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Probing electron interactions in a two-dimensional system by quantum magneto-oscillations
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We have experimentally studied the renormalized effective mass m∗ and Dingle temperature TD in two spin
subbands with essentially different electron populations. Firstly, we found that the product m∗TD that determines
the damping of quantum oscillations, to the first approximation, is the same in the majority and minority
subbands even at a spin polarization degree as high as 66%. This result confirms the theoretical predictions
that the interaction takes place at high energies ∼EF rather than within a narrow strip of energies EF ± kBT .
Secondly, to the next approximation, we revealed a difference in the damping factor of the two spin subbands,
which causes skewness of the oscillation line shape. In the absence of the in-plane magnetic field B‖, the damping
factor m∗TD is systematically smaller in the spin-majority subband. The difference, quantified with the skew
factor γ = (TD↓ − TD↑)/2TD0 can be as large as 20%. The skew factor tends to decrease as B‖ or temperature
grow, or B⊥ decreases; for low electron densities and high in-plane fields, the skew factor even changes sign.
Finally, we compared the temperature and magnetic field dependencies of the magneto-oscillation amplitude
with predictions of the interaction correction theory, and found, besides some qualitative similarities, several
quantitative and qualitative differences. To explain qualitatively our results, we suggested an empirical model
that assumes the existence of easily magnetized triplet scatterers on the Si/SiO2 interface.
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I. INTRODUCTION

The problem of interactions between electrons in a disor-
dered two-dimensional (2D) electron system remains a field
of active research [1–24]. As the carrier density n decreases,
the electron-electron interaction energy Eee exceeds by far the
kinetic Fermi energy Eee/EF ∼ rs � 1 [25]. The interactions
reveal themselves in experiment via renormalization of the
observable quasiparticle parameters such as the effective
mass, spin susceptibility, g-factor, electron compressibility,
etc. [5,24,26–28].

The interactions are usually treated within the framework
of the Fermi-liquid (FL) theory, based on the concept of the
low-energy (δε 	 EF ) quasiparticles. The FL theory states
that the low-energy properties of an interacting fermionic
system are determined by the states in the vicinity of the Fermi
surface, and are similar to those of a weakly interacting gas
of quasiparticles with parameters different from the bare band
values. A great body of data supports this viewpoint even for
rs values as high as ∼10 for 2D electron systems.

A natural question arises whether the FL approach in
2D remains valid as the interaction strength is further in-
creased [19,20,29]. The interaction is predicted to lead to
various non-Fermi-liquid ground states [19,20,30–32]. For
example, it was suggested that in a multicomponent electron
liquid the interactions are mediated by exchange of high-
energy plasmons, irrelevant to spins, and thus should become
similar to those in a bosonic liquid [7,16,21] as the number of
components increases.

On the other hand, from intuitive expectations based on the
RPA result [16,33], interactions within the minority subband
should renormalize the effective mass stronger than in the
majority one. In contrast to the latter expectations, earlier
experiments [10,34] reported that the effective mass extracted
from the amplitude of Shubnikov-de Haas (SdH) oscillations

in Si-MOSFETs does not depend on the spin polarization to
within 4%–5% accuracy. These conclusions, however, were
drawn from the temperature decay of the oscillation amplitude,
which was analyzed using the Lifshitz-Kosevich (LK) model
for noninteracting electrons [35] and by ignoring the difference
between the subband parameters. Since then, the theory of
quantum oscillations for an interacting 2D system has been
developed [17,18]; it was also experimentally shown that
the LK model is not fully adequate and its use leads to
overestimated mass values [13,22].

The Zeeman splitting of the spin subbands in the in-plane
magnetic field can shed light on this puzzle. When the spin po-
larization ζ = (n↑ − n↓)/n becomes of an order of 1, the spin
subbands separation is of an order of 2EF . In this essentially
high-energy problem, which formally goes beyond the frame-
work of the FL theory, there is a possibility to answer the ques-
tion of how electrons interact with each other in a multicompo-
nent system with different subband populations. Particularly,
whether interactions take place primarily within each spin
subband, or in the entire electron system. In the current work,
we address this question by performing precise measurements
of the oscillation amplitude and line shape in independently
controlled perpendicular and parallel magnetic fields.

The paper is organized as follows. Firstly, by using a model-
independent general approach, we compare the renormalized
quasiparticle parameters in two unequally populated spin
subbands. By doing this, we verify the conclusion of the earlier
experiments [5,10,34] that the electrons in the spin-minority
and spin-majority subbands have almost the same “damping
factor,” i.e., the product of the effective mass and inverse
quantum time m∗/τq , or, equivalently, m∗TD (where TD =
�/2πτq is the Dingle temperature). This equality holds with a
reasonable accuracy, ∼15%, even if the subband populations
differ by more than 60%. This experimental finding is in line
with the recent theory [16].
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Secondly, we go beyond the qualitative comparison, and
find that, to the next approximation, the partial damping factor
of the SdH oscillations, m∗TD↑, in the majority (spin-up)
subband is systematically lower (by ∼6%–14%) than that in
the minority (spin-down) subband. This is reminiscent of the
predictions of the RPA model [16], according to which for the
majority subband m∗ has to be smaller and TD to be lower due
to better screening.

However, the overall picture is rather complicated: the
difference between the parameters (m∗TD↑↓) in the two spin
subbands diminishes in the limit of weak perpendicular and
strong parallel fields, or high temperatures. Moreover, in strong
parallel fields, the relation between the (m∗TD↑↓) reverses, and
this observation seems to be at odds with the common sense
arguments based on the screening concept and RPA.

Finally, we tested the theory of magneto-oscillations (MO)
in the correlated 2D systems by analyzing the temperature
and field dependencies of the oscillation amplitude. We
reveal some similarities and some deviations from the theory.
Surprisingly, many of the inconsistencies with theory vanish
or weaken when a parallel field is applied in addition to the
perpendicular field.

Our results outline the incompleteness of the existing
theory of magneto-oscillations, which, in our view, should
take into account on an equal footing not only the temperature
renormalization of the scattering rates and effective mass,
but also the exchange-mediated interlevel interaction that
modulates the energy splitting and screening, intervalley
scattering, valley splitting, and Zeeman effects in the in-plane
field.

In order to explain our results, we suggest an empirical
model where shallow localized states at the Si/SiO2 interface
have a nonzero spin and can be easily spin polarized in
the external field; scattering of mobile electrons by the
interface states modifies the magneto-oscillation line shape
and amplitude.

II. EXPERIMENTAL

Our resistivity measurements were performed with three
high-mobility Si-MOSFET samples [36] using a conventional
four-terminal ac technique. Experiments have been done using
two cross-field superconducting coils [37]. This setup allowed
us to vary independently the in-plane and perpendicular
magnetic fields, and disentangle the electron parameters in
the spin-up and spin-down subbands by analyzing the beating
pattern (or line shape) of the SdH oscillations. The split-coil
magnet generated the perpendicular magnetic field that was
used for observation of the SdH oscillations in both the spin-up
and spin-down spin subbands. The in-plane magnetic field B‖
was used to spin polarize the electron system; the difference
between subband populations is characterized by the spin
polarization ζ = g∗μBBtotal/2EF . The Si-MOSFET samples
are well suited for measurements in tilted fields due to the
narrowness of the confining potential well, which minimizes
the effect of the in-plane field on the orbital effects [38].

Measurements were performed in a dilution refrigerator
over the temperature range 0.1–1.2 K. This range corresponds
mainly to the ballistic regime of the electron-electron interac-
tions, 2πkT τ/[�(1 + Fa

0 )] > 1 [3].

III. THEORY OF SDH OSCILLATIONS IN THE
INTERACTING 2D FERMI LIQUID

The magneto-oscillations in the noninteracting Fermi gas
are usually fitted by the Lifshitz-Kosevich (LK) formula,
adapted for the 2D case and valid for a small amplitude of
oscillations δρ/ρ 	 1 [35] :
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Here, ωc = eB⊥/m∗c is the cyclotron frequency, D is the 2D
density of states, TD = �/2πkBτq is the Dingle temperature,
τq is the elastic all-angle (quantum) scattering time, and the
Zeeman- and valley-splitting terms are
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In the absence of the parallel field, the Zeeman term reduces
to the field independent factor
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In the case of interacting electrons, both the effective mass
and the Dingle temperature are renormalized, which leads to
an additional temperature and magnetic field dependence of
the oscillations amplitude. The interaction quantum correc-
tion to the magneto-oscillation amplitude was considered in
Refs. [17,18] and for the relevant case of Coulomb scattering
reads as follows (Eq. (86) in Ref. [18]):

A1int
1 = ALK

1 Fint,
(3)
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)]
,

where 
 = qTFvF = 4πe2DvF /κ , D = 2m/π�
2, κ = 7.7 is

the average dielectric constant [39], the factor 15 is the
effective number of triplet terms for a two-valley system in
(100)Si-MOS, and the term in the figure brackets is the same
as in the quantum corrections to the conductivity [3,40].

Figure 1 shows the magnetic field and temperature depen-
dencies of Fint for three typical densities and relevant ranges
of temperatures and fields.

The extra damping factor Fint is reduced to unity when
the term in the figure brackets in Eq. (3) approaches zero;
for a two-valley system with 15 triplets, this should occur at
Fa

0 = −0.0625 (this value cannot be realized in conventional
Si-MOSFETs). Therefore, for all accessible densities, the
interactions are predicted to cause an additional decay of
oscillations with 1/B⊥ and with temperature.

This prediction can be explained as follows: in the LK
model [Eq. (1)], the amplitude damping factor contains the
T -independent TD:

− ln
[
ALK

1 (T ,B⊥)
]
�ωc/2π2kB ≈ (T + TD) . (4)
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FIG. 1. (Color online) Calculated interaction corrections to the
oscillation amplitude vs (a) B⊥ field at T= 0.19 K and (b) temperature
for B = 1 T. Three representative density values are 2, 4, and 10 in
units of 1011 cm−2. F a

0 values equal to −0.41, −0.334, and −0.22,
respectively [22].

By contrast, in the interacting case [Eq. (3)], the damping
factor becomes temperature dependent:

− ln
[
Aint

1 (T ,B⊥)
] �ωc

2π2kB

≈ (T + T ∗
D). (5)

Here, the effective T ∗
D includes corrections for both m∗ and

TD:
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0
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)
π

ωcτ

kBT

EF

ln

(



T

)
. (6)

Equation (4) is commonly used to find the effective mass
from the slope of the ln A1(T ) dependence. The interaction
correction to the damping, the second term in the latter
equation, is usually negative and enhances oscillation damping
with temperature. Its temperature dependence is nearly linear
in T [see Fig. 1(b) and also Fig. 2(b)]. Therefore the use of
Eq. (4) instead of Eq. (6) typically leads to an overestimated
effective mass [13]. The interaction effects on the T and
B⊥ dependencies of the MO amplitude are very strong for
two-valley systems, as Figs. 1(a) and 1(b) show.

The renormalized mass m∗ and g∗ factor were determined
earlier in a number of experiments [5,13,22]; these param-
eters grow monotonically as the density decreases (and rs

increases) [41]. This trend is in line with the expectation
of the FL theory. The Dingle temperature TD = �/2πτq is
sample specific; for Si-MOSFETs, it is (roughly) close to
that determined by the transport scattering rate 1/τq ∼ 1/τ .
Below we refer to this well established (though not fully
quantitatively explained) behavior of the ensemble averaged
TD , m∗ and g∗ for an unpolarized or partially polarized system
as “conventional.”

(a)

(b)

FIG. 2. (Color online) (a) The SdH oscillations δρxx vs B⊥ in the
absence of the parallel field. (b) The same oscillations normalized
to the calculated amplitude of the first harmonic, Eq. (1), plotted vs
the filling factor ν ∝ 1/B⊥. Dots with connecting lines are the data,
the continuous curve calculations with an empirical field-dependent
TD (see below) with two parameters TD0 = 0.737 K and d1 = 0.1 T.
The dashed line shows how the amplitude should vary according to
Eq. (3). The canonical values for g = 2.57 and m∗ = 0.225me have
been used [41]. The carrier density is in units of cm−2, rs = 2.61.

In what follows, we will use these known parameters and
Eqs. (6) and (4) to find the effective T ∗

D(T ,B⊥,B‖) from the
measured oscillation amplitude at various T , B⊥, and B‖. The
values of T ∗

D↓↑ for individual subbands will be compared with
each other, whereas the averaged value T ∗

D will be compared
with theoretical predictions.

IV. OSCILLATIONS IN THE ABSENCE
OF IN-PLANE FIELD

A. High density, weak interaction, and simple
oscillation spectrum

We begin our analysis with oscillations at B‖ = 0 and high
electron densities n ≈ 1012 cm−2 (rs ≈ 2.6). For such a high
density the effective mass is well known [2,5,41,42]. On the
other hand, this density is lower than the value 4 × 1012 cm−2,
at which the second quantization subband gets populated [39].
The intersubband scattering therefore can be neglected and the
electron system is truly two dimensional. Additionally, since
the Zeeman splitting at such high densities is much smaller
than the cyclotron one, the spectrum of oscillations is simple
with the first harmonic dominating.

An example of the MO data ρxx(B⊥) is shown in Fig. 2(a).
In order to extract the oscillatory component δρxx from the
raw data, we first cut off the low-field (weak localization,
nonoscillatory) portion of the dependence from 0 to about
0.15 T, and then subtracted the monotonic background
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magnetoresistance δρxx = ρ0[1 − α(T ,n)(ωcτ )2/

(πσDe2/h)] [18], where we used α(T ,n) as a fitting
parameter [the α(T ) dependence is weak in the explored range
of temperatures 0.1–1 K].

Further, in order to assign equal weights to all oscillations
and for the simplicity of analysis, we normalize throughout
the paper the extracted MO to the calculated amplitude of
the first harmonic of Eq. (1), δρnorm = δρ/ρLK

1 , where we
set the Zeeman and valley factors in Eq. (2) to unity. An
example of oscillations with normalized amplitude is shown in
Fig. 2(b) where they are plotted as a function of the filling factor
ν = nhc/eB⊥ [43]. The reduced amplitude of the normalized
oscillations here is simply the consequence of smallness of the
Zeeman factor, Zs

1 = 0.618 for g∗m∗/2me = 0.288.

B. Experimental approach

The period of oscillations is not renormalized in the
presence of electron-electron interactions since it depends
solely on the ratio of the electron density to the magnetic flux
density—neither of them is renormalized by interactions [44].
The quasiparticle parameters, such as g factor and m∗ are
significantly renormalized even at such a high density, rs =
2.61. The amplitude damping of exp- and sinh- functions is
therefore affected by interactions and will be analyzed in the
subsequent sections. Since one of our goals is to test the theory
of magneto-oscillations, we cannot apply the commonly used
procedure of disentangling m∗ and T ∗

D by using the so-called
“Dingle plot,” i.e., by plotting ln(δρ/ρ) versus 1/T . Indeed,
this procedure relies on Eq. (1) [and Eq. (4)], which is a priori
inapplicable.

In what follows we use a different approach: we compare
the measured oscillation pattern with Eqs. (1)–(3) for a given
temperature (and B‖ in the following sections), using earlier
measured “canonical” values for the renormalized effective
mass and g factor [41], and treat the Dingle temperature TD as
an adjustable parameter.

C. Over- and underdecay of the oscillation amplitude
with inverse B⊥ field

When oscillations are normalized to the amplitude of the
first harmonic calculated from Eq. (1), their amplitude is
expected to be field independent for the noninteracting case.
However, as Fig. 2(b) shows, this is not the case: the MO
amplitude at the lowest temperatures decays with inverse field
faster than the LK formula predicts. Specifically, the MO
amplitude in Fig. 2(a) over the range ν = 40–120 (i.e., B = 1
to 0.34 T) is expected to vary by a factor of 100, whereas in
fact it drops by a factor of ∼400. We note that the same extra
damping may be found in earlier papers (see, e.g., Figs. 1(a)
and 1(b) in Ref. [22]) though have never been discussed.
This extra damping is much stronger than the calculated from
Eq. (3) interaction damping factor Fint, which varies only by
16% (from 0.917 to 0.77) over the field range.

To overcome the limitations of Eqs. (1) and (3), we proceed
in the following way: we introduce an empiric field dependence
of the Dingle temperature using an additional adjustable
parameter:

TD = TD0(1 + d1/B⊥). (7)

FIG. 3. (Color online) The SdH oscillations δρxx/ρ
LK
1 normal-

ized to the amplitude of the first harmonic calculated with a field
independent TD = 0.61K vs filling factor ν ∝ 1/B⊥ in the absence
of the parallel field. Dots with connecting lines are the data, the
dashed curves show the calculated oscillation envelope with empirical
field-dependent TD = 0.6(1 − 0.04/B⊥) K. The canonical values for
g = 2.57 and m∗ = 0.225 have been used [41]. The carrier density is
10.83 × 1011 cm−2 and T = 0.5 K.

In particular, to fit the oscillations in Fig. 2(b), we have used
d1 = 0.1 T; as a result TD varies by 15% in the shown field
range and reasonably fits the data. Hypothetically, the actual
electron temperature (which is not measured independently)
could be higher than the known mixing chamber temperature.
Under this assumption, the data in Fig. 2(b) may be also fitted
if the electron temperature is assumed to be 0.3 K (whereas the
mixing chamber temperature is 0.05 K). The latter explanation,
however, is not supported by the data, because this “extra”
decay almost vanishes when the in-plane field is applied in
addition to B⊥ (see below).

As temperature increases, the “overdecay” weakens and
eventually transforms into an “underdecay,” i.e., the oscillation
amplitude starts decaying with the inverse field weaker than
the LK formula predicts. This deficiency is not as strong as
the excessive decay discussed above: for example, in Fig. 3,
the raw oscillation amplitude δρxx at T = 0.5 K drops by a
factor of 300 within the shown range ν = 32–128 (i.e., B⊥ =
1.2–0.3 T). The normalized oscillations grow by a factor of
2; this growth is modeled in Fig. 3 by the field dependent
TD = 0.6(1 + d1/B) K (now with a negative d1 = −0.04 T).
Similarly, the oscillations for the same density at T = 1 K have
been fitted with negative d1 = −0.09 T. The “underdecay”
is qualitatively reproducible in different cooldowns and, in
contrast to the low-temperature data, cannot be explained by
electron overheating. Obviously, the “underdecay” cannot be
explained by interaction correction (5), which may produce
only an extra decay with an increase of 1/B⊥; for this particular
temperature, the predicted correction varies by a factor of 2 in
the range of fields shown in Fig. 3.

The over- and underdecay also cannot be simply caused by a
mistake in the calculated amplitude of oscillations; neither can
it be attributed to the carrier density inhomogeneity over the
sample area, nor to any instrumentation error. The amplitude
variations are strong (up to a factor of 4); therefore they
are most likely related to the exponential damping factors in
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Eq. (1) rather than to the Zeeman and valley cosine terms in
Eq. (2).

For completeness, we note that there is a third option
to explain the (not-too-strong) over- and underdecay, by
assigning different TD values to the spin-up and spin-down
subbands. For example, the data in Fig. 3 may be well fitted
with d1 = 0 and the use of TD↑,↓ = 0.62(1 ± γ ) K with
γ = 0.18.

For small Zeeman splitting gμBB 	 �ωc, the oscillations
are featureless and we cannot determine unambiguously which
of the above mentioned mechanisms is relevant. However,
when the Zeeman splitting becomes comparable to the cy-
clotron one (which occurs either at low densities, or in the
presence of B‖), as will be shown below, the assumptions of
the relevance of d1 and γ gain solid experimental ground.
Moreover, as will be shown below, the overdecay disappears
when a rather weak B‖ field is applied in addition to the B⊥
field.

D. On the apparent smallness of the interlevel
exchange interaction

In Fig. 2, the peak-to-peak variations δρ/ρ reach ≈28%
at 1.3 T; correspondingly, the oscillations of the density
of states δg/g = 1/2(δρ/ρ) reach ≈14%. The latter should
cause oscillatory level broadening [45,46]. In order to test its
importance, following Ref. [28], we modeled level broadening
with

TD(ν) = TD0(1 − δg/g). (8)

It appears, however, that the introduction of the oscillatory
TD(ν) dependence does not eliminate the extra decay of the
amplitude; we conclude that this factor is irrelevant.

The underdecay may also be caused by enhancement of the
oscillations due to the interlevel exchange interaction [47,48].
This effect is caused by the exchange energy contribution,
which lowers the chemical potential in the vicinity of integer
fillings and makes the thermodynamic density of states
negative [46,49]:

∂n

∂μ
= −α

κ

e2lH

{̃
ν1/2 for ν̃ � 1/2,

(1 − ν̃)1/2 for ν̃ > 1/2.
(9)

Here, lH is the magnetic length, ν̃ is the fractional part of the
filling factor, and α (which is of an order of 1 for classical
Coulomb interaction) was experimentally found to be about
0.04–0.06 for Si-MOSFETs [48]. The estimated exchange
contribution to ∂n/∂μ is ten times smaller than the single-
particle density of states and therefore is expected to cause at
most a 20% correction to the amplitude of ρxx oscillations.
We conclude therefore that the exchange enhancement of
cyclotron splitting cannot be (solely) responsible for the factor
of 4 extra decay of oscillations.

E. Proximity to the “spin-zero” regime

In the absence of B‖ field, the spin subbands are created
by the B⊥ field, and according to the LK formula (1), the
g∗ factor affects only their magnitude provided the Zeeman
splitting is �TD . One might think therefore that the oscillations
are featureless, insensitive to the quasiparticle parameters

FIG. 4. (Color online) Normalized SdH oscillations δρxx/δρ
LK
1 in

the absence of the parallel field vs filling factor ν ∝ 1/B⊥ [T = 0.4 K,
carrier density 4.23 × 1011 cm−2, and rs ≈ 4.0] (a) over a wide range
of fields B⊥ = 0.3–1.5 T, and (b) oscillation fits corresponding to the
sets of parameters shown in the figure.

and renormalization in individual spin subbands. However,
as we show below, even in this case, the oscillation line
shape provides information on the quasiparticle spectrum.
This opportunity appears at lower electron densities, where
the renormalized spin susceptibility g∗m∗/2me approaches
1/2 [2,5]. This situation corresponds to the proximity of
the spin splitting to half the cyclotron splitting. Under such
conditions (called the “spin-zero” case), Zs

1 tends to vanish,
which causes decrease of the main harmonic of the oscillations.

Figures 4 and 5 show two examples of oscillations and their
modeling with the LK formula (1). The oscillations signifi-
cantly deviate from the harmonic function. The corresponding
data have been measured at two different cooldowns and the
similarity of the features discussed below confirms that they
are not caused by inhomogeneity of the electron density in the
2D system. Similar to the data in Fig. 2, for such low fields, the
main period of oscillations 
ν = 4 reflects the fourfold spin
and valley degeneracy of the 2D electron system in (100)-Si.
The amplitude of the oscillations is less than unity, which
again suggests that the Zeeman splitting is close to the half
the cyclotron splitting in Eq. (2), i.e., (g∗m∗/2me) = 0.44 is
close to 1/2 for which Zs

1 = 0. This agrees with the directly
measured renormalized spin susceptibility (g∗m∗/2me) =
1.9mb = 0.39 for the given density value rs ≈ 4, Ref. [5].

Similar to the discussed case of higher densities, the
amplitude of the normalized oscillations in Figs. 4 and 5 is
decaying monotonically versus the inverse field (by a factor of
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FIG. 5. (Color online) Normalized SdH oscillations δρxx/δρ
LK
1 in

the absence of the parallel field vs filling factor ν ∝ 1/B⊥ [carrier
density is 4.15 × 1011 cm−2. rs ≈ 4.0, and T = 0.19 K] (a) in the wide
range of fields B⊥ = 0.3–1.5 T, and (b) oscillation fits corresponding
to the sets of parameters shown in the figure.

4 in the shown field range), rather than being field independent
according to the LK model (1). This effect is ten times stronger
than that expected due to the interaction correction (Fig. 1).
This justifies our empirical assumption of the field-dependent
level broadening TD(B⊥) [see Eq. (7) and Fig. 2].

F. Asymmetry of two spin subbands

In the magneto-oscillation dependencies shown in Figs. 4
and 5, there is a “dip” due to the emerging Zeeman splitting
at ν ≈ 14. When the splitting is not fully resolved yet, the
dip position depends primarily on the g∗ factor and points to
its enhanced value, g∗ = 3.4, as compared to the “canonical”
value 3.15 [41] measured in Refs. [5,22] in the presence of a
nonzero B‖ field.

The asymmetry of the dip shoulders seen in Figs. 4( b), 5(b),
and 6 suggests some nonequivalence of the two spin subbands.
To explain the asymmetry, the oscillation magnitudes produced
by the individual subbands must be different. The amplitude
of oscillations is controlled by the product m∗TD in Eq. (1); its
variations for different subbands may be due to the difference
in either m∗ or TD values. The estimate for the polarization
dependence of the effective mass calculated in Ref. [16] in
the large-N approximation [the degeneracy N = 4 in (100)
Si-MOS]

m∗
↓↑/m∗ = 1 + ζ 2

12N
log

(
rsN

3/2

1 + ζ 2

)
(10)

FIG. 6. (Color online) Normalized SdH oscillations δρxx/δρ
LK
1 in

the absence of the parallel field vs filling factor ν ∝ 1/B⊥ [electron
density is 6.18 × 1011 cm−2 (rs = 3.3), g∗ = 2.9]. Dots are the data,
the continuous curve is a fit with γ = +0.07, and the dashed curve is
a fit for γ = 0.

is negligibly small, e.g., the mass changes by less than 1%
when ζ varies from 0 to 1 for n = 4 × 1011 cm−2 (rs = 4).
It is stressed in Ref. [16] that there is no spin splitting of the
effective mass within the large-N approximation. We therefore
assume that m∗ is the same for both subbands and attribute the
difference in amplitude to the difference in Dingle tempera-
tures. Correspondingly, we model the asymmetry using two
different TD values, for the majority and minority subbands:

TD↑ = (1 − γ ) majority subband,

TD↓ = (1 + γ ) minority subband. (11)

The dip asymmetry allows us to determine the skew factor
γ at those B⊥ fields that correspond to the spin gaps (or
beating nodes for nonzero B‖, which are discussed below).
The resulting γ appears to be unexpectedly large; it is also
cooldown dependent, in contrast to the g∗ factor: γ ≈ 0.18 for
Fig. 4 and γ ≈ 0.12 for Fig. 5 (the two measurements have
been performed at about the same density and with the same
sample, but in two different cooldowns). The different depth
of the dip at ν ≈ 14 in Figs. 4 and 5 indicates irreproducibility
of the γ value in different cooldowns.

Beside modeling with an adjustable γ value, for compari-
son, the figures show examples of modeling with γ = 0 and
with the canonical g-factor value. Figure 5(b) also shows
modeling of the SdH oscillation shape using an oscillatory
level broadening according to Eq. (8). One can see that the
oscillatory TD(ν) dependence does not explain the asymmetry
of the oscillation line shape. Since oscillatory level broadening
is irrelevant to both observable features of SdH oscillations,
i.e., the extra decay of the amplitude with inverse field and
asymmetry of the line shape, we ignore this effect in the rest
of the paper.

G. Intermediate discussion of the results

On the basis of the above data analysis we have arrived at
several conclusions. (i) For relatively low filling factors cor-
responding to the spin gaps ν = (4i − 2) and in zero B‖ field,
the g∗ factor is enhanced by ≈10%–15% as compared with its
value previously measured at B‖ �= 0 [5,22]. This enhancement
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qualitatively agrees with our earlier measurements of a sharp
χ∗(B‖) field dependence [13] and with the nonlinearity of the
spin magnetization measured in weak in-plane fields [50].

Alternatively, the g-factor enhancement might also result
from the conventional exchange interaction between the
adjacent spin levels. It is known that the latter can increase
the energy splitting when the Fermi energy lies in the spin
gap and the difference of spin-subband populations is the
largest [39,45,47,48]. Although we cannot rule out completely
the exchange mechanism, the interlevel exchange can hardly
explain the enhanced g∗ value at Zeeman gaps ν = 14, 18,
and 22 in Figs. 4–6. Indeed, there are two observations at
odds with this explanation: (i) the enhanced g∗ value does not
decay with ν, being approximately the same for ν = 14, 18,
and 22 in Fig. 4(b), and for ν = 14 and 18 in Fig. 5(b), and
(ii) application of a strong parallel field restores the canonical
g∗ value (see below).

The same reasoning may be applied to the origin of the extra
decay of the oscillation amplitude discussed in Sec. IV C: it can
hardly be related to the exchange interaction enhancement of
the oscillations [45,47,48]. Indeed, as Figs. 4(a) and 5(a) show,
the normalized oscillation amplitude decays with the inverse
field down to very weak fields (0.3 T) where the amplitude is as
small as δρ/ρ ∼ (0.2–1)%. At such weak fields TD ≈ 0.9 K,
�ωc ≈ 1.7 K and the effective energy gap �ωc − 1

2g∗μBB ≈
1.4 K; hence the neighboring levels overlap heavily and the
exchange enhancement is expected to be negligible.

(ii) There is an unexpected difference in scattering rates
between the two spin subbands, which we described by the
skew factor γ , namely, TD ∝ 1/τq is about 20%–36% smaller
in the majority subband, whereas the spin polarization ζ =
(n↑ − n↓)/n does not exceed 5% [54]. The skew factor, as
was mentioned above, is cooldown dependent (compare Figs. 4
and 5).

In the absence of B‖ field, the Zeeman splitting in weak
fields is relatively small, and the respective spin dips at ν =
(4 × i − 2) can be observed only at the lowest temperatures
(they quickly disappear as temperature increases). For this
reason, it is difficult to probe the temperature dependence of
γ and to clarify its origin. We have solved this problem by
performing measurements in nonzero B‖, where the Zeeman
splitting is enhanced. The corresponding field and temperature
dependencies of the skew factor will be discussed below.

(iii) The field dependence of the oscillation ampli-
tude deviates from the conventional LK-type dependence
∼exp[−2π2k(T + TD)/�ωc], Eq. (1). There is an extra damp-
ing of the SdH amplitude with inverse B⊥ field, which we
described by the empirical field-dependent TD = TD0(1 +
d1/B⊥). The extra damping d1 is much larger than the
interaction correction [18]. It is not caused by the interlevel
exchange interaction, hypothetic electron overheating, possi-
ble amplitude calibration errors, and possible inhomogeneity
of the carrier density over the sample area.

The extra damping factor d1 decreases and changes sign
with temperature (compare Figs. 2 and 3) and with B‖ field
(for more detail, see below). Obviously, such behavior is
inconsistent with the interaction correction (6), which cannot
change sign. Two of the fitting parameters, d1 and γ , are
sample dependent and also depend on the temperature and
B‖ field; γ , additionally, depends on the B⊥ field. In the

FIG. 7. (Color online) Normalized SdH oscillations δρxx/δρ
LK
1 in

the absence of the parallel field vs filling factor ν ∝ 1/B⊥ [electron
density is 2.63 × 1011 cm−2 (rs = 5.07), g∗ = 3.72 (canonical value
3.24)]. Dots are the data, the continuous curve is a fit with γ = +0.09.

absence of B‖, we were able to reliably disentangle d1 and
γ only within a narrow temperature range 0.1–0.4 K. Their
temperature dependencies over a wider temperature range
T = 0.1–1 K have been measured in the presence of B‖ field
and will be discussed in the next section.

(iv) Even though the MO amplitude is small over the
whole range of fields, for the strongest fields B⊥ ≈ 1.3 T
(i.e., the lowest filling factors ν < 10) the MO line shape
starts deviating from that calculated using Eq. (1) [see, e.g.,
Figs. 4, 5, 7, and 10(b)]. We attribute these high-field deviations
to the interlevel exchange interaction that causes oscillatory
level splitting and oscillatory broadening [39,45,47,48]. This
effect is beyond the scope of this paper and we omit the
strongest field data in our analysis.

V. OSCILLATIONS IN NONZERO B‖ FIELD. AVERAGE
CHARACTERISTICS OF THE PARTIALLY SPIN

POLARIZED 2DE SYSTEM

A. Brief overview of the B‖ field effect on the
magneto-oscillations

In the presence of the parallel field B‖, the SdH oscillations
exhibit beatings; to make the origin of beating more transpar-
ent, we modify Eq. (1):

δρxx

ρ0
=

∑
i

2
(
a ↓LK

i +a ↑LK
i

) 2π2ikBT /�ωc

sinh
( 2π2ikBT

�ωc

) (12)

where

a(↓,↑)LK
i = exp

(
−2π2ikBTD↓,↑

�ωc

)

× cos

{
iπ

[
�πnc

eB⊥

(
1 ± gμBBtotal

2EF

)
− 1

]}
Zv

i

(13)

with Btotal =
√

B2
⊥ + B2

‖ . One can see that when B‖ �= 0, the
two oscillatory patterns interfere causing beatings.

Typical traces of the SdH oscillations in the presence of
B‖ field are shown in Figs. 8, and 9. Being normalized to
the calculated amplitude of the first harmonic δρLK

1 , Eq. (1),
the oscillations exhibit a well pronounced beating pattern [see
Figs. 8(b) and 10]. The oscillations envelope and phase, as
well as the node position of beatings carry information on the
g-factor value, and on the relative amplitude of the oscillatory
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FIG. 8. (Color online) SdH oscillations in the presence of the
parallel field: (a) ρ(B⊥) data for B‖ = 1.5 T and for almost the
same density as that in Fig. 2. The temperature is T = 0.15 K. (b)
Normalized oscillations δρ/δρLK

1 (dots) and their fitting (line) with
Eq. (1) using TD = 0.87 K, d1 = 0, γ = 0, and g∗ = 2.65.

patterns generated by two spin subbands; the beating pattern
is the subject of the analysis in this section.

Application of the in-plane field unexpectedly produces
several remarkable effects: (i) the extra damping of oscillations
[d1 in Eq. (7)] decreases significantly or vanishes, (ii) the skew
factor γ is significantly reduced, and (iii) g∗ factor regains its
canonical value [41].

Figures 8 and 10 illustrate that oscillations are now
much better described by Eq. (1) and that their normalized

FIG. 9. Examples of SdH oscillations in the presence of the
parallel field: (a) for B‖ = 2.15 and (b) for 3.4 T. The temperature
T = 0.1 K. Carrier density is in units of 1011 cm−2.

FIG. 10. (Color online) Examples of fitting with Eq. (1): (a) n =
3.76, B‖ = 2.15 T, and (b) n = 1.815, B‖ = 2.5 T. The temperature
is T = 0.1 K and the density is in units of 1011 cm−2. Dots are the
normalized data δρxx/ρ

LK
1 , curves are the fits with adjustable TD ,

d1, γ ; m∗(n) and g∗(n) are the canonical values from Refs. [5,22].
TD0 = 0.77 K, γ = 0.8%, and d1 = 0.07 for panel (a). TD0 = 0.87 K,
γ = 4%, and d1 = 0.17 for panel (b). Note that all ρxx minima on
panel (b) correspond to the “spin gaps,” ν = 4i − 2 [43].

magnitude remains independent of B⊥ field. We shall discuss
this remarkable observation later, and now we return to the
“conventional” behavior. Thanks to the high accuracy of the
fitting, <1%, demonstrated in Figs. 8(b) and 10, the fitting
parameters are determined with rather high precision. The
high accuracy of the parameters extraction in the presence of
B‖ field allows us to perform a comparison of oscillations with
the interaction correction theory.

B. Taking interaction into account

When comparing the MO amplitude for various B‖ fields,
we face a dilemma: which conductivity value should be used
for normalization of the MO amplitude in Eq. (1), σD(B‖ = 0)
or σ (T → 0,B‖)? Neither the LK theory nor the theory in
Refs. [17,18] consider the in-plane field, and, therefore, do
not answer this question directly. In the framework of the
interaction correction theory, σD should not be affected by
the temperature and in-plane field, whereas both τq and τ

are renormalized by interactions causing temperature and
field dependencies of the conductivity. This suggests that the
oscillation amplitude in Eq. (1) should be normalized to σD .

On the other hand, it was experimentally established that
for Si-MOSFETs the magnetoresistance in the B‖ field is
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not entirely described by the interaction corrections: it is
also strongly dependent on the magnetic field contribution
to the mobility (the so-called “magnetic field driven disor-
der” [51,52]). In this case, if the disorder is altered by the
parallel field [51,53], the scattering time would be field-
dependent and, hence, the oscillation magnitude should be
normalized to the field-modified σD(B‖). The latter value in
the ballistic regime (i.e., ignoring logarithmic corrections) may
be found as σ (T → 0,B‖) [8].

The relative share of the two contributions to the mag-
netoresistance, the interaction corrections and magnetic field
driven disorder, depends on the particular sample. In view of
this uncertainty and in the spirit of the theory with which we
compare our data, throughout the paper we normalize the MO
amplitude to σD(B = 0) even in the presence of B‖ field; we
have verified that the normalization to σD or σ (B‖,T = 0)
results in a minor quantitative difference and does not affect
our qualitative results and conclusions.

VI. INDIVIDUAL RENORMALIZATIONS IN EACH
SUBBAND OF THE PARTIALLY POLARIZED 2D

ELECTRON SYSTEM

We now analyze the line shape of SdH oscillations in
order to determine the quantum scattering time in each spin
subband as a function of the in-plane field and temperature.
The emerging spin-splitting causes dips at the maxima of ρxx

oscillations at ν = 4i − 2, which grow with B⊥ (i.e., as ν

decreases). Figures 6 and 11 show the development of the spin
structure in SdH oscillations at relatively high densities with
an increasing in-plane field.

A. Background of the data analysis

In principle, one can determine all the renormalized
parameters of the electron system, m∗, TD , g∗, and the
skew parameter γ , by fitting the interference pattern of
quantum oscillations with Eqs. (1)–(5). However, the first
two parameters that control the damping of the average MO
amplitude are strongly correlated over the experimental ranges
of temperatures and fields. For this reason, their product m∗TD

can be determined much more reliably. The g∗ factor controls
the characteristic fields where the dips appear due to the
emerging spin splitting, as well as the nodes of beats. In its
turn, γ controls mainly the asymmetry and magnitude of the
oscillation pattern near the nodes and does not correlate with
TD .

The parameters g∗ and γ are almost uncorrelated, and this
fact enables us to disentangle them with a reasonable accuracy,
∼1.5% for g∗ factor, and up to ±0.002 for γ . We have
taken into account the γ (B⊥,T ) dependencies by analyzing
the evolution of oscillations with temperature and B‖ field for
several fixed values of B⊥ field at which we could extract γ

from the interference pattern.
In order to decrease the number of fitting parameters, we

analyzed the data using the following scheme. Initially, the
beating pattern of oscillations versus B⊥ field was fitted using
Eq. (1) for a given density, B‖ field, and temperature. The initial
m∗(n) and g∗(n) values were calculated using the polynomial
approximation of the experimental data [41]. The actual g∗

FIG. 11. (Color online) Examples of fitting SdH oscillations for
sample Si3-10 at n = 6.178 × 1011 cm−2: (a) B‖ = 0.56 T, TD0 =
0.43 K, and T = 0.15 K. (b) blow-up of the low field range ν = 16–48
of the same data. (c) B|| = 2.6 T and TD0 = 0.45 K. Dots show the
normalized data, the continuous and dash-dotted curves show fittings
with various γ values. Vertical arrows point at two nodes.

value was further fine tuned by fitting the line shape of the
nodes of oscillations and emerging spin gaps. As we mentioned
above, for weak or zero B‖, the canonical g∗ value had to be
increased by about 10%. This approach leaves us with only
three adjustable parameters: TD0, its field dependence d1, and
γ . The dependencies of these parameters on B‖ field (see
below) represent one of our main results.

As we have already mentioned, the analysis is simplified
essentially in the presence of a strong field B‖ � kBT /2μB .
In this case, the oscillations damping is reasonably well
described with a B⊥-field independent TD value (i.e., d1 may
be neglected), and g∗ factor regains its canonical value.

At the next step, for fixed B‖ and B⊥ fields, we analyzed
the product m∗TD as a function of temperature. These results
will be compared with the theory Eqs. (3) and (6). Finally, we
found that the extracted g∗ and γ values vary slightly with
perpendicular field; this dependence will be also discussed
below.

We fitted the oscillations with Eqs. (1) and (3) using
individual products m∗TD for each spin subband,

(m∗TD↑↓) = m∗
0TD0(1 ± γ ),
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where the average (“zero-field”) mass m∗
0(n) corresponds to

the canonical value [5,41]. The sign of γ in the above equation
is chosen in line with our intuitive expectations and the RPA re-
sults: for the majority (↑) subband, the carrier density is larger,
the interaction strength rs is weaker, and screening is stronger;
both latter factors are expected to lower the m∗TD value.

Strictly speaking, relying solely on the experimental data,
it is difficult to determine to which of the two parameters
(either m∗ or TD) the skew factor γ is related to. However, the
uppermost RPA estimate of the skewness in m∗, Eq. (10), is
much smaller than the observed skewness in the MO amplitude
in a purely perpendicular field. As will be shown below,
the observed skewness tends to decrease with B‖ field and,
hence, with spin polarization, in direct contradiction with the
RPA result. Moreover, according to recent calculations [16],
the difference between m∗

↑ and m∗
↓ for a large-degeneracy

(bosonic) 2D gas should be small and its dependence on
the spin polarization should be very weak. Taking this into
account, as well as the experimental evidence that TD is
noticeably dependent on B‖ (see below), we have chosen to
associate γ with skewness in TD↓,↑ in the presence of a strong
polarizing B‖ field, in the same way as above in Eq. (11) for a
purely perpendicular field.

Figure 11 shows that γ can be found by fitting the beats of
the oscillations with rather high precision, typically ±0.2%.
The most sensitive to the γ value are the MO amplitude and
phase near the nodes. Additional information on γ , even at
zero parallel field, comes from emerging spin splittings in
the vicinity of ν = 14, 18, and 22 in Figs. 4(b), 5(b), and 7.
Correspondingly, γ was determined as a function of B‖ at
several B⊥ values.

B. Variation of γ and d1 with field and temperature

In the absence of the parallel field [Fig. 6(a)], γ has the
anticipated sign; its value (∼+7% in strong field B⊥ = 1.4 T)
is of the order of the polarization degree ζ =∼ 4% [54].
Figures 11(a) and 11(b) show that in the presence of B‖ =
0.56 T, γ changes from 6% (at ν = 20–40) to almost zero
in weak perpendicular fields (at ν ≈ 48–54, B⊥ = 0.5 T).
Closer inspection of Fig. 11(a) reveals that this change occurs
rather abruptly, between ν = 42 and 49. We note that the
Zeeman energy at the corresponding perpendicular field B⊥ =
0.6–0.53 T is ten times greater than the temperature 0.15K and
is of the order of the level broadening TD . The role of the latter
relation will be discussed below.

In stronger parallel field B‖ = 2.6 T [Fig. 11(c)], the γ value
similarly decreases from 1.5% to −3% as B⊥ field decreases
(i.e., ν increases from 72 to 80). And vice versa, γ tends
to regain its original value with increasing B⊥ field: at B⊥
corresponding to ν ≈ 44, γ increases to +1.5%. Note that
the polarization degree varies negligibly, from ζ (Btotal) = 8%
to 7.5%, over the range of fields in Fig. 11(b) and hence
is irrelevant to the sign change of γ . We also note that
the oscillation line-shape evolution with the field is fully
reproducible and reversible.

The negative sign of γ implies that the m∗TD product in the
majority spin subband becomes larger than that in the minority
subband, a result that obviously contradicts the common sense
arguments based on the screening and RPA approaches. The γ

FIG. 12. (Color online) Examples of fitting SdH oscillations for
sample Si3-10 at B|| = 3.0 T: for n = 1.67 × 1011 cm−2, ζ = 45%
(top) [54], and n = 1.3 × 1011 cm−2, ζ = 66%), TD0 = 0.67 K
(bottom). Dots show the normalized data, continuous and dashed
curves show fittings with various γ values.

decrease with B‖ field is observed for the whole explored range
of carrier densities, 1.3 × 1011 < n < 1012 cm−2; it becomes
very pronounced at lower densities (Fig. 12). In the latter case
for ζ = 66%, m∗TD for the majority subband is by 20% larger
than that for the minority subband.

A typical variation of the skewness γ with in-plane field
is plotted in Figs. 13(a) and 13(b) for two carrier densities.
The trend is similar for all densities, but at lower densities,
the decrease of γ is more pronounced and γ drops to more
negative values. For low densities, more than one node could
be observed within the accessible range of B⊥ fields; the
respective γ values for two nodes are shown in Fig. 13(b).
Again, in stronger B⊥ fields (upper curve), the dependence
γ (B‖) is weaker. Obviously, the variation of γ values for the
two nodes [Fig. 13(b)] does not correlate with the polarization
degree of the 2D system of mobile electrons ζ (Btotal) and, thus,
cannot be attributed to it.

As we have mentioned above, γ changes with B⊥ field, e.g.,
between two curves in Fig. 13(b), rather abruptly near the node.
This clearly points to the relevance of the interlevel exchange.
The situation illustrated schematically in Fig. 13(c) shows
that the two subbands are inequivalent in the node vicinity.
The difference in the population of spin-up and spin-down
quasiparticles is the largest near the nodes, and the effective
spin gap is expected to be enhanced. Although this mechanism
solely cannot explain the variation of γ with in-plane field,
we conclude that the interlevel exchange cannot be ignored
completely.
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FIG. 13. (Color online) B‖ field dependencies of the skew factor
γ : (a) for n = 9.53 × 1011 cm−2 extracted for a single node, (b) for
n = 6.178 × 1011 cm−2 for two nodes (upper curve for larger B⊥ and
lower curve for smaller B⊥). (c) Schematic diagram of the Landau
levels for two spin subbands, in the vicinity of two sequential nodes.

Figures 14 and 15 show that the temperature increase
leads to the decrease of γ similar to that caused by the
in-plane field [compare Figs. 13(a), 13(b), and 14(b)]. The
extra damping parameter d1 also decreases and changes sign
as the temperature increases (see Fig. 15). This behavior is
qualitatively similar for various carrier densities and B‖ values.

FIG. 14. (Color online) (a) SdH oscillations fitting at low densi-
ties and in the presence of strong B‖ field. T = 0.4 K and ζ (Btotal) ≈
35%. (b) Typical temperature dependence of γ . Density is given in
units of 1011 cm−2. Sample Si6-14.

FIG. 15. (Color online) Typical temperature dependencies of γ

and d1 measured at fixed B‖ = 1.984 T. Density is given in units of
1011 cm−2. Sample Si6-14.

VII. DISCUSSION

A. On the effective mass equality in the two subbands

The main result of our studies is the approximate equality of
the renormalized parameters (m∗TD↓↑) in two spin subbands
for the spin polarization degree as high as 66% (see, e.g.,
Figs. 11 and 12). This observation is in line with the results
of prior measurements [10,34]. Most clearly this equality is
illustrated by a nearly vanishing amplitude of beats in the
vicinity of nodes of the oscillatory pattern ]see Figs. 10(a)
and 11)].

Were the electrons interacting predominantly within each
spin subband, the product (m∗TD↑,↓) would have been es-
sentially different with a skew parameter γ of the order of
polarization ζ . Our result implies that the exchange takes
place among all the electrons, irrelevant to their spins. This
result also agrees with a recent theory [16] that considers a
large-degeneracy 2D electron gas.

Strictly speaking, an alternative explanation can also be
constructed in a scenario of electrons interacting predom-
inantly within each subband. However, in this case the
mass renormalization must almost entirely compensate the
scattering rate renormalization within each subband to provide
the same value of (m∗TD). Taking into account that the
combinations (m∗TD↓,↑) remain almost the same for two
subbands over ranges of the temperature and parallel field
where TD significantly changes, this possibility seems very
unlikely. Moreover, in such a scenario of two “isolated” spin
subsystems, both m∗ and TD should decrease with density,
and, hence, their variations cannot compensate each other.

B. Temperature and field dependencies of magneto-oscillation
damping. Comparison with the theory of an interacting

2D systems

Another goal of our study of SdH oscillations in Si-
MOSFETs was to test the theory of quantum oscillations in an
interacting 2D electron system. By measuring the amplitude
of quantum oscillations versus the temperature and both field
components, we aimed at verifying the main prediction of the
theory—renormalization of the Dingle temperature T ∗

D(T ,B⊥)
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FIG. 16. (Color online) The dependence TD(T ) measured at
B‖ = 0 and n = 10.83 × 1011 cm−2. Full symbols show δTD =
TD(T ) − TD(0) for three B⊥ fields, the connecting solid lines are guide
to the eye. TD(0) = 0.586 K was subtracted to simplify comparison
with the theory. Three dashed curves show the theoretical δT ∗

D(T )
dependencies (divided by a factor of 10), calculated from Eq. (6) for
B⊥ = 1, 0.85 and 0.55 T (from bottom to top). For comparison, the
dependence ρ(T ,B = 0) is shown with empty symbols. Note a 0.1%
reproducibility of δρ/ρ measured for the same sample Si6-14 several
years apart.

with the temperature and magnetic field. This prediction was
made for the ballistic interaction regime, which is realized
in our high mobility samples at T > 0.3 K. To simplify
comparison of Eq. (6) with the TD(T ) data, below we discuss
the difference δTD = TD(T ) − TD(0) where the TD0 values
were estimated by extrapolating TD(T ) to T = 0.

Figures 16 show that the monotonic δρ/ρ measured for
the same sample in years 2000 and 2006 is highly (within
0.1%) reproducible. The MO amplitude is less reproducible,
it is cooldown dependent (will be discussed below). For this
reason in the next sections, we discuss only the data measured
within one cooldown.

C. Comparison with the theory in the absence of B‖ field

Figures 16 and 17 show TD(T ) variations in zero B‖ field,
for high and low densities, respectively. T ∗

D trends to grow
with T , at least in the high temperature range, which is in
qualitative agreement with theory. However, there are several
quantitative inconsistencies with Eq. (6). (i) The experimental
slope dTD/dT is smaller (by a factor of 3–10) than the
calculated dependence. (ii) The TD(T ) dependence exhibits a
minimum at a density-dependent temperature. (iii) The slope
dTD/dT does not follow the predicted 1/B⊥ field dependence:
it saturates in low-B⊥ fields (see Figs. 16–18).

According to Eq. (6), the slope dT ∗
D/dT depends primarily

on Fa
0 and the number of triplet terms. Thus, to bring the

calculated slope in agreement with our data in Fig. 16, we
need to assume that either Fa

0 = −0.08 (instead of canonical
−0.22), or reduce the number of triplets (4.7 instead of 15).
Using the same arguments for Fig. 17, the agreement can be
reached by using Fa

0 = −0.21 (instead of canonical −0.38),
or 6.7 triplets instead of 15. Both assumptions are groundless.

For all densities there is an unexpected upturn of TD(T )
at low temperatures; the temperature of the TD(T ) minimum

FIG. 17. (Color online) Comparison with theory of the TD(T )
variations measured at B‖ = 0 for (a) n = 4.37 × 1011 cm−2 and
(b) for n = 2.63 × 1011 cm−2. Symbols with connecting lines
designate in (a) δTD = TD − 0.225 K values measured at three B⊥
fields and in (b) δTD = TD − 0.3 K values measured at four B⊥
fields. The curves are calculated from Eq. (6) for the same fields
(from bottom to top) and reduced by 10× in (a) and by 3× in
(b). For comparison, empty circles show also δρ/ρ variations with
temperature. Sample Si6-14.

decreases as the density increases; δTD(T ) also turns up at T <

0.2 K in Fig. 16, however, we could not quantify it because of a
strong line-shape distortion (caused by the interlevel exchange,
as mentioned above) and therefore do not show the data below
T = 0.3 K. The upturn in TD(T ) is reminiscent of the upturn in
ρ(T ) [22], where it is caused by intervalley scattering, valley,

FIG. 18. (Color online) TD variations with temperature. Density
n = 2.71 × 1011 cm−2 and B‖ = 1.984 T. Full symbols are for δTD =
TD − 0.275 K, measured at five different B⊥ fields. Sample Si6-14.
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FIG. 19. (Color online) Full symbols show TD variations with
temperature for three values of the B⊥ field. Density n = 1.77 ×
1011 cm−2 and B‖ = 3.375 T. Sample Si6-14.

and Zeeman splitting, all of which reduce the effective number
of triplets [22]. However, the temperature of TD(T ) minimum
is typically higher than that of ρ(T ): the upturn in ρ(T ) was
observed below T ≈ 0.2 K for our samples [22] at zero field.
Figure 17 shows that the δTD(T ) minima do not depend on B⊥,
a fact that rules out the effect of the magnetic field enhanced
valley splitting. For this reason, we discuss below another
mechanism of the oscillation damping related to the interface
properties.

D. Comparison with theory in B‖ �= 0 field

Potentially, quantitative understanding of the data may
be further complicated by the B⊥-field and the temperature
dependencies of g∗ and γ (see below), which are beyond
the framework of the theory. Fortunately, for the oscillations
measured in nonzero B‖, the amplitude of beating antinodes
is almost insensitive to γ and g∗ values, which allows us to
disentangle TD , γ , and g∗.

The upturn in TD(T ) usually occurs at high temperatures
for both B‖ = 0 and �=0 (see Figs. 17–19). A closer inspection
of the MO data shows that the upturn to a large extent
reflects the exchange-enhanced spin gaps (i.e., the quantum
Hall ferromagnetism, QHF). We believe that for this reason
the upturn is so pronounced in Figs. 17–19. And vice versa, in
those cases when we were able to trace MO amplitude far away
from the corresponding spin gaps (as in Fig. 20), TD drops
monotonically down to the lowest accessible temperature.

The position of the TD(T ) minimum is not affected by B‖
(cf. Figs. 18 and 17). This suggests that the TD(T ) minima are
related to the physics of a quantizing field rather than to the
purely Zeeman splitting.

Although the theory [17,18] considered T ∗
D renormalization

with temperature in the absence of B‖, we attempted to test
whether the magnetoresistance ρ(B‖) and MO amplitude T ∗

D

are affected by the same mechanism. Extraction of the TD(B‖)
dependence is complicated by the fact that the MO amplitude is
affected by g∗, and γ which are both field-dependent. Figure 21
shows TD measured at three different B⊥ fields corresponding
to the beating antinode and two adjacent nodes. Despite the
experimental uncertainty which becomes very large at zero

FIG. 20. (Color online) Full symbols show δTD = TD − 0.44 K
variations with temperature for two values of the B⊥ field. Density
n = 2.23 × 1011 cm−2 and B‖ = 3.36 T. Empty circles, for compari-
son, depict δρ/ρ. Sample Si6-14.

field, one can conclude that to the first approximation TD is
B‖-independent. This behavior of TD does not resemble the
monotonic ρ(B‖) dependence shown in the same plot. In the
framework of the interaction correction theory, the monotonic
MR is related to the reduction of the effective number of triplets
with B‖, rather than the 1/τ renormalization. The dissimilarity
between the field dependencies of TD and ρ suggests that the
MO damping mechanism in parallel fields is different from that
of the monotonic magnetoresistance. This conclusion is in line
with our earlier finding [52] where it has been demonstrated
that the monotonic magnetoresistance in the diffusive regime
is not caused by the e-e interaction corrections solely.

E. T ∗
D dependence on the B⊥ field

According to Eq. (6), the correction δT ∗
D should grow

proportionally to the inverse perpendicular field. The data

FIG. 21. (Color online) Variations of TD with in-plane field. The
temperature is 0.05 K and the density is n = 2.38 × 1011cm−2. Empty
circles show δρ/ρ, full symbols show TD measured at different B⊥
fields, corresponding to the two nodes and one antinode. Sample
Si6-14.
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in Figs. 17 and 20 do show a certain growth of TD with
1/B⊥. However, once the MO amplitude is affected by the
developing QHF, the spin gap gets increased, the amplitude of
the respective oscillations is enhanced and the corresponding
TD values are underestimated; the latter effect becomes more
pronounced at stronger B⊥. This results in a “wrong” sequence
of curves in Figs. 16, 18, and 19 at low temperatures. In
spite of the smallness of oscillations, δρ/ρ = 10−2 ÷ 10−4,
the interlevel interaction remains sufficiently strong to impede
comparison with theory. With increasing the temperature,
these effects become negligible and the regular order of the
TD(T ,B⊥) curves is restored (see the crossing of curves in
Fig. 19).

The slope dT ∗
D/dT should also grow linearly with 1/B⊥

[see Eq. (6)]; the low-density data (Fig. 17) indeed reflect
the growth, whereas at high densities (Fig. 16) the slope is
either independent of field or even has the opposite tendency.
We believe that the predicted divergency of the slope ∝1/ωcτ

should be cut off in low fields by a characteristic energy that
depends on the density and parallel field. In general, dTD/dT

and dTD/dB⊥ can not be fitted simultaneously: if one attempts
to fit the field dependence of the slope, then the calculated
T ∗

D(T ) dependence would be too steep.

F. Unexpected results

Our study also revealed two effects that go beyond the
existing theory, namely, the asymmetry (skewness) of the two
spin subbands, and an extra decay of the MO amplitude with
field. The major features of the two effects are as follows.
(1) The factor m∗TD is noticeably different for two spin-
subbands. We assumed that m∗ is the same in both subbands
and quantitatively characterized the difference with a skew
factor γ = (TD↓ − TD↑)/2. (2) As the temperature increases,
the skew factor diminishes, changes sign and saturates at
a small negative value. This value becomes progressively
more negative as B‖ increases and the density decreases.
(3) In the absence of B‖ the skew factor grows with B⊥
from zero to ∼10% (even though the MO amplitude and
polarization factor remain small), indicating a smaller TD

value in the spin-majority subband. (4) The extra decay of
the MO amplitude TD(B⊥) with 1/B⊥ is irrelevant to the
interaction correction Eq. (6), being either much larger (for
low temperatures) or even of the opposite sign (at elevated
temperatures). We modeled the extra decay with an empirical
TD(B⊥) dependence.

The extra decay and the skew factor are somewhat cor-
related. Were we able to trace the skew factor continuously
versus B⊥ field, we would have disentangled the two param-
eters. Instead, we could determine γ only at several values of
B⊥ corresponding to the nodes of beatings.

In weak fields, the MO data can be fitted using the standard
procedure with the exponential damping factor, Eqs. (4)
and (6), which assumes that the field-independent γ = 0,
and the extra decay of the MO amplitude is negligible. This
approach, however, would leave unexplained the data at higher
B⊥ fields and in the vicinity of nodes. Moreover, within such
an approach, the oscillations at lowest field overlap with the
tail of the weak localization magnetoresistance and can be
observed only over a narrow range of temperatures; both issues

impede analysis of experimental data. Although we attributed
the steplike variation of γ with B⊥ field to the interlevel
exchange interaction, we believe that this mechanism solely
can not explain the variation of γ with the in-plane field and
temperature, and hence, there are at least two effects at work
that should be considered.

G. Empirical model

Our experimental data suggest that the existing theory of
magneto-oscillations in 2D interacting systems is incomplete.
We attempt therefore to sketch an empirical model that might
explain the data. The first of the aforementioned features—
nonequivalence of the two subbands (i.e., the large skewness
γ )—provides an evidence for the existence of a spin-direction-
dependent scattering of mobile electrons in 2D systems, which
may be attributed to a triplet state of the scatterers. Both γ and
d1 are sensitive to the relatively weak fields (μBB 	 EF ),
which indicates that the above triplet scatterers are located in
energy close to the Fermi level but do not belong to the Fermi
liquid. Thus, to explain the skewness, we shall consider the
picture of a two phase system consisting of the triplet localized
states and the 2D Fermi liquid coexisting and interacting with
the localized states.

The existence of the surface localized states is not surpris-
ing, they have been observed in (a) earlier measurements of
the energy relaxation rate dominated by the piezocoupling
of electrons with phonons at the Si-SiO2 interface [56],
and (b) the thermodynamic measurements of the electron
magnetization [50], which revealed the existence of collective
droplets with a large spin (i.e., triplet localized states).
Their existence also follows from numerous compressibility
measurements which show the compressibility increases with
lowering carrier density, an effect that was explained in terms
of the development of the two-phase state upon lowering den-
sity [57,58]. The surface localized states have been considered
in the earlier theories [55].

The collective triplet localized states (we shall refer to them
as large-size scatterers) can be easily polarized in an external
magnetic field [50]. Therefore, in the absence of the parallel
field and at sufficiently low temperatures, weak B⊥ field spin
polarizes the scatterers in the same direction as the mobile
2D electrons in the majority-spin subband. Due to the Pauli
principle, the parallel spins interact weaker, which should lead
to a weaker scattering of carriers in the majority subband by
the localized states, and a positive skew factor that grows with
B⊥, in line with the aforementioned observations (1) and (3).

In this scenario the triplet state polarization is reduced at
T > 2μBB⊥/kB , or, alternatively, as the field decreases at
a given temperature. Hence the skew factor must vanish at
B⊥/T � 1 T/K. Such anticipated γ (T ) and γ (B⊥) depen-
dencies are also in a qualitative agreement with observations
(2) and (3) (see also Figs. 14 and 11). In particular, the
sharp, almost steplike changes in γ (B⊥) shown in Fig. 11
are reminiscent of the Brillouin function describing the spin
magnetization of free spins [50] at finite temperature.

Within this model, it is easy to understand why the minima
of TD occur at such a high temperature, a factor of 2–3 greater
than those in ρ(T ) [22]. Indeed, the collective triplet scatterers,
due to their large size, >λF , and weak scattering potential,
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produce predominantly small angle scattering. This scattering
directly affects TD , but contributes very little to ρ determined
by the large angle scattering. The interplay between the
quantum corrections (5) (with positive dTD/dT ) and all-angle
scattering (for the small angle scattering, the number of
scatterers grows as 1/T [50]) results in the TD(T ) minimum.
The minimum is shifted towards higher temperatures because
the all-angle scattering is always stronger than the large-angle
one. As the density decreases, the number of the large-size
scatterers grows [50] and the minima are also shifted to higher
temperatures (cf. Figs. 16 and 17).

With application of the in-plane field, the surface scattering
becomes weaker (and, as a consequence, the skewness van-
ishes); simultaneously, the TD(T ) minimum shifts to lower
temperatures (see Figs. 19 and 20). In the presence of B‖ field,
several other effects may occur. Firstly, the electrons may be
redistributed between the mobile and localized subband. In
this case, the frequency of SdH oscillations would have been
B‖-dependent. Indeed, sharp variation of the SdH density
has been reported earlier [13]. Secondly, when B‖ becomes
stronger than B⊥, the spins of both scatterers and mobile
electrons should be aligned within the 2DEG plane. However,
because of a nonzero spin-orbit coupling, the spins of mobile
electrons tend to align perpendicular to the k vector in the
momentum space. As a result, the difference in scattering
rate between the spin-majority and -minority subbands, γ ,
is expected to diminish in a strong B‖ field. This expectation is
also in a qualitative agreement with observation (4) (see also
Fig. 13).

In the suggested model, we assume that (a) the localized
triplet states exist close to the Fermi energy, (b) these states act
as potential scatterers, and (c) the SO coupling is sufficiently
strong at the Si-SiO2 interface. The first two assumptions are
in agreement with other available data [50,59]. The cooldown
and sample dependence of γ and d1 also points to their
interface origin (i.e., association with shallow interface traps).
The existence of the SO coupling in Si is usually neglected
because of the large band gap and bulk inversion symmetry
of Si. However, the potential well at the Si-SiO2 interface
is strongly asymmetric; from the magnetoresistance studies
in a parallel magnetic field, we were able to estimate the
strength of the SO coupling in Si-MOSFETs [60], with
a moderate value of the SO coupling parameter. Also, as
we have mentioned above, our measurements of the energy
relaxation rate of 2D electrons in Si-MOSFETs [56] revealed a
relatively strong electron-phonon coupling, which implies the
piezoelectric coupling rather than the deformation potential
one. The piezoelectric coupling requires lack of the inversion
symmetry at the interface, and is the prerequisite for the SO
coupling.

The last (fourth) unexpected observation is the extra decay
of the oscillations, which is important for the proper analysis
of the MO amplitude. (i) In the conventional approach, only
the temperature dependence of the oscillation envelope is
analyzed; this leads to averaging the extra decay out. This
approach has been used in the majority of previous studies
(e.g., Refs. [2,10]). Then, unavoidably, the effective mass
extracted from the slope of the Dingle plot becomes dependent
on the ranges of B⊥ and temperature, on the particular sample,
and on the cooldown conditions through the uncontrollable

density of interface traps. This leads to substantial scattering
of the m∗(n) values measured in different experiments; this
scattering exceeds by far the measurement accuracy in a
single measurement run, a problem mentioned in several
experimental papers.

(ii) In this paper, we analyzed the MO amplitude using
field dependent TD . This approach enabled us to fit reasonably
well the oscillation line shape, phase (e.g., the locations of the
minima in B⊥ field), and the MO amplitude. As we explained
above, this approach leads to a field dependent TD .

(iii) Finally, as we have shown experimentally, in the
presence of a large B‖ field, the extra amplitude damping
and the spin subband skewness vanishes, or, at least, tends
to become B⊥-field independent. As a result, the TD value
becomes adequately described with the theory (4) and (6).
For this reason, the analysis of the oscillation amplitude in
the presence of B‖ field provides more reproducible values of
m∗(n). Thus the current analysis justifies our earlier conjecture
in Ref. [5], where we measured the effective mass in the
presence of the B‖ field.

The suggested empirical model provides a qualitative
description of all major observations. Still, a thorough micro-
scopic model is required to explain the observed discrepancy
between the measured oscillation decay (and its sign change
with temperature) and the decay calculated from Eq. (6). The
measured skewness γ not only decreases with B‖, but also
changes sign; this suggests that the spin-minority subband
becomes less “disordered,” an effect that seems puzzling.
We speculate that within the considered scenario of easily
spin-polarized triplet interface scatterers, a smaller broadening
of levels in the spin-minority subband may be due to a more
complex multilevel structure of the energy band of collective
localized states. A more detailed theory should incorporate
on equal footing also the interlevel interaction effects (i.e.,
quantum Hall ferromagnetism), which as we showed are
relevant even to a small MO amplitude.

Finally, we note that the existing interaction theory de-
scribes the magneto-oscillations of thermodynamic rather than
kinetic quantities, whereas the proportionality between the
oscillations in magnetotransport and density of states, Eq. (1),
has been established only for noninteracting systems [35].

VIII. CONCLUSIONS

To summarize, we performed studies of the Shubnikov-
de Haas magneto-oscillations (MO) in the interacting 2D
carrier system in high mobility Si-MOSFETs subjected to
superimposed in-plane and perpendicular magnetic fields. We
analyzed the oscillation damping parameter m∗TD and the line
shape of oscillations for the spin-up and spin-down subbands
as a function of temperature and both field components.

Firstly, we found that the damping parameter m∗TD , to
the first approximation, is the same for both spin subbands,
even though their population may differ as much as 66%.
This implies approximate equality between m∗

↑ and m∗
↓ as

well as between TD↑ and TD↓. This result suggests that the
exchange interaction between electrons takes place over the
whole electron system and over a wide range of energies ∼EF

(rather than within each subband and only in the vicinity of
EF ), regardless of how large the Zeeman splitting is.
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Secondly, by analyzing the MO amplitude, we have shown
that the experimental data systematically deviate from the
conventional theory. We stress that the deviations cannot be
detected by (conventional) plotting the MO amplitude versus
temperature. Our data indicate that the damping factor is
different for two spin subbands, and this results in skewness
of the oscillation line shape. In the absence of the in-plane
field, the damping factor m∗TD is systematically smaller in
the spin-majority subband. The difference, quantified by the
skew factor γ = (TD↓ − TD↑)/2TD0, can be as large as 20%
and does not correlate with the spin-polarization degree. The
skew factor tends to decrease as B‖ or temperature grow, or B⊥
decreases. For low electron densities and high in-plane field,
γ even changes sign. To explain qualitatively these results,
we suggested an empirical model that assumes that there is a
considerable density of the easily magnetized triplet scatterers
on the S/SiO2 interface.

Our results also explain the origin of the well-known
problem of strong scattering of the effective mass data. By
fitting the MO amplitude with the conventional LK formula
in the low-temperature range (where dTD/dT is negative),
one obtains an underestimated effective mass, and, vice
versa, the same analysis in the high-temperature range (where
dTD/dT is positive) provides an overestimated m∗ value.
Our study shows how to avoid this ambiguity by perform-
ing the MO measurements in tilted fields and at elevated
temperatures.

We compared the experimentally extracted temperature
and perpendicular field dependence of the MO damping

factor with the theory for an interacting 2D system. The
comparison revealed some qualitative similarities as well as
quantitative and qualitative differences. In accord with the
theory, the extracted TD typically grows with the temperature,
with the exception of the lowest temperatures. This growth,
however, is much weaker than the calculated dependence.
The T ∗

D(B⊥) was predicted to grow with the inverse magnetic
field. Experimentally, at low densities, TD indeed increases
with 1/B⊥ and further saturates. For high densities, TD is
independent of the B⊥ field, at odds with the theory.

Several of our observations are still to be explained by a
more detailed theory. Particularly, it remains puzzling why the
difference of the damping parameters in two spin subbands
changes sign in the limit of large in-plane fields. Better
understanding is required to explain an interesting observation
that the magnetic field dependence of SdH oscillations, being
at odds with the MO theory in weak B‖, agrees surprisingly
well with the same theory in stronger fields.
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