. (14), (16), (17), and (19)],
namely,

nimp,σ (h) = θ (h)nimp,Aσ (|h|) + θ (−h)nimp,A−σ (|h|) (26)

and

mimp(h) = [θ (h) − θ (−h)]mimp,A(|h|) (27)

with mimp,A(|h|) = ∑
σ σnimp,Aσ (|h|) given by

mimp,A(|h|) =
∑

σ

σ

∫ 0

−∞
dω�ρimp,Aσ (ω,|h|). (28)

III. SUM RULES AND LUTTINGER INTEGRALS

In this section, for both U < Uc and > Uc, we consider
the Friedel-Luttinger sum rules [27] [Eqs. (30) and (34)],
which relate a static scattering phase shift to the corresponding
excess charge and a Luttinger integral. The arguments given
below hold for any field, including the h = 0 case of particular
interest. The relevant Luttinger integrals are then shown in
Sec. III A to vanish in both the SC and LM phases; leading
to recovery of a Friedel sum rule [2,56] for each phase,
and thereby relating the excess charges nimp,σ and nimp,Aσ

to the so-called renormalized levels for the appropriate phase.
In Sec. III B, we consider the LM phase at zero field, and
the phase shift defined in terms of the conventional single
self-energy �(ω) ≡ �σ (ω,h = 0). Here we show that while
a Friedel-Luttinger sum rule again arises [Eq. (43)], the
associated Luttinger integral cannot be argued to vanish.

We consider first U < Uc, and hence the SC phase. The
static phase shift δσ (h) [= δ−σ (−h)] is defined by

δσ (h) = arg[Gσ (ω,h)]|ω=0
ω=−∞ = Im ln Gσ (0,h) + π (29)

(with arg[Gσ (−∞,h)] = −π from Eq. (3)). Writing equiv-
alently δσ (h) = Im

∫ 0
−∞ dω ∂

∂ω
ln Gσ (ω,h), and using Eq. (3)

for Gσ (ω,h), a short calculation then gives

δσ (h) = πnimp,σ (h) + ILσ
(h). (30)

This Friedel-Luttinger sum rule relates the phase shift to the
excess charge nimp,σ (h) [Eq. (23)] and the Luttinger integral
ILσ

(h) [= IL−σ
(−h)] given by

ILσ
(h) = Im

∫ 0

−∞
dω

∂�σ (ω,h)

∂ω
Gσ (ω,h). (31)

We remind the reader that the functions here are all retarded,
such that, e.g., �σ (ω,h) = �R

σ (ω,h) − i�I
σ (ω,h); with the t-

ordered self-energy �t
σ (ω,h) = �R

σ (ω,h) − isgn(ω)�I
σ (ω,h)

(or, alternatively, its Matsubara counterpart) given as a
functional derivative of the Luttinger-Ward functional, viz.,

�t
σ (ω,h) = δ�LW/δGt

σ (ω,h) with �LW ≡ �LW[{Gt
σ }] a func-

tional of the {Gt
σ (ω,h)}.

From Eq. (29), the phase shift is expressible solely in terms
of arg[Gσ (ω,h)] at the Fermi level ω = 0. A simple calculation
using Eq. (3) then gives

δσ (h) = π

2
− tan−1

[
ε∗
σ (h)

η + �I
σ (0,h) + �I

σ (0,h)

]
(32)

(where the arctan ∈ [−π
2 , + π

2 ]). This relates the phase shift
to the renormalized level ε∗

σ (h) [= ε∗
−σ (−h)] given by

ε∗
σ (h) = ε − σh + �R

σ (0,h) + �R
σ (0,h), (33)

which embodies the interaction-induced renormalization of
the bare level energy ε.

The above results are considered further below. They are of
course well known for the SC phase [2], which is perturbatively
connected (in U ) to the noninteracting limit and is thus a
Fermi liquid. For U > Uc, by contrast, the zero-field LM
phase is separated from the SC phase by a quantum phase
transition at Uc. It is not therefore perturbatively connected
to the noninteracting limit, and as such is a non-Fermi liquid.
Importantly, however, directly analogous results to those given
above carry over mutatis mutandis for U > Uc, but now for
the phase shift δAσ (|h|) = argGAσ (0,|h|) + π defined in terms
of the broken symmetry propagators [and with δAσ (|h|) =
δB−σ (−|h|) such that only h = |h| � 0 and hence the A-type
phase shifts need be considered]; specifically,

δAσ (|h|) = πnimp,Aσ (|h|) + ILAσ
(|h|), (34)

where the Luttinger integral ILAσ
(|h|) (= ILB−σ

(−|h|)) is now

ILAσ
(|h|) = Im

∫ 0

−∞
dω

∂�Aσ (ω,|h|)
∂ω

GAσ (ω,|h|). (35)

Note that the self-energy is again given from �t
Aσ (ω,|h|) =

δ�LW/δGt
Aσ (ω,h), with �LW ≡ �LW[{Gt

Aσ }] precisely the
same functional of the {Gt

Aσ } for U > Uc as it is of the {Gt
σ }

in the SC phase. Likewise, the phase shift is given by

δAσ (|h|) = π

2
− tan−1

[
ε∗
Aσ (|h|)

η + �I
σ (0,|h|) + �I

Aσ (0,|h|)
]

(36)

in terms of the corresponding renormalized level ε∗
Aσ (|h|) [=

ε∗
B−σ (−|h|)]:

ε∗
Aσ (|h|) = ε − σ |h| + �R

σ (0,|h|) + �R
Aσ (0,|h|). (37)

As expected (Sec. II), results for δσ (h) thus follow directly
from those for δAσ (|h|), simply on dropping the A label.

We also add here that the static phase shifts are simply
related to the local single-particle spectrum at the Fermi level
ω = 0, by

π
[
�I

σ (0,|h|) + �I
Aσ (0,|h|)]DAσ (0,|h|)) = sin2(δAσ (|h|))

(38)

(and, likewise, for U < Uc on dropping the A labels).

A. Luttinger integrals and Friedel sum rules

The propagators and self-energies are analytic functions of
frequency everywhere except on the real axis. From this, using
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standard methods of complex analysis, it is straightforward (if
lengthy) to show that the Luttinger integral is given by

ILAσ
(|h|) = 1

2i

∫ +∞

−∞
dω�t

Aσ (ω,|h|)∂Gt
Aσ (ω,|h|)
∂ω

−�I
Aσ (0,|h|)GR

Aσ (0,|h|) (39)

and, likewise, for ILσ
(h) on dropping the A label. It is the

integral on the right-hand side of Eq. (39) that appears in
Luttinger and Ward’s seminal work [44] and which is readily
shown to vanish (for any field h and spin σ ) by a standard
argument we briefly recap: recalling that the self-energy is
a functional derivative of �LW (as above), one considers a
variation δ�LW in which the frequencies of all propagators
of a given spin type, σ , in any given diagram are shifted
uniformly from ω to ω + δω′, i.e., δGt

Aσ (ω,|h|) = Gt
Aσ (ω +

δω′,|h|) − Gt
Aσ (ω,|h|) ≡ δω′(∂Gt

Aσ (ω,|h|)/∂ω), for which
δ�LW = ∫ ∞

−∞ dω(δ�LW/δGt
Aσ (ω,|h|))δGt

Aσ (ω,|h|). But by
virtue of the fact that both frequency and spin are
conserved at each vertex in any closed linked diagram
contributing to �LW [41,44], it follows simply that
δ�LW = 0 for any δω′. Combining these results gives
0 = ∫ ∞

−∞ dω(δ�LW/δGt
Aσ (ω,|h|))(∂Gt

Aσ (ω,|h|)/∂ω) =∫ ∞
−∞ dω�t

Aσ (ω,|h|)(∂Gt
Aσ (ω,|h|)/∂ω), as required.

Similarly, considering order by order the skeleton expan-
sion diagrams for the self-energy, its imaginary part at the
Fermi level can also be shown to vanish, following the analysis
(“phase space arguments”) given originally by Luttinger [41],
i.e.,

�I
Aσ (0,|h|) = 0 = �I

σ (0,h). (40)

�I
σ (0,h) = 0 is of course the standard result for the Fermi

liquid, SC phase, but we emphasize that the argument for
�I

Aσ (0,|h|) = 0 is just the same [reflecting the fact that,
in skeleton form, �t

Aσ (ω,|h|) is the same functional of the
{Gt

Aσ (ω,|h|)} that �t
σ (ω,h) is of the {Gt

σ (ω,h)} in the SC
phase]. Further details will be given in Sec. VI, since the
same arguments allow the low-ω asymptotic behavior of the
self-energies to be obtained.

Using Eq. (40), Luttinger’s theorem thus holds for both the
SC and LM phases, i.e., the Luttinger integrals vanish

ILσ
(h) = 0 = ILAσ

(|h|) [ = ILB−σ
(−|h|)], (41)

which we reiterate holds for all fields, including h = 0. With
this Eq. (34), as well as its familiar counterpart Eq. (30) for
the SC phase, reduces to a Friedel sum rule [2,56] relating the
phase shift to the excess charge, which in turn is related to the
renormalized levels by Eqs. (36) and (32), viz.,

nimp,Aσ (|h|) = 1

2
− 1

π
tan−1

[
ε∗
Aσ (|h|)

η + �I
σ (0,|h|)

]
, (42a)

nimp,σ (h) = 1

2
− 1

π
tan−1

[
ε∗
σ (h)

η + �I
σ (0,h)

]
. (42b)

As will be shown in Sec. V, these equations enable us to
make a number of exact deductions about the nature of the SC
and LM phases for the pseudogap (and also gapped) Anderson
impurity model. First, however, we revisit the LM phase at zero

field, and the phase shift expressed in terms of the conventional
single self-energy.

B. The zero-field LM phase and the conventional
single self-energy

The above results hold for any field, including h = 0, and
for both U < Uc and U > Uc. But now let us look from another
angle at h = 0, where the QPT between the LM and SC phase is
pristine. Here, as explained in Sec. II B, the conventional single
self-energy �(ω) ≡ �σ (ω,0) in the LM phase for U > Uc

does not coincide with the �Aσ (ω,0), but is instead related
to the two-self-energies by Eq. (21). The propagator Gσ (ω,0)
(which is spin-independent for h = 0) is nevertheless the same
object regardless of whether we choose to express it as Eq. (10)
in terms of the two self-energy description, or as Eq. (3)
in terms of the single self-energy. Accordingly, in the LM
phase we can repeat just the same analysis for the static phase
shift in terms of the single self-energy, that was given above
[Eqs. (30)–(33)] for the SC phase. For U > Uc, the phase
shift δ (independent of spin σ for h = 0) is again defined
by Eq. (29) (δ = arg[Gσ (0,0)] + π ). Repeating the simple
calculation leading to Eq. (30), using Eq. (3) for Gσ (ω,0)
in terms of the single self-energy �(ω) ≡ �σ (ω,0), gives

δ = πnimp,σ (0) + IL = π

2
nimp(0) + IL (43)

with

IL = Im
∫ 0

−∞
dω

∂�(ω)

∂ω
Gσ (ω,0) (44)

a Luttinger integral expressed in terms of the single self-energy.
Similarly, proceeding just as in Sec. III above, δ is related to a
(σ -independent) renormalized level ε∗ by

δ = π

2
− tan−1

[
ε∗

η + �I
σ (0,0) + �I (0)

]
(45)

[�σ (ω,0) ≡ �(ω,0) is naturally independent of spin], with ε∗
given by

ε∗ = ε + �R
σ (0,0) + �R(0). (46)

The single-particle spectrum at the Fermi level is likewise
related to the phase shift δ by [cf. Eq. (38)]

π
[
�I

σ (0,0) + �I (0)
]
Dσ (0,0) = sin2(δ). (47)

This applies to the generic case where δ(ω) = arg[Gσ (ω,0)]
is continuous in ω across the Fermi level. If by contrast it is

discontinuous across ω = 0, of form δ(ω)
ω→0±∼ δ ± �, then

the generalization of Eq. (47) is readily shown to be

lim
ω→0±

(
π

[
�I

σ (ω,0) + �I (ω)
]
Dσ (ω,0)

) = sin2(δ ± �). (48)

In practice, this case is relevant only to the p-h symmetric limit
of the pseudogap AIM, as considered in Sec. V D.

Equations (43)–(47) are simply the direct analogs of their
counterparts in the SC phase, given above and expressed in
terms of the single self-energy. However the arguments given
in Sec. III A for the vanishing of the Luttinger integrals ILσ

and ILAσ
hinge on the fact that in each case the relevant self-

energy in skeleton form is a functional derivative of �LW with
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respect to the appropriate propagator (GAσ or Gσ ). The zero-
field single self-energy in the LM phase is not by contrast
expressible as such a functional derivative, and the Luttinger
integral IL cannot therefore be argued to vanish. It must thus
be determined in some other way. We consider this in Sec. V C
for the pseudogap AIM, in Sec. IV for the simple case of a
single correlated level, and in Sec. X for the underscreened
spin-1 phase of a two-level impurity model [27]; finding in all
cases that IL is generically nonvanishing, and that |IL| has a
universal value characteristic of the LM phase.

IV. SIMPLE EXAMPLE: ATOMIC LIMIT

We turn briefly to an almost trivial problem: the zero-field
atomic limit of an AIM, i.e., a single correlated level with
H = ∑

σ εn̂σ + Un̂↑n̂↓. Simple though it is, and devoid of
a QPT worth the name, it nonetheless provides the simplest
illustration of parts of the preceding discussion, for which
reason we include it.

The exact Green function, here follows straightforwardly
from equation of motion methods [2,55], is given by

Gσ (ω,0) = 1 − n−σ (0)

ω+ − ε
+ n−σ (0)

ω+ − ε − U
(49)

and is of course independent of σ . The ground-state occupancy
nσ (0) = 〈n̂σ 〉 is easily determined, and two distinct regimes
arise [2].

(a) For ε < −U , the ground state is doubly occupied
with n↑(0) = 1 = n↓(0) [for ε > 0 there is of course a
hole analogue with n↑(0) = 0 = n↓(0), which we omit from
explicit consideration]. This is the Fermi liquid regime.

(b) For −U < ε < 0, the ground state is by contrast singly
occupied, with n↑(0) = 1

2 = n↓(0). This is the LM regime,
accessed for given ε < 0 by increasing U through Uc = −ε,
where a trivial ground state level crossing between doubly-
and singly-occupied regimes occurs.

In the doubly-occupied regime (a), the propagator follows
from Eq. (49) as Gσ (ω,0) = [ω+ − ε − U ]−1, i.e., it is of
form [Eq. (3)] Gσ (ω,0) = [ω+ − ε − �σ (ω,0)]−1 with a self-
energy �σ (ω,0) = U . Three points should be noted. (i) This
self-energy corresponds simply to first-order self-consistent
perturbation theory, i.e., to �σ (ω,0) = Un−σ (0) [57]. (ii)
Since 〈n̂−σ 〉 = 1 for all U < −ε—and thus in particular for
U = 0—�σ (ω,0) = U corresponds equivalently to “bare”
perturbation theory in U about the noninteracting limit (the
Hartree bubble, U 〈n̂−σ 〉U=0); reflecting the fact that this
regime is perturbatively connected to the noninteracting limit
U = 0, and as such is a Fermi liquid (albeit a trivial one).
(iii) Since �σ (ω,0) = U is ω-independent, it follows that
the Luttinger integral [Eq. (31)] trivially vanishes, ILσ

(h =
0) = 0; as the general arguments of Sec. III A indeed require
[Eq. (41)].

For the singly-occupied LM regime (b), Eq. (49) [with
n−σ (0) = 1

2 ] instead gives

Gσ (ω,0) = 1

2

(
1

ω+ − ε
+ 1

ω+ − ε − U

)
. (50)

This is indeed precisely of form (10) with

GA↑(ω,0) = GB↓(ω,0) = (ω+ − ε)−1, (51a)

GA↓(ω,0) = GB↑(ω,0) = (ω+ − ε − U )−1. (51b)

The zero-field A and B-type states correspond, respec-
tively, to h → 0± (Fig. 2), i.e., nAσ (0) = nσ (h = 0+) and
nBσ (0) = nσ (h = 0−) [Eq. (12)], with nAσ (0) = nB−σ (0) by
symmetry. Physically, the situation here is simple: the A-
type state corresponds to an ↑-spin occupied ground state,
with nA↑(0) = 1, nA↓(0) = 0 and hence a fully saturated
local moment mA(0) = nA↑(0) − nA↓(0) = 1. [Likewise the
B-type state is ↓-spin occupied, such that [Eq. (12)] nσ (0) =
1
2 [nAσ (0) + nBσ (0)]= 1

2 [nAσ (0) + nA−σ (0)] gives nσ (0) = 1
2

for both σ =↑ , ↓.]
Focusing as usual on the A propagators, GA↑(ω,0) in

Eq. (51a) thus corresponds to removing the ↑ electron
from the ↑-occupied level, and GA↓(ω,0) to adding a ↓
electron. Each propagator is of form GAσ (ω,0) = [ω+ −
ε − �Aσ (ω,0)]−1 [Eq. (20)], with self-energies �A↓(ω,0) =
U and �A↑(ω,0) = 0. As for the spin-independent single
self-energy in the doubly-occupied regime, the �Aσ (ω,0)
likewise correspond to first-order self-consistent perturbation
theory, i.e., to �Aσ (ω,0) = UnA−σ (0) [but of course with
different self-consistent solutions than regime (a)]. Unlike
regime (a), however, the self-energies �Aσ (ω,0) obviously
do not correspond to bare perturbation theory in U about
the noninteracting limit (since 〈n̂−σ 〉U=0 = 1), i.e., the LM
regime is not perturbatively connected to the noninteracting
limit. Nonetheless, since the �Aσ (ω,0) are ω-independent, it
follows that the Luttinger integrals Eq. (35) appropriate to
these self-energies also trivially vanish, ILAσ

(0) = 0; again as
required from the general arguments of Sec. III A [Eq. (41)].

While the preceding comments refer to the two-self-
energies �Aσ (ω,0), the conventional single self-energy in the
LM regime, �(ω) ≡ �σ (ω,0), follows directly from them via
Eq. (21), viz.,

[�σ (ω,0) ≡] �(ω) = 1

2
U +

1
4U 2

ω+ − ε − U
2

(52a)

= 1

2
U + 1

4
U 2g0(ω)

1

1 − U
2 g0(ω)

(52b)

with g0(ω) = (ω+ − ε)−1 the noninteracting propagator. This
is entirely different from the �Aσ (ω,0), being both ω-
dependent and containing in general all orders in the inter-
action U , and with the absence of perturbative continuity to
the noninteracting limit evident in the O(U ) contribution of
U/2, which is not equal to the U 〈n̂−σ 〉U=0 of leading order
perturbation theory (as 〈n̂−σ 〉U=0 = 1 for all ε < 0). The sole
exception is the p-h symmetric point ε = −U/2, where ε is
slaved to U . Here, no ground-state level-crossing occurs on
increasing U from 0, with 〈n̂σ 〉 = 1

2 for all U � 0. In this
case, �(ω) [Eq. (52a)] terminates at the O(U 2) term and
second-order perturbation theory in U is exact [2].

Finally, since the single self-energy �(ω) for the LM
phase is known fully [together with Gσ (ω,0), Eq. (50)], the
corresponding zero-field Luttinger integral IL [Eq. (44)] for
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the atomic limit can thus be evaluated explicitly [58]. The
integrals are elementary, and with x = ε + U

2 (such that x = 0
corresponds to the p-h symmetric point ε = −U/2), the result
for IL ≡ IL(x) is IL(x) = π

2 [θ (x) − θ (−x)]; the Luttinger
integral is thus indeed generically nonzero in the LM phase,
with |IL| = π

2 for any x 
= 0 in this regime. Further discussion
of this result is given in Sec. V C, since here it arises merely
in the trivial context of the atomic limit.

V. PSEUDOGAP ANDERSON MODEL: ZERO FIELD

As a paradigm model exhibiting a quantum phase transition
between a SC and a LM phase, we now consider the pseudogap
Anderson model (PAIM) [4–24], where in the absence of
a magnetic field the host-impurity hybridization vanishes in
power-law fashion as the Fermi level is approached, �I (ω) ∝
|ω|r (with r = 0 corresponding to the normal metallic AIM).
The two phases are known to be separated by a quantum critical
point (QCP) [7]. For simplicity, we consider the wide-band
limit of the model (where the host bandwidth D → ∞), and
as such r in the range 0 � r < 1 [9]. We shall consider both the
particle-hole asymmetric and symmetric cases of the model,
which in the SC phase are known to be qualitatively distinct [7]
(the stable RG fixed points corresponding, respectively, to the
asymmetric and symmetric SC FPs).

As mentioned in Sec. II, a magnetic field may be applied
either locally to the impurity, or globally (acting also on
the conduction band states). We will consider both cases
in the following, but with primary interest in the more
subtle local field case. For a global field, the (retarded) hy-
bridization function �σ (ω,h) = �R

σ (ω,h) − i�I
σ (ω,h) is given

by �I
σ (ω,h) = �0|ω + σh|r , with �R

σ (ω,h) = −sgn(ω +
σh)�0β(r)|ω + σh|r , where β(r) = tan(π

2 r). For a locally
applied field, by contrast, the hybridization is independent
of h, and thus given by

�(ω) = �σ (ω,0) = −[sgn(ω)β(r) + i]�0|ω|r . (53)

One further symmetry can usefully be exploited, namely,
that arising from the particle-hole (p-h) transformation

d†
σ ↔ d−σ , c

†
kσ ↔ −c−k−σ , (54)

in which particles/holes and spins are simultaneously ex-
changed. Labelling temporarily the dependence of the Hamil-
tonian upon x = ε + U

2 , it is readily shown that under
this canonical transformation, H (x) ≡ H (−x), and that the
propagators in turn satisfy

GAσ (ω; x,|h|) = −[GA−σ (−ω; −x,|h|)]∗ (55)

[or Gt
Aσ (ω; x,|h|) = −Gt

A−σ (−ω; −x,|h|) for the t-ordered
propagators], and likewise for the Gσ (ω; x,h) appropriate to
U < Uc. Hence only one or other of x = ε + U

2 � 0 or � 0
need be considered explicitly.

In the remainder of this section, we consider the zero-field
case. Our primary focus is the LM phase, but we begin with
brief consideration of the SC phase.

A. SC phase, U < Uc

Since the zero-field hybridization vanishes at the Fermi
level, Eq. (42b) gives (with η = 0+ as ever)

nimp,σ (0) = 1

2
− 1

π
tan−1

[
ε∗(0)

η

]
, (56)

where nimp,σ (0) = 1
2nimp(0), such that the zero-field excess

magnetization [Eq. (25)] naturally vanishes; and from Eq. (33)
the renormalized level ε∗(0) ≡ ε∗

σ (h = 0) (likewise indepen-
dent of σ for h = 0) is ε∗(0) = ε + �R

σ (0,0). There are then
just three possibilities. (a) If the renormalized level lies below
the Fermi level, ε∗(0) < 0, then nimp(0) = 2 uniquely, while
(b) if ε∗(0) > 0, then nimp(0) = 0, and (c) if ε∗(0) = 0 then
nimp(0) = 1. This behavior is physically natural—one expects
intuitively that the change in number of electrons due to
addition of the impurity should be integral—and for the SC
phase these results are known [15]. Note further that under
the p-h transformation Eq. (54), where x → −x, it is readily
shown that nimp(0) → 2 − nimp(0). Cases (a) and (b) above
thus correspond to the generic p-h asymmetric model [with
nimp(0) = 2 or 0 characteristic of the asymmetric SC FP].
Case (c) by contrast, nimp(0) = 1, corresponds uniquely to the
p-h symmetric point ε = −U/2, and is characteristic of the
symmetric SC FP.

B. LM phase, U > Uc

Now we turn to the LM phase, where Eq. (42a) gives

nimp,Aσ (0) = 1

2
− 1

π
tan−1

[
ε∗
Aσ (0)

η

]
(57)

with the renormalized level ε∗
Aσ (0) = ε + �R

Aσ (0,0) [Eq. (37)].
The quantities to be determined here are the excess charge,
nimp(0) = ∑

σ nimp,Aσ (0) [Eqs. (25) and (26)], and the excess
magnetization mimp,A(0) = ∑

σ σnimp,Aσ (0) [Eq. (28)]; where
mimp,A(0) is the excess analog of the permanent local moment
mA(0) = |μ̃| > 0 [Eq. (15)], and is likewise nonvanishing in
the LM phase. Since sgn(mimp,A(0)) = sgn(mA(0)), i.e., the
excess and local moments lie in the same direction, Eq. (57)
is satisfied only if

ε∗
A↑(0) < 0, ε∗

A↓(0) > 0 (58)

corresponding to

nimp,A↑(0) = 1, nimp,A↓(0) = 0 (59)

and hence

nimp(0) = 1, mimp,A(0) = 1. (60)

From mimp(h) = [θ (h) − θ (−h)]mimp,A(|h|) [Eq. (27)], the
zero-field magnetization itself obviously vanishes, mimp(0) =
0; but as h → 0±, |mimp(0±)| = mimp,A(0) = 1, which we
refer to in obvious terms as a “fully saturated” excess moment.

Two important points should be noted here. First, and in
marked contrast to the SC phase where nimp(0) = 1 arises only
at p-h symmetry, nimp(0) = 1 occurs throughout the LM phase,
regardless of whether or not the system is p-h symmetric. This
is seen to be a consequence of a Luttinger theorem in terms
of the two-self-energy description, i.e., ILAσ

= 0 [which led
directly to Eq. (57)].
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FIG. 3. Evolution of the zero field, permanent local moment |μ̃|
[= mA(0) = m(0+), Eqs. (15) and (16)], and the excess magnetiza-
tion mimp,A(0) [= mimp(0+)], on crossing the transition at U = Uc

to the LM phase. |μ̃| vanishes continuously as U → Uc+, while
mimp,A(0) generically changes discontinuously to full saturation on
crossing the transition. (|μ̃| shown here has been obtained from NRG
for r = 0.4, see text.)

Second, note then that on crossing the QPT at U =
Uc, the excess charge generically changes discontinu-
ously, with δnimp(0) = nimp(U = Uc+) − nimp(U = Uc−) =
±1. Since the total charge in the absence of the impurity (the
free conduction band) obviously changes continuously as Uc is
crossed, this indicates that an additional electron is acquired (or
lost) by the entire system on entering the LM phase. Hence, on
crossing to the LM phase at U = Uc, the entire system abruptly
acquires an additional fully saturated moment, mimp,A(0) = 1.
But the local impurity moment mA(0) = |μ̃|—the local order
parameter for the transition—by contrast evolves continuously
from zero on increasing U above Uc (saturating to unity only
as U → ∞). The generic physical picture of the transition to
the LM phase is thus that an additional fully saturated moment
“condenses” in the entire system, but that at U = Uc (the
QCP) it has no weight on the impurity, which by contrast is
on the verge of acquiring a permanent local moment. To our
knowledge, this is a new physical perspective of the transition.
The p-h symmetric point is of course special in the sense
that δnimp(0) = 0. Here again, however, the excess moment
in the LM phase is fully saturated for all U > Uc, while the
local impurity moment mA(0) = |μ̃| vanishes as U → Uc+;
the same physical picture thus emerging.

The situation just described is illustrated in Fig. 3. Since
the local moment |μ̃|= mA(0) = m(0+) [Eqs. (15) and (16)] is
simply the local magnetization as h → 0+, it can be calculated
numerically using the FDM-NRG [49,51,52]. The specific
results shown in Fig. 3 have in fact been obtained in this way,
for r = 0.4 and fixed x = ε + U

2 = −0.4 (with [�0]1/(1−r) ≡ 1
as the unit of energy). Note also that the situation here is
of course quite different physically from the atomic limit
(Sec. IV)—in the latter case, the trivial level crossing at
Uc = −ε leads to condensation of a fully saturated moment
on the impurity itself (|μ̃| = 1).

For illustration and later reference, Fig. 4 shows a represen-
tative phase diagram for the PAIM, determined via FDM-NRG.
SC and LM phases are separated by a line of quantum critical

FIG. 4. Phase diagram for the PAIM with r = 0.4, determined
numerically via the FDM-NRG [49,51,52]. Shown in the (U,x) plane,
with x = ε + U

2 (and [�0]1/(1−r) ≡ 1 as the unit of energy). SC and
LM phases are separated by a (solid) line of quantum critical points
(see Sec. VII). Characteristic nimp(0)’s for the SC and LM phases
(Secs. V A and V B) are indicated; the dotted line merely shows the
p-h symmetric line (x = 0) for the symmetric SC phase, on which
nimp(0) = 1.

points (Sec. VII) in the (U,x) plane; and the characteristic
nimp(0)’s for SC and LM phases, as determined above, are
indicated.

C. The Luttinger integral IL

From a knowledge of the renormalized levels in the
zero-field LM phase, ε∗

Aσ (0) = ε + �R
Aσ (0,0), we can in turn

determine the renormalized level ε∗ [Eq. (46)] appropriate to a
conventional single self-energy description of the propagator
[Eq. (3)]. From Eq. (46), ε∗ = ε + �R(0), with the single
self-energy �(ω) = �R(ω) − i�I (ω) itself determined by
Eq. (21) from the two-self-energies {�Aσ (ω,0)}. This we now
consider, focusing initially on the generic p-h asymmetric case.
From Eq. (40), the two self-energies are purely real at the Fermi
level, �I

Aσ (0,0) = 0. From Eq. (21), two important results then
follow. First, that �I (0) = 0, so the single self-energy likewise
vanishes at the Fermi level in the general p-h asymmetric
case (we determine its asymptotic behavior as ω → 0 in
Sec. V D below). Second, that ε∗ = 1

2 (ε∗
A↑ + ε∗

A↓) − [ 1
2 (ε∗

A↑ −
ε∗
A↓)]2/[ 1

2 (ε∗
A↑ + ε∗

A↓)], i.e.,

ε∗ = 2ε∗
A↑ε∗

A↓
ε∗
A↑ + ε∗

A↓
←→ 1

ε∗ = 1

2

(
1

ε∗
A↑

+ 1

ε∗
A↓

)
, (61)

where ε∗
Aσ ≡ ε∗

Aσ (h = 0) [59].
The preceding results enable the Luttinger integral IL

[Eq. (44)] to be determined. The phase shift δ is given from
Eq. (43) by δ = π

2 nimp(0) + IL; but we have shown above that
throughout the LM phase nimp(0) = 1, whence

δ = π

2
+ IL. (62)

075150-10



COMMON NON-FERMI LIQUID PHASES IN QUANTUM . . . PHYSICAL REVIEW B 90, 075150 (2014)

Since �I (0) = 0 has been shown above, Eq. (45) gives

δ = π

2
− tan−1

(
ε∗

η

)
, (63)

whence IL = −tan−1(ε∗/η). However, throughout the LM
phase, ε∗

A↑ < 0 and ε∗
A↓ > 0 [Eq. (58)], so Eq. (61) yields

ε∗ > 0 if |ε∗
A↓| < |ε∗

A↑|, and ε∗ < 0 if |ε∗
A↓| > |ε∗

A↑|. Hence
the desired result for the Luttinger integral:

IL = Im
∫ 0

−∞
dω

∂�(ω)

∂ω
Gσ (ω,0)

= −π

2
: |ε∗

A↓| < |ε∗
A↑| (64a)

= +π

2
: |ε∗

A↓| > |ε∗
A↑|. (64b)

The sign change here is expected, for under the the p-h
transformation Eq. (54), it is readily shown that IL ≡ IL(x)
(x = ε + U/2 as usual) satisfies

IL(x) = −IL(−x), (65)

and that ε∗
A↑(x) = −ε∗

A↓(−x) such that |ε∗
A↑| = |ε∗

A↓| at the p-h
symmetric point ε = −U/2. Precisely at this point, Eq. (65)
implies IL(x = 0) = 0, as indeed can be confirmed by direct
consideration of this case.

Several comments should be made here. (a) IL is the direct
analog, in the LM phase, of the standard Luttinger integral
Eq. (31) appropriate to the SC phase (each being expressed
in terms of the conventional single self-energy). In the SC,
Fermi liquid phase, the Luttinger integral has a value (of zero)
that is independent of underlying bare model parameters. As
such it is an intrinsic hallmark of the FL phase. The above
results show that the magnitude of the Luttinger integral IL is
likewise intrinsic to the zero-field LM phase, with |IL| = π

2
arising generically for all x 
= 0.

(b) The result (64) for IL is not specific to the PAIM.
The arguments given above apply equally to the gapped AIM
[where �(ω = 0) = 0, as for the PAIM]. As seen in Sec. IV,
it arises too for the free atomic limit of the model, in the LM
regime where the impurity is singly-occupied. |IL| = π

2 is also
known (from NRG calculations) to arise for the underscreened
spin-1 phase of a two-level quantum dot [27]—and we shall
give a general argument to demonstrate this in Sec. X—as well
as for multidot models known to contain LM phases [31].

(c) We have also checked Eq. (64) numerically, as an
integral over all frequency given the zero-field propagator and
single self-energy calculated directly from NRG.

Finally, we reiterate that the considerations above apply
exclusively to h = 0. For any nonzero field, the QPT between
the SC and LM phases is strictly destroyed, the ground state
of the system is always singly degenerate, and all Luttinger
integrals vanish [as in Eq. (41)].

D. Low-frequency behavior of �(ω): LM phase

In considering the LM phase, we introduce an energy scale
ω∗ defined by [15]

�0ω
r
∗ = 1

2 |ε∗
A↑ − ε∗

A↓| (66)

(the 1
2 is merely for convenience). On the natural assumption

that the ε∗
Aσ ≡ ε∗

Aσ (0) are continuous in U , ε∗
A↑ − ε∗

A↓ will
vanish as the transition is approached from the LM phase
(since the zero-field renormalized level is independent of spin
in the SC phase). As elaborated below, ω∗ is the low-energy
scale characteristic of the LM phase (the counterpart of the
Kondo scale ωK characterizing the SC phase). We make two
initial points here. (i) Since ω∗ vanishes as the transition
is approached, physical properties (including single-particle
dynamics) should exhibit scaling in terms of it, i.e., will
be universal functions of ω/ω∗ (as indeed shown below).
(ii) Since ε∗

A↑ < 0 and ε∗
A↓ > 0 throughout the LM phase

[Eq. (58)], |ε∗
A↑ − ε∗

A↓| = |ε∗
A↑| + |ε∗

A↓|. The vanishing of ω∗
as U → Uc+ thus implies that the renormalized levels ε∗

Aσ

separately vanish as the transition is approached. This holds
generally, whether the system is p-h symmetric or asymmetric.
We have also confirmed it numerically, from NRG calculations
(see Fig. 7).

As already seen, it is necessary to distinguish between the
p-h asymmetric and symmetric cases in the zero-field LM
phase. This is conveniently embodied in the following ratio of
renormalized levels:

γ =
1
2 (ε∗

A↑ + ε∗
A↓)

�0ωr∗
= ε∗

A↑ + ε∗
A↓

|ε∗
A↑ − ε∗

A↓| = |ε∗
A↓| − |ε∗

A↑|
|ε∗

A↓| + |ε∗
A↑| . (67)

As noted above, it follows from the p-h transformation Eq. (54)
that ε∗

A↑(x) = −ε∗
A↓(−x). γ thus vanishes throughout the

LM phase at p-h symmetry, x = ε + U
2 = 0 (where ε∗

A↑ =
−ε∗

A↓). Generically, however, it is nonzero away from the
p-h symmetric point, and with γ (x) = −γ (−x). Note further
that γ is strictly bounded, γ ∈ (−1, + 1), and thus tends to a
finite limit when the ε∗

Aσ vanish as U → Uc+ and the QCP is
approached.

Now we turn to the low-ω behavior of the single self-energy
in the zero-field LM phase, �(ω) = �R(ω) − i�I (ω), as
may be obtained from Eq. (21) given a knowledge of the
{�Aσ (ω,0)}. We consider first the generic asymmetric case.

1. Particle-hole asymmetric case

As shown in Sec. V C, �I (ω = 0) = 0, and the renormal-
ized level ε∗ = ε + �R(0) is given by Eq. (61), which may be
written equivalently as

1

�0ωr∗
ε∗ = γ − 1

γ
(68)

in terms of ω∗ and γ introduced above. Note that since
γ remains finite as U → Uc+, Eq. (68) shows that the
renormalized level vanishes as ε∗ ∝ ωr

∗ as the transition is
approached and ω∗ vanishes.

To obtain the leading low-ω behavior of �I (ω) might
seem to require detailed knowledge of the low-ω behavior
of the �I

Aσ (ω,0). However, provided only that �I
Aσ (ω,0)

vanishes as ω → 0 no less slowly than the hybridization [i.e.,

�I
Aσ (ω,0)

ω→0∼ |ω|δ with δ � r]—which we show in Sec. VI
to be self-consistent in the Luttinger sense [41]—then it is
merely a matter of algebra to show directly from Eq. (21) that
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the leading low-ω behavior of �I (ω) is [60]

1

�0ωr∗
�I (ω) ∝

( |ω|
ω∗

)r

(69)

[with coefficients O(1)]. �I (ω) thus vanishes with precisely
the same power law as the hybridization �I (ω), indicative of
the NFL character of the LM phase [the counterpart for the
r = 0 metallic case would be a constant �I (ω = 0)]. Notice
also that, as anticipated above, the resultant (dimensionless)
�I (ω)/�0ω

r
∗ indeed exhibits scaling in terms of ω̃ = ω/ω∗.

The leading low-ω behavior of �R(ω) can of course be
obtained in the same way. Alternatively, we can deduce it
immediately from the low-ω behavior of �I (ω) in Eq. (69).
From F (ω) = FR(ω) − iF I (ω) with FR(ω) and F I (ω) related

by Hilbert transformation, then if F I (ω)
ω→0∼ |ω|λ with −1 <

λ < 1, the ω → 0 behavior of FR(ω) is readily shown to follow
as

FR(ω) − FR(0)
ω→0∼ −sgn(ω)β(λ)F I (ω), (70)

where β(λ) = tan(π
2 λ) [61]. Hence, since r < 1, Eq. (69) gives

�R(ω) − �R(0) = −sgn(ω)β(r)�I (ω). (71)

Writing Eq. (69) as 1
�0ωr∗

�I (ω) = aa|ω̃|r [with aa ∼ O(1)],
the leading low-frequency behavior of the local propa-
gator Gσ (ω,0) ≡ G(ω) = [ω+ − ε − �(ω,0) − �(ω)]−1 fol-
lows from Eqs. (68), (69), and (71) as

�0ω
r
∗G(ω)

|ω̃|�1∼
{

ω1−r
∗
�0

ω̃+ −
(

γ − 1

γ

)

+ [sgn(ω̃)β(r) + i](1 + aa)|ω̃|r
}−1

, (72)

where ω̃ = ω/ω∗. This is the “quasiparticle form” for the
propagator in the zero-field LM phase. [The scaling regime,
arising close to the QCP, corresponds to finite ω̃ in the limit
that ω∗ → 0, and in that regime the (ω1−r

∗ /�0)ω̃+ contribution
to Eq. (72) may of course be dropped.] Equation (72) yields
the asymptotic scaling spectrum

π�0ω
r
∗D(ω)

ω̃→0∼ (1 + aa)(
γ − 1

γ

)2 |ω̃|r , (73)

which vanishes ∝|ω̃|r on approaching the Fermi level, as
known, e.g., from NRG calculations [11]. We emphasize again
that it is in terms of the low-energy scale ω∗ of Eq. (66)
that �0ω

r
∗D(ω) scales universally, which is why ω∗ was thus

defined.

2. Particle-hole symmetric case

Here again, provided only that �I
Aσ (ω,0) vanishes as ω →

0 no less slowly than the hybridization, it is a matter of algebra
to show directly from Eq. (21) that the leading low-ω behavior
of �I (ω) is [60]

1

�0ωr∗
�I (ω) ∝

( |ω|
ω∗

)−r

(74)

[arising from the second term on the right of Eq. (21)]. The
single self-energy thus diverges as ω → 0, again symptomatic
of the NFL nature of the LM phase. The corresponding real part

follows from Eq. (70), so �(ω)
ω→0∼ �R(0) − [sgn(ω)β(−r) +

i]�I (ω). At p-h symmetry, ε + �R(0) = 0 by symmetry.
Hence, writing Eq. (74) as 1

�0ωr∗
�I (ω) = as |ω̃|−r [with as ∼

O(1)], the leading low-frequency behavior of the propagator
Gσ (ω,0) ≡ G(ω) follows as �0ω

r
∗G(ω) ∼ [(−sgn(ω̃)β(r) +

i)as |ω̃|−r ]−1. The asymptotic scaling spectrum is thus

π�0ω
r
∗D(ω)

|ω̃|→0∼ 1

as

1

1 + β2(r)
|ω̃|r , (75)

and likewise vanishes ∝|ω̃|r [10].
Note further that Eq. (75) may be recast as

lim
ω→0±

[π (1 + β2(r))�I (ω)D(ω)] = 1 : U > Uc (76)

[since �I (ω)
ω̃→0∼ �0ω

r
∗as |ω̃|−r ]. This is the counterpart, in

the LM phase, of the well known “pinning condition” on
the single-particle spectrum in the zero-field SC phase of the
symmetric PAIM [8–10], viz.,

lim
ω→0±

[π (1 + β2(r))�I (ω)D(ω)] = 1 : U < Uc. (77)

In the latter case, the local spectrum D(ω) diverges ∝|ω|−r and
the hybridization vanishes ∝|ω|r , while for the LM phase by
contrast [Eq. (76)], it is the self-energy which diverges ∝|ω|−r

and the spectrum which vanishes as |ω|r . Note that the pinning
condition in each case is a particular example of Eq. (48) for
the case where δ(ω) is discontinuous across ω = 0; with a
discontinuity � = π

2 r and δ ≡ δ(ω = 0) = π
2 .

Finally, the condition Eq. (76) holds of course throughout
the LM phase at p-h symmetry, and is exact. We have further
confirmed that it is satisfied in NRG calculations of the single-
particle spectrum.

VI. LUTTINGER SELF-CONSISTENCY

We now consider briefly the low-ω behavior of the self-
energies �Aσ (ω,0) or �σ (ω,0), as obtained self-consistently
by considering the skeleton expansion for the self-energies,
order-by-order in the interaction. This is done by adapting
the original analysis of Luttinger [41]. That it can be done,
even for the non-Fermi liquid LM phase, reflects of course
the fact that the self-energies �Aσ (ω,0) relevant to U > Uc

are also expressible in skeleton form as functionals of the
GAσ (ω,0). In the following, we consider explicitly the self-
energies �Aσ (ω,0) (as usual all results hold equally for the
single self-energy �σ (ω,0) appropriate to the SC phase, simply
by dropping the A labels). For brevity, explicit reference to the
field (in)dependence will be temporarily suppressed.

To proceed, one focuses on time-ordered Goldstone di-
agrams for the skeleton expansion (as readily obtained
from any corresponding nth order Feynman diagram). One
begins by considering the second-order skeleton diagram,
i.e., self-consistent second-order perturbation theory. Due to
the δ-function constraints reflecting frequency conservation
at any diagram vertex, when considering �I

Aσ (ω) as ω → 0
precisely the same (“phase space”) constraints arise on interior
frequency integrations as in Luttinger’s original work [41].
In consequence, only a knowledge of the asymptotic low-
frequency behavior of the spectrum DAσ (ω) is required. We
assume it to be of form DAσ (ω) ∝ |ω|λσ with the exponent
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λσ to be determined self-consistently (and λ↑, λ↓ allowed, in
principle, to be distinct [62]); with λσ > −1 necessarily, since
DAσ (ω) must be integrable. With this, the asymptotic behavior
of the imaginary part of the self-energy is readily shown to be

�I
Aσ (ω)

ω→0∝ |ω|2+λσ +2λ−σ (78)

(where λσ + 2λ−σ reflects the fact that the second-order
skeleton diagram contains one σ -spin and two −σ -spin
propagators). Equation (78) reduces to conventional ∝|ω|2
behavior if the λσ = 0, as arises for a metallic Fermi liquid.

To establish the self-consistent λσ , consider the single-
particle spectrum DAσ (ω) = − 1

π
ImGAσ (ω) expressed as

πDAσ (ω) =
[
�0|ω|r + �I

Aσ (ω)
]

[
ω − ε∗

Aσ + sgn(ω)β(r)�0|ω|r − (
�R

Aσ (ω) − �R
Aσ (0)

)]2 + [
�0|ω|r + �I

Aσ (ω)
]2 (79)

with ε∗
Aσ the renormalized level. The low-ω behavior of

DAσ (ω) is controlled by whether ε∗
Aσ 
= 0, or vanishes. The

generic case is of course ε∗
Aσ 
= 0 (for σ =↑ and ↓), so we con-

sider it first. If 2 + λσ + 2λ−σ > r—i.e., �I
Aσ (ω) in Eq. (78)

vanishes as ω → 0 more rapidly that the hybridization—
then the low-ω behavior of DAσ (ω) is controlled by the
hybridization and given from Eq. (79) as DAσ (ω) ∝ |ω|r ≡
|ω|λσ , whence λσ = r . If by contrast 2 + λσ + 2λ−σ < r were
to arise, then the low-ω behavior of the σ -spin spectrum would
be controlled by the self-energy, DAσ (ω) ∝ |ω|2+λσ +2λ−σ ≡
|ω|λσ , giving λ−σ = −1; which is incompatible with the
condition λ−σ > −1 for an integrable spectrum, and hence not
self-consistently possible. The sole self-consistent solution is
thus 2 + λσ + 2λ−σ > r for σ =↑ and ↓; yielding λ↑ = r =
λ↓, and with 2 + λσ + 2λ−σ > r requiring r > −1, as it is by
construction. Hence, �I

Aσ (ω) ∝ |ω|2+3r as |ω| → 0.
The case ε∗

Aσ = 0 may be analyzed in the same fashion.
However, in contrast to ε∗

Aσ 
= 0, which arises throughout
the LM phase (see Sec. V B) and is equally generic in
the SC phase (where ε∗

Aσ ≡ ε∗
σ ), the case ε∗

Aσ = 0 is quite
specific at zero field: it applies only to the SC phase at p-h
symmetry, where ε∗

σ ≡ ε∗(0) = 0 is guaranteed by symmetry.
In this case of course, λσ ≡ λ independently of σ , whence
[Eq. (78)] �I (ω) ≡ �I

σ (ω) ∝ |ω|2+3λ. If 2 + 3λ > r , then
the self-energy is again subsidiary to the hybridization as
|ω| → 0. Eq. (79) then gives D(ω) ≡ Dσ (ω) ∝ |ω|−r by virtue
of the vanishing renormalized level; whence λ = −r , and
�I

σ (ω) ∝ |ω|2−3r is thus self-consistent for 2 − 3r > r , i.e.,
provided r < 1

2 . This moreover is the only self-consistent
solution, as the SC phase is perturbatively connected to the
noninteracting limit, and in consequence [9] �I

σ (ω) (∝|ω|2+3λ)
must vanish as |ω| → 0 more rapidly than the hybridization
∝|ω|r [which requirement is familiar for the usual metallic
model, r = 0, where it amounts to the fact that �I

σ (ω = 0)
must vanish for the SC Fermi liquid].

While the results above arise from explicit consideration
of the second-order skeleton diagram, the contribution to the
low-ω asymptotic behavior of �I

Aσ (ω) arising from arbitrary
nth order diagrams may also be analyzed, following directly
Luttinger’s original analysis [41]. And the same key result
arises, namely, that all nth order diagrams contribute to the
leading low-ω dependence of the self-energy, the asymptotic
behavior of which is precisely that deduced at second-
order level. We can thus summarize the results obtained
above [63], which hold order-by-order in self-consistent
perturbation theory in the interaction (and remembering that
we are interested in r ∈ [0,1), although Eq. (80) encompasses

r ∈ (−1, + 1)):

�I
Aσ (ω)

ω→0∝ |ω|2+3r : ε∗
Aσ 
= 0 and 0 � r < 1, (80a)

�I
σ (ω)

ω→0∝ |ω|2−3r : ε∗
σ = 0 and 0 � r < 1

2 . (80b)

Notice that (a) in all cases the imaginary part of the appropriate
self-energy vanishes at the Fermi level, ω = 0, as asserted
and used hitherto [Eq. (40)], and (b) Eq. (80a) for the
LM phase conforms to the condition used in Sec. V D
for analysis of the low-ω behavior of the single self-
energy, viz., that �I

Aσ (ω) vanishes no less slowly than the
hybridization.

A. Low-frequency behavior of G(ω): SC phase

We now consider the implications of Eq. (80), mainly for
the SC phase, beginning with the p-h asymmetric model [for
which Eq. (80a) encompasses both phases]. In the SC phase,
U < Uc, the renormalized level ε∗

σ ≡ ε∗(0) is nonvanishing;
and from Eq. (80a) the (spin-independent) single self-energy
�I

σ (ω) = �I
σ (ω,h = 0) ∝ |ω|2+3r , while its leading real part

as ω → 0 follows directly from Hilbert transformation and
is linear in ω, viz., �R

σ (ω) − �R
σ (0) ∼ −( 1

Z
− 1)ω, with Z =

[1 − (∂�R
σ (ω)/∂ω)ω=0]−1 the usual quasiparticle weight. The

leading low-ω quasiparticle form for the zero-field propagator
can thus be obtained from Eq. (3) for G(ω) ≡ Gσ (ω,h = 0).
Defining the low-energy Kondo scale ω∗ ≡ ωK in the SC phase
by

ω∗ = [�0Z]
1

1−r (81)

(as familiar for the metallic model r = 0, where ωK ∝ �0Z)
gives

�0ω
r
∗G(ω)

|ω̃|�1∼
[
ω̃+ − ε∗(0)

�0ωr∗
+ (sgn(ω̃)β(r) + i)|ω̃|r

]−1

(82)

(ω̃ = ω/ω∗), where the quasiparticle damping embodied in
�I

σ (ω) is asymptotically neglectable, as it vanishes more
rapidly than both the hybridization and ω̃. Equation (82) is
the counterpart, in the SC phase, of the quasiparticle form for
the zero-field LM phase given by Eq. (72). The latter is of
course also consistent with Eq. (80a) for �I

Aσ (ω), as detailed
in Sec. V D where it leads to a conventional single self-energy
�I (ω) ∝ |ω̃|r [Eq. (69)] that vanishes with precisely the same
power as the hybridization.
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1. Particle-hole symmetry and Uc(r) as r → 1
2

The p-h symmetric limit may obviously be handled sim-
ilarly, now with ε∗

σ ≡ ε∗(0) = 0 for the zero-field SC phase,
and the single self-energy given by Eq. (80b). Importantly,
note first in this case that Eq. (80b) shows a symmetric SC
phase to be self-consistently possible only for r < 1

2 ; whence
the critical Uc(r) → 0 as r → 1

2− (such that for r � 1
2 a

LM phase alone arises for any nonzero U ). This provides
an alternative explanation for the fact, known from an NRG
study of fixed point stability [7], that the symmetric SC FP
becomes unstable for r � 1

2 .
For r < 1

3 (2 − 3r > 1), �R
σ (ω) again follows by Hilbert

transformation of Eq. (80b) as �R
σ (ω) − �R

σ (0) ∼ −( 1
Z

− 1)ω.
The resultant quasiparticle form is then given by Eq. (82) but
with ε∗(0) = 0. For 1

3 < r < 1
2 , by contrast, �R

σ (ω) has the
same leading low-ω behavior as �I

σ (ω) [see Eq. (70)], and the
low-ω behavior of G(ω) in the SC phase is then �0ω

r
∗G(ω) ∼

[ω1−r
∗
�0

ω̃+ + (sgn(ω̃)β(r) + i)|ω̃|r ]−1. In either case, of course,
the ultimate low-ω behavior of the propagator is that of
the noninteracting limit, such that the known [9] pinning
condition (77) is recovered, reflecting the adiabatic continuity
to the noninteracting limit that is inherent to the SC phase.

The quasiparticle form in the LM phase at p-h symmetry
is also naturally consistent with Eq. (80a) for �I

Aσ (ω), leading
(see Sec. VD2) to a conventional single self-energy �I (ω) ∝
|ω̃|−r [Eq. (74)] whose low-energy divergence is indicative of
the NFL nature of the LM phase.

VII. SCALING AND THE QUANTUM CRITICAL POINT

We now consider further the scaling behavior of the zero-
field propagator, and what can be deduced generally from it
regarding the QCP itself [64].

As discussed above, in both the LM and SC phases the
problem is characterized by a low-energy scale ω∗, Eqs. (66)
and (81), that vanishes as U → Uc from either phase. A
simple argument then gives the general form for the zero-field
propagator G(ω) ≡ Gσ (ω,h = 0) in the scaling regime; for
as the transition is approached, u = |1 − U

Uc
| → 0 and the

low-energy scale vanishes, as ω∗ ∼ ua with some power a.
G(ω) can then be expressed in the general scaling form G(ω) ∼
u−ab
α(ω/ua) in terms of two exponents a and b, and with
α = SC or LM denoting the phase, i.e., ωb

∗G(ω) ∼ 
α(ω/ω∗)
[or, to be dimensionally precise, [�0]

1−b
1−r ωb

∗G(ω) = 
α(ω/ω∗),
with 
α dimensionless]. Note that it is ωb

∗G(ω)—where the
scale ω∗ is vanishing as the transition is approached—and
not, e.g., G(ω) itself, which exhibits universality as a function
of ω̃ = ω/ω∗. This equation embodies the scaling of the
propagator close to the transition, and as such holds for any
finite ω̃ = ω/ω∗ in the limit ω∗ → 0.

However, the exponent b can be deduced simply and
generally, solely from the low-ω̃ behavior of the propagator
(the quasiparticle forms). The latter has already been obtained,
for both asymmetric and p-h symmetric cases, and for both
the LM phase [Sec. V D, Eqs. (73) and (75)] and the SC
phase [Sec. VI A, Eq. (82)]. From this it follows directly
that b = r in all cases. The general scaling form is thus

�0ω
r
∗G(ω) = 
α(ω̃), or equivalently,

π�0ω
r
∗D(ω) = 
I

α(ω̃) : ω̃ = ω/ω∗, (83)

for the local spectrum, where 
α(ω̃) = 
R
α (ω̃) − i
I

α(ω̃).
As shown in Secs. V D and VI, on the lowest energy

scales |ω̃| � 1, 
I
LM(ω̃) ∝ |ω̃|r in the LM phase (whether

ph-symmetric or asymmetric); and likewise 
I
SC(ω̃) ∝ |ω̃|r in

the SC phase for the asymmetric model, but with 
I
SC(ω̃) ∝

|ω̃|−r at p-h symmetry. This behavior has also been shown
numerically by NRG, for the p-h symmetric [6,10] and
asymmetric [11] models (it is also that arising within the
LMA [8,15,16]). From NRG [11], the coefficients of the
leading low-ω̃ power laws in 
I

SC(ω̃) and 
I
LM(ω̃) are further

found to be equal for ω ≷ 0, regardless of whether the model
is p-h asymmetric or symmetric. For the LM phase, this is
natural, given that in RG terms the p-h asymmetry flows to
zero at the LM FP [7,11]. For the asymmetric SC (ASC) phase
by contrast, the reasons for this behavior are immediately
clear from Eq. (82); the fact that the self-energy vanishes
more rapidly than the hybridization as |ω̃| → 0 means that
the low-|ω̃| behavior of 
I

SC(ω̃) is controlled exclusively
by the hybridization, which is symmetric in frequency by
construction.

We have also calculated full scaling spectra 
I
α(ω̃) using

NRG, for a representative range of r ∈ (0,1), and varying the
p-h asymmetry parameter x = ε + U

2 . Labelling temporarily
their x dependence, it is readily shown from a p-h transforma-
tion that 
I

α(ω̃; x) = 
I
α(−ω̃; −x), so that only either x � 0

or x � 0 need be considered. In fact, however, subject only to
fixed sgn(x), we find the full scaling spectra for the asymmetric
model to be independent of the asymmetry |x| 
= 0 (a point to
which we shall return below). Representative NRG scaling
spectra are given in Fig. 5 for r = 0.45, shown specifically in
the form |ω̃|r
I

α(ω̃) ≡ π�0|ω|rD(ω) [Eq. (83)]. The upper
panel shows both the asymmetric SC (ASC) phase (with
x < 0) and the symmetric SC (SSC) phase, while the lower
panel gives the corresponding LM phase spectra, and we note
that for the asymmetric model, 
I

α(ω̃) 
= 
I
α(−ω̃), i.e., the

scaling spectra are not fully p-h symmetric.

A. Quantum critical point

Equation (83) also yields very simply the exact behavior
precisely at the QCP, where ω∗ = 0: since the QCP must be
scale-free (i.e., independent of ω∗), the asymptotic behavior
of 
I

α(ω̃) for large-ω̃ follows immediately as 
I
α(ω̃) ∝ |ω̃|−r .

Hence the leading low-ω dependence of the QCP spectrum is

π�0D(ω) ∝ |ω|−r (84)

(which we emphasize holds at the QCP for both the p-h sym-
metric and asymmetric models, as indeed found numerically
using NRG [10,11]). It is, in other words, the high-ω̃ “tails”
of the scaling spectra 
I

α(ω̃) that determine the leading low-ω
behavior of the QCP spectrum itself. From this, one can obtain
the asymptotic ω̃ dependence of the self-energies as the QCP
is approached, and hence their leading ω dependence at the
QCP itself, as now shown.

Consider first the approach to the QCP from the SC phase.
From πD(ω) = −ImG(ω) in the SC phase (with zero-field
propagator G(ω) = [ω+ − ε − �(ω) − �(ω)]−1), the scaling
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FIG. 5. For r = 0.45, FDM-NRG determined scaling spectra
shown as |ω̃|r
I

α (ω̃) ≡ π�0|ω|rD(ω) vs ω̃ = ω/ω∗ on a logarithmic
scale. (Top) Asymmetric SC phase (with x = ε + U

2 < 0), for both
|ω̃| < 0 (solid line) and |ω̃| > 0 (dashed line) and symmetric SC phase
(x = 0, dotted line). (Bottom) Corresponding LM phase results for
both asymmetric and symmetric cases. For the asymmetric cases,
results shown are independent of |x|. For both SC and LM phases,
coefficients of proportionality in ω∗ have been (freely) chosen such
that spectral maxima occur at |ω̃| = 1. The coefficients Cs(r) and
Ca(r) relevant to the QCP as discussed in Sec. VII A, are indicated
by arrows.

spectrum π�0ω
r
∗D(ω) = 
I

SC(ω̃) follows as

π�0ω
r
∗D(ω)

= −Im
1

−ε̃∗(0) + |ω̃|r [sgn(ω)β(r) + i] − δ�̃(ω̃)
,

where −|ω̃|r [sgn(ω̃)β(r) + i]=�(ω)/(�0ω
r
∗), with ω̃=ω/ω∗

and ω∗ = ωK the Kondo scale; and where δ�̃(ω̃) =
δ�(ω)/(�0ω

r
∗) with δ�(ω) = δ�R(ω) − i�I (ω) and

δ�R(ω) = �R(ω) − �R(0). Likewise, ε̃∗(0) = ε∗(0)/(�0ω
r
∗),

with ε∗(0) = ε + �R(0) the renormalized level, and we as-
sume ε̃∗(0) to be bounded as the transition is approached and
ω∗ vanishes (cf. the situation shown to arise in the LM phase,
Eq. (68). Hence for large |ω̃| � 1,

π�0ω
r
∗D(ω)

∼ |ω̃|r + �̃I (ω̃)

[sgn(ω)β(r)|ω̃|r − δ�̃R(ω̃)]2 + [|ω̃|r + �̃I (ω̃)]2
. (85)

However, as shown above, π�0ω
r
∗D(ω) = 
I

SC(ω̃) ∝ |ω̃|−r for
|ω̃| � 1; whence from Eq. (85), �̃I (ω̃) ∝ |ω̃|φ with φ � r

necessarily. If φ < r , then for |ω̃| � 1 the self-energies would
be irrelevant compared to the hybridization, and the QCP
would be trivially noninteracting. Instead one naturally expects
an interacting QCP (as NRG calculations confirm), for which
φ = r is thus required, i.e., the |ω̃| � 1 behavior of the
self-energy must be of form

1

�0ωr∗
�I (ω) = �̃I (ω̃) ∼ |ω̃|r [α+

SCθ (ω̃) + α−
SCθ (−ω̃)] (86)

or, equivalently, �I (ω) ∼ �0|ω|r [α+
SCθ (ω) + α−

SCθ (−ω)].
Equation (86) gives the large-|ω̃| tails of the scaling
self-energy. Precisely at the QCP, however, where ω∗ = 0,
this behavior holds right down to ω = 0. And from
Hilbert transformation, using only the asymptotic behavior
in Eq. (86), it can be shown that δ�R(ω) ∼ �0|ω|r
(−sgn(ω)β(r) 1

2 [α+
SC + α−

SC] + 1
β(r)

1
2 [α+

SC − α−
SC]), likewise

∝|ω|r .
The low-frequency QCP behavior D(ω) ∝ |ω|−r is of

course also that occurring at p-h symmetry in the SC phase
[see, e.g., Eq. (77)]. But whether or not the QCP spectrum
itself is p-h symmetric away from the p-h symmetric point
ε = −U/2, is reflected in the coefficient of the leading |ω|−r

divergence. The general form for the spectrum is clearly

π�0D(ω) ∼ |ω|−r [C+θ (ω) + C−θ (−ω)] (87)

with (dimensionless) coefficients C±. Only if C+ = C− will
the QCP spectrum be asymptotically p-h symmetric. The
coefficients C± obtained from Eqs. (86) and (85) are

C± = 1 + α±
SC{

β(r)
[
1 + 1

2 (α+
SC + α−

SC)
] ∓ 1

β(r)
1
2 (α+

SC − α−
SC)

}2 + (1 + α±
SC)2

(88)

from which C+ = C− only if α+
SC = α−

SC. The latter is of course
guaranteed at p-h symmetry [where �I (ω) = �I (−ω) ∀ω].
From direct calculation using NRG, however, we find that
α+

SC = α−
SC ≡ αSC arises regardless of whether the model is

p-h symmetric or asymmetric; such that [Eq. (86)] �̃I (ω̃) ∼
αSC|ω̃|r acquires an emergent p-h symmetry as the QCP is
approached and hence

C+ = C− = C = cos2

(
π

2
r

)
1

[1 + αSC(r)]
(89)

(using [1 + β2(r)]−1 = cos2(π
2 r), and with the r dependence

of αSC explicit). The asymptotic QCP spectrum is thus always

p-h symmetric, as also reported in previous NRG studies [11].
As a corollary, note that since the QCP spectrum arises from
the |ω̃| � 1 tails of the scaling spectrum 
I

SC(ω̃), it follows that
the ASC scaling spectrum 
I

SC(ω̃) is effectively p-h symmetric
for |ω̃| � 1 as well as for |ω̃| � 1 (as indeed seen clearly in
Fig. 5).

The ubiquity of p-h symmetric behavior in the QCP
spectrum may at first sight seem slightly counterintuitive, since
from extensive NRG studies (notably [7]) it is well known
that distinct symmetric and asymmetric critical fixed points
exist: the symmetric QCP (SQCP) is the critical point for
both the p-h symmetric model, where it occurs for the entire
r range 0 < r < 1

2 where the transition exists; and also for
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the p-h asymmetric model where it occurs for 0 < r < r∗,
with r∗ � 0.375 determined numerically [7]. By contrast, for
r > r∗ in the p-h asymmetric model, the critical point is
the asymmetric QCP (AQCP) [7]. As illustrated in Fig. 6,
however, we find using NRG that the distinction between the
SQCP and the AQCP resides in the coefficients C ≡ C(r).
For 0 < r < r∗, C ≡ Cs(r) is found to be independent of
whether the model is p-h symmetric or asymmetric (as
embodied in x = ε + U

2 ); consistent in other words with a
single SQCP in this r-range. For r∗ < r by contrast, the p-h
asymmetric model (and hence the AQCP) has a C ≡ Ca(r),
which differs from the C ≡ Cs(r) arising for the p-h symmetric
model (and hence SQCP) in the interval r∗ < r < 1

2 , see
both Figs. 5 and 6. For r∗ < r , moreover, we find Ca(r) to
be independent of the degree of p-h asymmetry embodied
in x 
= 0 [as in fact follows from the |x|-independence of
the full ASC scaling spectrum 
I

SC(ω̃) mentioned above].
This in turn implies the occurrence of a single AQCP (as
opposed to a line of critical fixed points parametrised by p-h
asymmetry), as first shown in the NRG study of Ref. [7], and
also inferred using perturbative RG [18] for the maximally
asymmetric model (U = ∞, ε finite) for r values close to 1

2
and 1.

The approach to the QCP has been considered above
from the SC phase, U < Uc(r). Equally, one can of course
approach it from the LM side, focusing as such on πD(ω) =
− 1

2 Im
∑

σ GAσ (ω) and hence the self-energies �Aσ (ω); but

FIG. 6. r dependence of coefficients C ≡ C(r) [Eq. (89)] de-
scribing the QCP spectrum, π�0D(ω) = C|ω|−r . Calculated from
FDM-NRG, showing both C ≡ Cs(r) characteristic of the symmetric
QCP for r � 1

2 (points, with solid line as guide to eye) and C ≡ Ca(r)
(points with dashed line) characteristic of the asymmetric QCP for
r > r∗ � 0.375. As r → 0, the asymptotic behavior is found to be
Cs(r) = 3π 2r2/16 (see inset, where dotted line shows 3π 2r2/16),
while Cs(r) = 1

2 as r → 1
2 , as explained in text.

otherwise proceeding in direct parallel to the above. For |ω̃| �
1, 
I

LM(ω̃) = π�0ω
r
∗D(ω) is given by [cf. Eq. (85)]

π�0ω
r
∗D(ω) ∼ 1

2

∑
σ

(|ω̃|r + �̃I
Aσ (ω̃)

)
(
sgn(ω)β(r)|ω̃|r − δ�̃R

Aσ (ω̃)
)2 + (|ω̃|r + �̃I

Aσ (ω̃)
)2 (90)

and, likewise [cf. Eq. (86)]

�I
Aσ (ω) ∼ �0|ω|r [α+

σ θ (ω) + α−
σ θ (−ω)] (91)

holding at the QCP down to ω = 0. Using this, π�0D(ω) at the QCP is given by Eq. (87), with

C± = 1
2

∑
σ

1 + α±
σ{

β(r)
[
1 + 1

2 (α+
σ + α−

σ )
] ∓ 1

β(r)
1
2 (α+

σ − α−
σ )

}2 + (1 + α±
σ )2

. (92)

From this, it follows that C+ = C− ≡ C arises if either of two
conditions is satisfied: α+

σ = α−
−σ or α+

σ = α−
σ , with the former

guaranteed by symmetry at the p-h symmetric point [where
�I

Aσ (ω) = �I
A−σ (−ω) ∀ω]. From NRG calculations, we find in

practice that both conditions are satisfied at the QCP, regardless
of whether the model is p-h symmetric or asymmetric. All four
coefficients α±

σ thus coincide, with α±
σ ≡ αSC(r) [and C given

by Eq. (89)]. Hence, as the QCP is approached from either the
LM or SC sides, all self-energies �A↑(ω), �A↓(ω), and �(ω)
are asymptotically coincident; and the QCP is thus (naturally)
independent of the phase from which one accesses it (as also
seen directly in Fig. 5).

Finally, we comment on the r dependence of the Cs(r)
characteristic of the SQCP, obtained from NRG as in Fig. 6.
First, note that as r → 0, Cs(r) is found to vanish ∝ r2, and
hence from Eq. (89) (α±

σ ≡) αSC(r) ∝ 1/r2 diverges at low
r . Specifically, the numerics give Cs(r) = 3π2r2/16 as r → 0
(Fig. 6, inset). Remarkably, this result also arises from an LMA
description [16] of the QCP at p-h symmetry [65].

Second, it is seen from Fig. 6 that Cs(r) = 1
2 as r → 1

2 . The
reasons for this follow from the fact (shown in Sec. VIA1)
that as r → 1

2− the critical Uc(r) for the transition vanishes.
The latter means the SQCP becomes noninteracting at r = 1

2 ,
whence αSC(r) must vanish as r → 1

2−; from Eq. (89), it
then follows directly that Cs(r = 1

2 ) = cos2(π
4 ) = 1

2 , as indeed
found numerically.

VIII. FINITE FIELD

Our focus above has been the zero-field case, and we now
turn to finite fields [12,18], in particular to what may be de-
duced using the Luttinger self-consistency arguments sketched
in Sec. VI. The situation arising if the field is applied globally is
quite simple. There the ω = 0 hybridization �I

σ (0,h) = �0|h|r
is nonzero, hence so too is the single-particle spectrum at the
Fermi level, and Luttinger self-consistency in this case gives
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�I
σ (ω,h 
= 0) ∝ |ω|2 as ω → 0. The asymptotic low-energy

physics is thus that of the normal metallic AIM [12].
Importantly, however, the results given in Eq. (80) hold

equally at finite-h, for a field applied locally to the impurity;
reflecting the fact that the hybridization is independent of h

(whence DAσ (ω,|h|) is again given by Eq. (79), now in terms of
�Aσ (ω,|h|)). Only Eq. (80a) is relevant for h 
= 0 [Eq. (80b)]
applies solely to the h = 0 p-h symmetric limit). Further,
as discussed in Sec. IIA2, for any nonzero field (say h >

0), Gσ (ω,h) ≡ GAσ (ω,|h|) and �σ (ω,h) ≡ �Aσ (ω,|h|), i.e.,
only a single self-energy description arises, with the same low-
ω behavior �I

Aσ (ω,|h|) ∝ |ω|2+3r [Eq. (80a)] occurring for
both U ≷ Uc (provided ε∗

A↑ 
= 0 
= ε∗
A↓). While our convention

at finite h is to retain the A label for U > Uc (for reasons
explained in Sec. IIA2), we can drop it in the following because
the essential results below will be seen to be relevant only to
U < Uc. And only h � 0 need be considered in the following,
since the renormalized levels satisfy ε∗

σ (h) = ε∗
−σ (−h).

Equation (80a) does not, however, encompass all relevant
self-consistent possibilities arising for nonzero local field, as
now explained. The renormalized levels are given by Eq. (33)
[or Eq. (37)], viz., ε∗

σ (h) = ε − σh + �R
σ (0,h). For general

values of the field h, both ε∗
↑(h) and ε∗

↓(h) are nonvanishing,
with Luttinger self-consistency giving �I

σ (ω,h) ∝ |ω|2+3r

[Eq. (80a)]. However, on tuning the field to a particular
value, call it h′, one of the renormalized levels may vanish
[say ε∗

σ (h′)], while the other, ε∗
−σ (h′), remains nonzero. This

situation arises generally in the p-h asymmetric PAIM only,
i.e., for x = ε + U

2 
= 0 [being precluded at p-h symmetry
because there ε∗

σ (h) = −ε∗
−σ (h) for any field, as follows using

the transformation Eq. (54)]. That it does so is obvious in
the trivial noninteracting limit. Here ε∗

σ (h) ≡ ε − σh vanishes
at h′ = σε—i.e., ε∗

↓(h′) vanishes if ε < 0, and ε∗
↑(h′) if

ε > 0—while ε∗
−σ (h′) = 2ε 
= 0. In consequence, the −σ -spin

spectrum D−σ (ω,h′) ∝ |ω|r as |ω| → 0. Since ε∗
σ (h′) vanishes

at the field h′, however, the σ -spin spectrum effectively
acquires particle-hole symmetry at low-energies, and satisfies
the pinning condition (77) also characteristic of the symmetric
SC phase at zero field:

π�0Dσ (ω,h′)
|ω|→0∼ cos2

(
π

2
r

)
|ω|−r : ε∗

σ (h′) = 0. (93)

The situation above is naturally not confined to the
noninteracting limit; but with interactions present, one must es-
tablish the self-consistent low-ω behavior of the self-energies
�I

σ ′(ω,h′) following the procedure outlined in Sec. VI. With
Dσ ′(ω,h′) ∝ |ω|λσ ′ as |ω| → 0, the self-energies �I

σ ′(ω,h′) ∝
|ω|2+λσ ′+2λ−σ ′ [Eq. (78)], and the spectrum Dσ ′(ω,h′) is given
by Eq. (79) in terms of �σ ′(ω,h′). There are thus four
possibilities to consider, viz., 2 + λσ ′ + 2λ−σ ′ > r and < r ,
for each of σ ′ = σ and −σ . As is readily checked, only one of
them is Luttinger self-consistent, namely 2 + λσ ′ + 2λ−σ ′ > r

for both σ ′s (the others are ruled out by the requirement
that the spectum be integrable, requiring λσ ′ > −1). Since
ε∗
−σ (h′) 
= 0, the low-ω behavior D−σ (ω,h′) ∝ |ω|r ≡ |ω|λ−σ

then follows using Eq. (79), i.e., λ−σ = r; likewise, since
ε∗
σ (h′) = 0, Dσ (ω,h′) ∝ |ω|−r ≡ |ω|λσ , i.e., λσ = −r . And the

conditions 2 + λσ ′ + 2λ−σ ′ > r require r < 1, as is so by

construction. The self-energies thus have the asymptotic low-ω
behavior:

�I
σ (ω,h′)

ω→0∝ |ω|2+r : ε∗
σ (h′) = 0, (94a)

�I
−σ (ω,h′)

ω→0∝ |ω|2−r : ε∗
−σ (h′) 
= 0. (94b)

The corresponding real parts �R
σ ′(ω,h′) follow from Hilbert

transformation and are necessarily linear in ω as |ω| → 0. The
self-energies �σ ′(ω,h′) for either spin thus vanish more rapidly
that the hybridization (∝|ω|r ), and are therefore irrelevant on
the lowest energy scales. Hence the leading low-ω dependence
of the spectra is precisely that occurring in the noninteracting
limit, viz., D−σ (ω,h′) ∝ |ω|r for the −σ -spin spectrum, with
the σ -spin spectrum again diverging as Dσ (ω,h′) ∝ |ω|−r and
satisfying the condition (93), which is characteristic of the
noninteracting p-h symmetric model at zero field.

We have numerically verified all preceding results using
NRG calculations; in particular that Eq. (93) is satisfied at the
field h = h′, showing directly that the self-energies �σ ′(ω,h′)
vanish more rapidly than the hybridization as |ω| → 0. For a
typical r ∈ (0,1), the situation in the (U,h) plane (for some
fixed x 
= 0) is summarized schematically in Fig. 7 (top), with
the dashed line showing the locus of points for which ε∗

σ (h′) =
0 with ε∗

−σ (h′) 
= 0. In practice the latter is found to arise (at a
single field) for any U < Uc(r), i.e., in the SC phase only; the
line terminating at h′ = |ε| in the noninteracting limit, as noted
above, and with h′ → 0 as U → Uc(r)−. The zero-field QCP
at U = Uc(r) is also indicated in Fig. 7. As explained below,
it is the only local quantum critical point in the (U,h) plane,
reflecting the fact that the local quantum phase transition is
strictly destroyed for any nonzero field, while for any finite
field, the dashed line on which ε∗

σ (h′) = 0 represents a simple
bulk level-crossing. NRG results for the U dependence of the
renormalized levels ε∗

σ (h) for a fixed h > 0 are shown in Fig. 7
(top); from which ε∗

↓(h) is indeed seen to change sign at a
certain U < Uc(r), while ε∗

↑(h) remains sign-definite.
To elucidate the situation physically, recall as shown

in Sec. III A that a Friedel sum rule holds at finite field,
with nimp,σ (h) given by Eq. (42) for any field. From this
(remembering that �I

σ (0,h) = 0 for the local field), it follows
that nimp,σ (h) = 1 if ε∗

σ (h) < 0 and nimp,σ (h) = 0 if ε∗
σ (h) > 0.

With reference to Fig. 7 (top), consider then the situation
arising for any U < Uc(r) upon increasing the field h from zero
towards and through h = h′. For concreteness consider the
case of x < 0 where at zero-field (Fig. 4) the (σ -independent)
renormalized levels ε∗

σ (h = 0) < 0 lie below the Fermi level;
so that the zero-field excess charge nimp(h = 0) = nimp,↑ +
nimp,↓ = 2 while the excess magnetization mimp(h = 0) =
nimp,↑ − nimp,↓ naturally vanishes. On switching on the field
h, both renormalized levels ε∗

σ (h) remain < 0 for h < h′.
Hence Eq. (42) gives nimp(h) = 2 and mimp(h) = 0—just as
at zero field [and we have verified numerically by NRG this
striking result of vanishing magnetization for h 
= 0, using
Eqs. (23)–(25)].

But on crossing the field h = h′, ε∗
↑(h) < 0 remains, while

ε∗
↓(h) changes sign; so from Eq. (42), nimp,↓(h) thus drops

abruptly from 1 to 0 at h = h′. Hence on increasing the field
through the point h = h′, nimp(h) drops discontinuously from
2 to 1 and mimp(h) increases abruptly from 0 to 1 [see Fig. 7
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FIG. 7. (Top) Schematic in the (U,h)-plane for the asymmetric
PAIM (x = ε + U

2 
= 0), and a typical r ∈ (0,1). Dashed line shows
points for which ε∗

σ (h) = 0 with ε∗
−σ (h) 
= 0 (terminating at h = |ε|

in the noninteracting limit). The zero-field QCP at U = Uc(r) is
indicated, and is the only local QCP in the (U,h) plane (see text).
(Bottom) Renormalized levels ε∗

σ (h) vs U , for h = 0.1 (squares, with
solid line as guide to eye) and h = 0 (circles and dashed line); shown
for r = 0.35 and fixed x = ε + U

2 = −1, and calculated from FDM-
NRG. For h = 0.1, ε∗

↓(h) changes sign at U � 4.1 [<Uc(r) � 7.8],
while ε∗

↑(h) < 0 remains. [�0]1/(1−r) ≡ 1 is taken as the energy unit.

(top)]. By contrast, the local impurity magnetization m(h)
behaves quite differently: it is nonvanishing for any nonzero
field (as is physically obvious, and confirmed directly by NRG
calculations) and evolves continuously with increasing h.

To obtain a physical understanding of these results, re-
member that mimp(h) is the excess magnetization, i.e., is
the magnetization of the entire system with the impurity
present, minus that with the impurity absent. However, since
the field is purely local, the magnetization in the absence of
the impurity vanishes (trivially). mimp(h) is thus equivalently
the magnetization of the entire system, including the impurity
and as such can be separated as

mimp(h) = m(h) + MCB(h), (95)

with MCB(h) the magnetization of the conduction band. As
shown above, for all nonzero fields h < h′ [and U < Uc(r)],
mimp(h) = 0 while m(h) 
= 0. Hence MCB(h) = −m(h), i.e.,
the field induces a magnetization in the conduction band
that is equal and opposite to the local impurity magnetiza-

tion. For fields h > h′, by contrast, mimp(h) = 1, and hence
MCB(h) changes discontinuously across h = h′, to MCB(h) =
−m(h) + 1. However, the local magnetization m(h) evolves
continuously as h = h′ is crossed. Hence, on crossing the
field h = h′, the resultant increase in magnetization resides
entirely in the conduction band, with no weight whatever on
the impurity.

Analogous reasoning applies to the excess charge, nimp(h).
With the impurity present, the charge of the entire system
is n(h) + NCB(h), with n(h) the local impurity charge and
NCB(h) the charge of the conduction band. In the absence
of the impurity, the charge of the system (now the free
conduction band) is denoted N0

CB, and is of course independent
of the purely local h. Hence nimp(h) = n(h) + NCB(h) −
N0

CB. But the local charge n(h) evolves continuously as
the field h = h′ is crossed, while, as above, nimp(h) de-
creases by unity, i.e., nimp(h′+) − nimp(h′−) = −1. Hence
nimp(h′+) − nimp(h′−) = NCB(h′+) − NCB(h′−) = −1, i.e.,
the single electron is lost exclusively from the conduction
band on crossing h = h′.

The physical picture is thus clear: on crossing h = h′ the
single electron of definite spin that is lost by the entire system
has no weight on the impurity. The associated discontinuous
change in mimp(h) and nimp(h) reflects a simple level-crossing
“transition” whereby the ground-state charge of the entire
system changes by unity as a single electron is lost from the
bulk [66]. As such, it has no bearing on the local quantum
critical behavior associated with the transition between SC
and LM phases (and does not correspond to a “field-induced
Kondo transition” as asserted in Ref. [12]). This, indeed, is
obvious since the local magnetization—the order parameter
for the zero-field transition—is always nonvanishing for any
finite field. The situation on crossing U = Uc at zero field,
depicted in Fig. 3, is just the h = 0 limit of that shown in
Fig. 7; but with the crucial addition that at Uc a permanent
local moment |μ̃| = m(0+) is on the verge of condensing on
the impurity (Fig. 3)—which is the characteristic signature of
the local quantum critical point.

A. Comment on Luttinger self-consistency

One final, general remark about “Luttinger self-
consistency” should be made. The essential results deduced
above [Eq. (94)] and in Sec. VI [Eq. (80)] have of course
been obtained from the skeleton expansion, order-by-order.
In that sense, they are perturbative (albeit that, by virtue of
the underlying self-consistency, each order in the skeleton
expansion corresponds to an infinite-order summation in U ).
This need not however be the only sense in which Luttinger
self-consistency can arise. If, for example, some infinite-order
subset of skeleton digrams for the self-energy generates an in-
tegrable singularity in an “internal” frequency (one integrated
over), which is not present in an order-by-order expansion,
then a self-consistent solution to the low-ω behavior of the
self-energy can still exist, but be different from that one would
deduce on an order-by-order basis. From direct comparison
with NRG calculations, we find that Eqs. (80) and (94), indeed,
appear to be correct everywhere in the (U,h) plane—indicating
the correctness of order-by-order self-consistency—except
precisely at zero field and for U > Uc in the LM phase. In this
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case, NRG calculations indicate that the self-energies in fact
have the leading |ω| → 0 behavior �I

Aσ (ω,h = 0) ∝ |ω|r . We
do not pursue this further here, although we have identified an
infinite-order subset of skeleton diagrams that self-consistently
generates such behavior (arising from the interplay between
single-particle dynamics and the emergence of an ω = 0
pole in the dynamical local spin susceptibility as h → 0 in
the LM phase). We would however emphasize that none of
our previous conclusions are affected by this consideration;
since in vanishing with the same power as the hybridization,
�I

Aσ (ω,h = 0) ∝ |ω|r indeed satisfies the requirement that it
vanishes no less slowly than the hybridization, which was used
in Sec. V D to deduce the low-ω behavior of the conventional
zero-field self-energy �(ω) in the LM phase.

IX. SPIN SUSCEPTIBILITIES

We consider now a range of relevant static spin suscep-
tibilities, each of which probes—in different but distinctive
ways—the underlying transition between SC and LM phases.
Note that the following considerations are quite general, and
not specific, e.g., to the pseudogap AIM.

A. T = 0 local susceptibility as h → 0

We turn first to the T = 0 static local spin susceptibility in
response to a local field, defined for general h by

χs(h) = ∂〈ŝz〉
∂h

= 1

2

∂m(h)

∂h
(96)

with ŝz = 1
2

∑
σ σd†

σ dσ the impurity spin z component and
with χs(h) = χs(−h) since m(h) = −m(−h) is odd in h. Our
natural focus is the low-field susceptibility.

Consider first the LM phase, for which m(h) is shown
schematically in Fig. 2 (top). From this, the low-field behavior
of χs(h) follows as

χs(h → 0) = |μ̃|δ(h) + χs(h = 0±), (97)

where the δ-function piece reflects the existence of the
permanent local moment |μ̃| characteristic of the LM phase.
We omit this (known) contribution from further consideration
and focus on the nontrivial part of the susceptibility, denoted
simply by χs and given by

χs = 1

2

(
∂m(h)

∂h

)
h=0+

. (98)

The SC phase is likewise encompassed by the above, merely
by setting |μ̃| = 0.

Our aim here is simply to obtain a general result for the form
of χs in either phase [Eq. (112) below)] and in consequence
(Sec. IXA1) a condition for the QPT itself.

Both phases can be handled on a common footing in the
following [e.g., for the LM phase, Gσ (ω,h) ≡ GAσ (ω,|h|),
�σ (ω,h) ≡ �Aσ (ω,|h|), nσ (h) ≡ nAσ (|h|), and so on]. It also
proves helpful to use T = 0 Matsubara propagators with
Gσ (iω,h) given by [cf. Eq. (3)]

Gσ (iω,h) = [iω − ε + σh − �(iω) − �σ (iω,h)]−1 (99)

and the hybridization �(iω) = ∑
k V 2

k (iω − εk)−1 indepen-
dent of the purely local h. In terms of this propagator, m(h) is

given by [cf. Eqs. (1) and (2)]

m =
∑

σ

σ

∫ +∞

−∞

dω

2π
eiω0+

Gσ (iω), (100)

where for brevity we drop explicit reference to the h-
dependence from here on and where ∂/∂h in the following
implicitly means evaluated at zero field. From Eq. (99),

∂Gσ (iω)

∂h
= −G2

σ (iω)

[
σ − ∂�σ (iω)

∂h

]
, (101)

whence Eqs. (98) and (100) give (recall σ 2 = 1)

χs = −1

2

∑
σ

∫ +∞

−∞

dω

2π
G2

σ (iω)

[
1 − σ

∂�σ (iω)

∂h

]
(102)

(where the eiω0+
convergence factor can be dropped).

The essential trick is now to separate the skeleton expansion
for the self-energy as

�σ (iω) = �0
σ + �̃σ (iω) = 1

2U [n − σm] + �̃σ (iω) (103)

into the first order, purely static (ω-independent) contribution,
�0

σ = Un−σ , and the remainder �̃σ (iω) arising from all
“dynamical” skeleton diagrams. From Eq. (1), nσ = 1

2 [n +
σm] in terms of the local charge and magnetization, whence
�0

σ = 1
2U [n − σm]. Consistent with n(h) = n(−h) (Sec. II),

we consider the case where (∂n/∂h)h=0 = 0, whence Eqs. (98)
and (103) give

σ
∂�σ (iω)

∂h
= −Uχs + σ

∂�̃σ (iω)

∂h
. (104)

Equation (102) thus yields

χs

1 + Uχs

= −1

2

∑
σ

∫
dω

2π
G2

σ (iω)

×
[

1 − 1

1 + Uχs

σ
∂�̃σ (iω)

∂h

]
. (105)

Now focus on ∂�̃σ (iω)/∂h. Since �̃σ is a functional of the
propagators,

∂�̃σ (iω)

∂h
=

∑
σ ′

∫
dω′

2π

δ�̃σ (iω)

δGσ ′ (iω′)
∂Gσ ′(iω′)

∂h
. (106)

We define an irreducible two-particle vertex function as a
functional derivative of �̃σ (iω) (which itself excludes the static
first-order contribution), viz.,

Ĩσσ ′(iω,iω′) = δ�̃σ (iω)

δGσ ′(iω′)
, (107)

and which satisfies Ĩσσ ′(iω,iω′) = Ĩσ ′σ (iω′,iω) by virtue
of the fact that �̃σ (iω) = δ�̃LW/δGσ (iω), where �̃LW

is the usual Luttinger-Ward functional excluding its
first-order contribution. Using Eqs. (101) and (104), Eq. (106)
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gives

−1

1 + Uχs

σ
∂�̃σ (iω)

∂h
=

∑
σ ′

∫
dω′

2π
Ĩσσ ′(iω,iω′)G2

σ ′(iω′)σσ ′
[

1 − 1

1 + Uχs

σ ′ ∂�̃σ ′(iω′)
∂h

]
, (108)

and hence by iteration

−1

1 + Uχs

σ
∂�̃σ (iω)

∂h
=

∑
σ ′

σσ ′
∫

dω′

2π
�̃σσ ′(iω,iω′)G2

σ ′(iω′) (109)

with �̃σσ ′(iω,iω′) the reducible vertex defined from Ĩσσ ′(iω,iω′) via the Bethe-Salpeter equation

�̃σσ ′(iω,iω′) = Ĩσσ ′(iω,iω′) +
∑
σ ′′

∫
dω′′

2π
Ĩσσ ′′(iω,iω′′)G2

σ ′′(iω′′)�̃σ ′′σ ′(iω′′,iω′). (110)

Equation (105) thus gives

χs

1 + Uχs

= −1

2

∑
σ

∫ +∞

−∞

dω

2π
G2

σ (iω)

[
1 +

∑
σ ′

σσ ′
∫

dω′

2π
�̃σσ ′(iω,iω′)G2

σ ′(iω′)

]
≡ 0�̃ (111)

with 0�̃ = 0�̃(U ) thereby defined, and hence

χs =
0�̃(U )

1 − U 0�̃(U )
. (112)

This is the essential result for the static spin susceptibility,
and is exact. Strikingly, moreover, note that it has just the
RPA-like form that would arise at the approximate level of
“mean-field plus fluctuations” [wherein the vertex �̃σσ ′ ≡ 0 in
Eq. (111), and the propagators are noninteracting rather than
fully self-consistent].

The key to obtaining Eq. (112) has been decomposition
of the self-energy as in Eq. (103) [67], and recognition that
the exact static contribution �0

σ contains the magnetization
m again. This is physically natural, since the symmetry that
is broken in the zero-field LM phase [m(h = 0+) = |μ̃| 
= 0]
is explicitly contained in the static contribution to the self-
energy. That general strategy is not, moreover, particular to
a single-level AIM, since for typical impurity problems one
expects the symmetry broken in the NFL phase to be directly
apparent in the static �0

σ .

1. Condition for quantum phase transition

To obtain a condition for the critical Uc at which the
quantum phase transition occurs [Eq. (119) below], we con-
sider specifically the zero-field LM phase [whence Gσ (iω) ≡
GAσ (iω,|h| = 0) in the following], and the approach to the
transition U → Uc+, where the local moment |μ̃| = m(h =
0+) vanishes (continuously by assumption). It is convenient
to define

y = 1
2U |μ̃|, (113)

which likewise vanishes at U = Uc. Separating the self-energy
as in Eq. (103), the static part may be written as �0

σ = 1
2Un −

σy, and hence the propagator

Gσ (iω) =
[
iω − ε −

(
U

2
n − σy

)
− �(iω) − �̃σ (iω)

]−1

.

(114)

Equation (100) for [m(0+) =] |μ̃| = 2y/U then gives

2

U
y =

∑
σ

σ

∫ +∞

−∞

dω

2π
eiω0+

Gσ (iω) ≡ f (y; U ), (115)

where f (y; U ) is thus defined. f (y; U ) is clearly odd in y

[since from Eq. (114), Gσ (iω,y) = G−σ (iω,−y) with the y

dependence temporarily explicit]. On the natural assumption
that f (y; U ) vanishes linearly in y as U → Uc+, the condition
for the transition is thus 2

Uc
= (∂f (y; Uc)/∂y)y=0, i.e.,

1 = 1
2Uc

(
∂f (y; Uc)

∂y

)
y=0

. (116)

Since Gσ (iω,y) = G−σ (iω,−y) as above, the charge n ≡
n(y) satisfies n(y) = n(−y); consistent with which we con-
sider the case where (∂n/∂y)y=0 = 0. Hence, from Eqs. (115)
and (114),

∂f (y; Uc)

∂y
= −

∑
σ

∫
dω

2π
G2

σ (iω)

[
1 − σ

∂�̃σ (iω)

∂y

]
(117)

(where ∂/∂y from here on implicitly means evaluated at y = 0,
and hence U = Uc).

Since �̃σ (iω) is a functional of the {Gσ (iω)},

∂�̃σ (iω)

∂y
=

∑
σ ′

∫
dω′

2π

δ�̃σ (iω)

δGσ ′ (iω′)
∂Gσ ′(iω′)

∂y

[cf. Eq. (106)]. Proceeding in direct parallel to Eq. (106) then
leads to

− σ
∂�̃σ (iω)

∂y
=

∑
σ ′

σσ ′
∫

dω′

2π
�̃σσ ′(iω,iω′)G2

σ ′(iω′)

(118)

[cf. Eq. (109)], with �̃σσ ′(iω,iω′) the reducible vertex given by
the Bethe-Salpeter Eq. (110). From Eqs. (118) and (117), on
comparison to Eq. (111) defining 0�̃, the condition Eq. (116)
for the transition is thus

1 = Uc
0�̃(Uc). (119)
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From Eq. (112), the local static spin susceptibility χs thus
diverges as U = Uc is approached and the local moment |μ̃|
vanishes (as expected physically, since χs is the susceptibility
corresponding to the local magnetization). More generally,
since χs > 0 for all U , Eq. (112) implies

0 � U 0�̃(U ) � 1 (120)

for all U , where the upper limit corresponds to the transition
at Uc and with χs otherwise finite throughout both the LM and
SC phases.

For the pseudogap AIM, we have numerically confirmed
these results via NRG. χs [Eqs. (98) and (112)] is indeed found
to diverge as the QCP is approached—from either phase—but
remains finite throughout the SC and LM phases. This is in
fact consistent with the NRG calculations of Ref. [24], who
find a divergent χs as the transition is approached from the SC
phase, but a divergent spin susceptibility throughout the LM
phase. The latter reflects the “trivial” |μ̃|δ(h) contribution to
χs(h) [Eq. (97)], while χs ≡ χs(h = 0+) [Eq. (98)] is itself
finite throughout the phase, diverging only as U → Uc+ (and
with the same exponent as the approach from the SC side).

B. h = 0 local susceptibility as T → 0

The transition between SC and LM phases is of course
pristine only for T = 0 = h. The local χs considered above
corresponds first to taking the limit T = 0, and then consider-
ing h → 0. Equally, one can consider the reverse order: first
h = 0, then T → 0. The order of limits do not commute in a
degenerate LM phase, and we denote the latter susceptibility
by χ̃s(T ), viz.,

χ̃s(T ) =
(

∂〈ŝz〉
∂h

)
h=0

. (121)

Since H = H 0 − 2hŝz (with H 0 the zero-field Hamiltonian),

but [H 0,ŝz] 
= 0, it follows that χ̃s(T ) = 2
∫ 1

T

0 dτ 〈ŝz(τ )ŝz〉
(with kB ≡ 1). Direct analysis of the Lehmann representation
of χ̃s(T ) then gives the leading T → 0 Curie-like behavior

χ̃s(T )
T →0∼ 2

T

1

g0

∑
α,β

|〈α|ŝz|β〉|2 (122)

with {|α〉} the g0-fold degenerate ground states.
We consider specifically χ̃s(T ) in the LM phase, where the

essential feature of the T = 0 ground state is that it is globally
twofold spin-degenerate, with eigenstates denoted (for obvious
reasons) by |A〉 and |B〉, which are eigenfunctions of the total
spin z-component Ŝz (= ŝz + 1

2

∑
k,σ σ n̂kσ ), viz., |α〉 = |A〉 ≡

|Sz = + 1
2 〉 and |B〉 ≡ |Sz = − 1

2 〉, such that 2〈A|ŝz|A〉 = +|μ̃|
and 2〈B|ŝz|B〉 = −|μ̃| with |μ̃| the usual permanent local
moment. From Eq. (122), T χ̃ (T ) ∼ ∑

α,β∈{A,B} |〈α|ŝz|β〉|2.

However, since Ŝz and ŝz commute, 〈A|Ŝzŝz|B〉 = 〈A|ŝzŜz|B〉
gives 〈A|ŝz|B〉 = −〈A|ŝz|B〉 = 0, and hence

lim
T →0

T χ̃s(T ) = 1
2 |μ̃|2. (123)

The SC phase by contrast has a nondegenerate ground state
(|α〉 ≡ |0〉), whence the right side of Eq. (122) vanishes, since
the impurity spin is quenched by the Kondo effect (〈0|ŝz|0〉 =
0). In this case, χ̃s(T → 0) is naturally finite, so limT →0T χ̃(T )

vanishes. From Eq. (123), limT →0T χ̃ (T ) is thus finite in
the LM phase, but vanishes as the transition U → Uc+ is
approached, with an exponent of twice that for the vanishing of
the local moment |μ̃| (as can also be shown from hyperscaling
arguments based on a scaling ansatz [13,14,18]). For the
pseudogap AIM, we have numerically confirmed Eq. (123)
in full from NRG, and the same behavior is also found from
NRG calculations for the Bose-Fermi Kondo model [68].

C. Uniform field susceptibilities

The susceptibilities considered above refer to a field h

applied locally to the impurity. We now consider the spin
susceptibilities in response to a globally applied uniform field,
h ≡ hu, with a natural focus on the LM phase.

The local susceptibility in response to the global field, here
denoted χ̃u,loc(T ), is given [cf. Eq. (121)] by

χ̃u,loc(T ) =
(

∂〈ŝz〉
∂h

)
h=0

: h = hu. (124)

In this case, H = H 0 − 2hŜz (with Ŝz the total spin z

component), and since [H 0,Ŝz] = 0 it follows trivially that

χ̃u,loc(T )
T →0∼ 2

T

1

2

∑
α∈{A,B}

〈α|ŝzŜz|α〉. (125)

Hence (using Sec. IX B)

lim
T →0

T χ̃u,loc(T ) = 1
2 |μ̃| (126)

exhibits characteristic Curie-like behavior in the LM phase,
but ∝|μ̃|, and hence vanishing as U → Uc+ with the same
exponent as the local moment [in contrast to the ∝|μ̃|2
behavior for the local susceptibility Eq. (123) in response to a
local field]. For the pseudogap AIM, we have again confirmed
this result numerically by NRG.

The global uniform spin susceptibility is correspondingly
given by [cf. Eq. (124)]

χ̃u(T ) =
(

∂〈Ŝz〉
∂h

)
h=0

, h = hu. (127)

Hence T χ̃u(T )
T →0∼ ∑

α∈{A,B}〈α|Ŝ2
z |α〉, and thus

lim
T →0

T χ̃imp(T ) ≡ lim
T →0

T χ̃u(T ) = 1
2 (128)

exhibits “full” free spin- 1
2 Curie behavior [69]. As indicated,

Eq. (128) applies also to the excess susceptibility χ̃imp =
χ̃u − χ̃0

u (where χ̃0
u refers to the absence of the impurity),

on recognizing that χ̃0
u (T = 0) is simply a constant.

Finally, we reiterate that the essential results above for the
Curie-like form of χ̃s , χ̃u,loc and χ̃u or χ̃imp—Eqs. (123), (126),
and (128)—all reflect and arise from the global degeneracy of
the zero-field LM ground state, embodied in the states |A〉, |B〉
(Sec. IX B). Precisely at zero field, 〈Ŝz〉T =0 = 1

2 (〈A|Ŝz|A〉 +
〈B|Ŝz|B〉) = 0 naturally vanishes. For any nonzero field, the
strict degeneracy is of course lifted; whence, e.g., for h =
0+, 〈Ŝz〉T =0 = 〈A|Ŝz|A〉 = 1

2 (and 〈Ŝz〉T =0 = 〈B|Ŝz|B〉 =
− 1

2 for h = 0−), or equivalently mimp(h = 0±) = ±1 (as
the impurity-free contribution to mimp, Sec. II C, vanishes as
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h → 0). mimp(0±) = ±1 is thus quite generally characteristic
of a LM phase and, together, e.g., with the full free spin- 1

2
Curie behavior of χ̃imp, is equally symptomatic of the global
spin-degeneracy of the LM ground state.

X. MULTILEVEL IMPURITIES

While our principal focus has been on single-level quantum
impurity models, LM phases in fact abound in multilevel
problems (Sec. I). As a relevant exemplar, we touch briefly
on rich and much studied [26–28] Anderson-like models in
which a two-level impurity (or quantum dot) is coupled to
metallic leads in 1-channel fashion. Our aim here is simply
to derive and understand on general grounds some key results
hitherto inferred numerically [27].

The impurity has one-electron energies εi (i = 1,2), with
tunnel couplings Vi to conduction band states. Local cor-
relations enter via an on-site Coulomb repulsion (charging
energies) for each level, an interlevel Coulomb repulsion,
and an interorbital ferromagnetic coupling −JH ŝ1 · ŝ2 (with
ŝi the local spin operator). In accordance with Hund’s first
rule, the latter acts to favor a local triplet state in the
two-electron sector of the free impurity. It is this which is
ultimately responsible [26–28] for the two distinct phases
arising in the (ε1,ε2)-plane on coupling the impurity/dot to the
conduction band, characterized by distinct FPs and separated
generically by a closed line of Kosterlitz-Thouless quantum
phase transitions [27], viz., a SC phase and an underscreened
(USC) spin-1 phase [70]. The former is a Fermi liquid,
perturbatively connected to the noninteracting limit, while the
USC ground state is a degenerate LM phase with the impurity
spin only partially quenched (and despite the “spin” language,
note that the USC/LM phase is not confined to integral impurity
valence, but encompasses generally mixed-valent behavior).
Full details may be found, e.g., in Ref. [27].

For a two-level impurity, the local propagators, single-
particle spectra, self-energies and one-electron hybridiza-
tion, are of course 2 × 2 matrices: Gij ;σ (ω), Dij ;σ (ω) [=
− 1

π
ImGij ;σ (ω)], �ij ;σ (ω) and �ij (ω) [such that �I

ij (ω) =∑
k ViVj δ(ω − εk), with nonvanishing �I

ij (ω = 0) ≡ �ij re-
flecting the metallic nature of the conduction band]. We
focus on the central single-particle spectrum which de-
termines the zero-bias conductance Gc(T = 0) across the
dot. Here denoted by Dσ (ω), it is given by [27] Dσ (ω) =

1
�11+�22

∑
i,j �ijDij ;σ (ω), such that Gc(0) = 2e2

h
π (�11 +

�22)Dσ (0). For obvious reasons, we consider explicitly the
zero-field case (and suppress notational reference to it in the
following), although finite field is also easily handled.

A. SC phase

Consider first the SC, Fermi liquid phase. Here, as shown
in Ref. [27],

π [�11 + �22]Dσ (0) = sin2(δσ ) (129a)

= sin2(πnimp,σ + ILσ
), (129b)

where [cf. Eq. (29)] the phase shift δσ is defined by δσ =
arg[detGσ (ω)]

∣∣ω=0
ω=−∞ (with Gσ the 2 × 2 propagator matrix),

and in turn satisfies a Friedel-Luttinger sum rule [Eq. (30)],

δσ = πnimp,σ + ILσ
(≡ π

2 nimp + ILσ
since nimp,σ is indepen-

dent of spin at zero field). The Luttinger integral in this case
is given by

ILσ
= ImTr

∫ 0

−∞
dω

∂�σ (ω)

∂ω
Gσ (ω) (130)

and is an obvious matrix generalization of Eq. (31). But ILσ
=

0 in the SC phase, by just the same argument given in Sec. III A
[noting that the t-ordered �t

ij ;σ (ω) = δ�LW/δGt
ji;σ (ω), and

�I
ij ;σ (0) = 0]. Hence from Eq. (129b) [27],

Gc(0)

(2e2/h)
= π (�11 + �22)Dσ (0) = sin2

(
π

2
nimp

)
. (131)

B. LM (USC) phase

Now consider the LM/USC phase. As in Secs. II and III, this
is handled simply by focusing on the A-type state, where the
local moment |μ̃| = mA(0) (= ∑

i=1,2[niA↑(0) − niA↓(0)], cf.
Eq. (14)) is nonvanishing. In precise parallel to the SC phase,
it follows that

π [�11 + �22]DAσ (0) = sin2(δAσ ) (132a)

= sin2(πnimp,Aσ + ILAσ
), (132b)

where the phase shift δAσ = arg[detGAσ (ω)]
∣∣ω=0
ω=−∞ likewise

satisfies a Friedel-Luttinger sum rule, with Luttinger integral
ILAσ

= ImTr
∫ 0
−∞ dω(∂�Aσ (ω)/∂ω)GAσ (ω) [and self-energy

matrix �Aσ (ω)]. However, once again, ILAσ
= 0, by the argu-

ment given in Sec. III A; reflecting the fact that the Luttinger-
Ward functional in the LM phase is the same functional
of the {Gt

Aσ } that it is of {Gt
σ } in the SC phase. Writing

nimp,Aσ = 1
2 (nimp + σmimp,A) with (mimp,A ≡) mimp,A(0) =

mimp(0+) [Eq. (27)], and recalling that mimp(0+) = 1 for a
LM phase (Sec. IX), Eq. (132b) gives

π (�11 + �22)DAσ (0) = sin2

[
π

2
(nimp + σ )

]
. (133)

However, for zero field, the (σ -independent) propagators
Gσ (ω) are of course given by Gσ (ω) = 1

2

∑
σ GAσ (ω), and

hence Dσ (ω) = 1
2

∑
σ DAσ (ω) [Eq. (11)]. Equation (133) thus

yields

Gc(0)

(2e2/h)
= π (�11 + �22)Dσ (0) = cos2

(
π

2
nimp

)
. (134)

Equation (134) is the essential result for the conductance in
the LM/USC phase, previously deduced numerically using
NRG [27], but here shown to arise as a consequence of a
Luttinger theorem in terms of a two-self-energy description
(i.e., ILAσ

= 0). Since nimp varies continuously [27] on crossing
the line of Kosterlitz-Thouless transitions from the SC to the
LM/USC phase, Eqs. (131) and (134) show that the zero-bias
conductance jumps discontinuously on crossing the transition
(although the Kondo scale itself vanishes continuously as the
transition is approached from the SC phase); as detailed further
in Ref. [27].

As discussed throughout, the zero-field LM phase can
equally—and more traditionally—be described in terms of
the conventional single self-energy �(ω), defined by the
Dyson equation [Gσ (ω)]−1 = [G0(ω)]−1 − �(ω) with G0(ω)
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the noninteracting propagator matrix. Accordingly (in parallel
to Sec. III B), one can repeat the same calculation that led to
Eq. (129), but now in terms of the single self-energy; leading
rather obviously to

π (�11 + �22)Dσ (0) = sin2

(
π

2
nimp + IL

)
(135)

but with a Luttinger integral now given [cf. Eq. (44)] by

IL = ImTr
∫ 0

−∞
dω

∂�(ω)

∂ω
Gσ (ω) (136)

in terms of the single self-energy �(ω). This Luttinger integral
cannot of course be argued to vanish, cf. Secs. III B and V C.
However, its magnitude follows directly from the equivalence
of Eqs. (134) and (135), viz.,

|IL| = π

2
(137)

(as indeed confirmed numerically [27] by NRG calculations
of the ω integral in Eq. (136)). As for the pseudogap and
gapped Anderson models (Sec. V C), and the simple atomic
limit (Sec. IV), |IL| throughout the LM phase thus has the
characteristic universal value of π

2 . And essentially similar
arguments to those above also give this same result for the LM
phases of, e.g., triple quantum dot models [31].

XI. CONCLUDING REMARKS

In this paper, we have studied elements of the globally
degenerate, broken symmetry local moment phases that arise
in locally correlated quantum impurity models. Such phases
occur commonly, without fine tuning of parameters, in a
wide range of impurity models. They represent the typical
“significant other” phase, a non-Fermi liquid, that is separated
from a Fermi liquid state by an interaction-driven quantum
phase transition. Our main focus has been on what can be
shown exactly about local moment phases. We believe it fair
to say that a diverse and rather rich range of results has been
obtained (as already summarized in Sec. I A); which at heart
is made possible by applying a field which removes the strict
global degeneracy, and then switching it off. Equally, however,
we have arguably only scratched the surface of the subject, and
much clearly remains to be understood about the wealth of
nontrivial physics characteristic of local moment and related
phases.
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