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We investigate the entanglement spreading in the anisotropic spin-1/2 Heisenberg (XXZ) chain after a
geometric quench. This corresponds to a sudden change of the geometry of the chain or, in the equivalent
language of interacting fermions confined in a box trap, to a sudden increase of the trap size. The entanglement
dynamics after the quench is associated with the ballistic propagation of a magnetization wave front. At the
free fermion point (XX chain), the von Neumann entropy SA exhibits several intriguing dynamical regimes.
Specifically, at short times a logarithmic increase is observed, similar to local quenches. This is accurately
described by an analytic formula that we derive from heuristic arguments. At intermediate times partial revivals
of the short-time dynamics are superposed with a power-law increase SA ∼ tα , with α < 1. Finally, at very long
times a steady state develops with constant entanglement entropy, apart from oscillations. As expected, since
the model is integrable, we find that the steady state is nonthermal, although it exhibits extensive entanglement
entropy. We also investigate the entanglement dynamics after the quench from a finite to the infinite chain (sudden
expansion). While at long times the entanglement vanishes, we demonstrate that its relaxation dynamics exhibits
a number of scaling properties. Finally, we discuss the short-time entanglement dynamics in the XXZ chain in
the gapless phase. The same formula that describes the time dependence for the XX chain remains valid in the
whole gapless phase.
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I. INTRODUCTION

The recent extraordinary progress achieved with trapped
cold-atomic gas experiments has boosted a renewed theoretical
interest in the dynamics of isolated quantum many-body
systems out of equilibrium [1–3]. Highly investigated topics
include the relaxation dynamics [4–9], thermalization [5,10]
in out-of-equilibrium steady states, and transport properties
[11–13]. A popular out-of-equilibrium experiment is the so-
called quantum quench, in which a system is initially prepared
in the ground state of a many-body quantum Hamiltonian, and
a nontrivial unitary dynamics is then induced by changing
instantaneously (i.e., “quenching”) one (or many) control
parameters. Depending on whether this change happens locally
or in the whole system, the quench falls into the class of local
or global quenches, respectively.

Entanglement measures are nowadays accepted as useful
tools to extract universal properties of quantum many-body
systems, both in and out of equilibrium [14–20]. Considering
a bipartition of a system that is in a pure state |ψ〉 into parts A

and B, a standard measure of their mutual entanglement is the
von Neumann entropy SA,

SA = −Tr ρA log ρA. (1)

Here ρA is the reduced density matrix for A, obtained after
tracing part B from the full density matrix ρ ≡ |ψ〉〈ψ |.

The real-time entanglement dynamics (and that of related
quantities) after a quantum quench has been intensively
investigated in recent years, both analytically (using conformal
field theory [21–23] and for exactly solvable models [24–36])
and numerically [37–46]. The nature of the quench is strikingly
reflected in the time dependence of the von Neumann entropy:
While local quenches are associated with a logarithmic growth
[21,23,24], a more dramatic (linear) behavior is observed in
global quenches [22,37,38,47]. This is related to the different

excess energy density, measured with respect to the ground-
state energy of the postquench Hamiltonian. This excess
energy remains finite in the global quench protocol, whereas it
vanishes in the local one, upon increasing the system size. We
mention that a scheme for measuring entanglement dynamics
in cold-atomic gas experiments has recently been proposed in
Refs. [48,49].

In our work we focus on a situation that is intermediate
between a local and a global quench, considering the real-time
entanglement dynamics following an instantaneous change of
the geometry or the size of the system, the so-called geometric
quench, as discussed in Ref. [50]. To be specific, we study the
spin-1/2 XXZ chain in the gapless phase. The quench protocol
is described as follows (cf. Fig. 1): Initially two chains A and
B are prepared in the ground state of the XXZ model in
the sector with zero and maximum magnetization (i.e., fully
polarized), respectively. The unitary dynamics under the XXZ

Hamiltonian is then induced by connecting the two chains.
Alternatively, after mapping the XXZ chain onto a system
of interacting fermions confined in a box trap (i.e., part A),
the geometric quench is equivalent to suddenly increasing the
trap size. Notice that this is similar to the so-called sudden
expansion protocol used in cold-atomic gas experiments
[11–13,51], in which particles are released from the trap and
expand in an empty lattice. This sudden expansion has been
studied theoretically in, e.g., Refs. [44,52–61].

Clearly, as the two chains are prepared in their respective
ground states, the postquench dynamics is induced by a “de-
fect” at the interface between A and B, which is a distinctive
feature of local quenches. On the other hand, the excess energy
density is finite, as in global quenches. Notice that the initial
state after the quench is of the “domain wall” type (i.e.,
spatially inhomogeneous), and the ensuing out-of-equilibrium
dynamics has been at the focus of many recent theoretical
studies [33,34,62–73]. For instance, the state |mA〉 ⊗ |mB〉,
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FIG. 1. (Color online) (a), (b) Geometric quench in XXZ spin
chain: quench setup for open boundary conditions. (a) t < 0: Two
independent chains (A and B) of length LA and LB ≡ L − LA are
prepared in the ground state of the XXZ chain in the sectors with
zero and maximal magnetization, respectively. (b) t = 0: A and
B are glued together. Here we consider geometric quenches with
several aspect ratios ω ≡ LA/L, i.e., 0 � ω � 1, focusing on the
entanglement between A and B. (c) Example of typical local quench
protocol: The initial state at t = 0 is obtained connecting two identical
chains prepared in the ground state at zero magnetization.

with mA and mB being the total magnetization in parts A and
B, respectively, provides a basic setup for studying transport-
related questions and nonequilibrium steady-state properties
such as the conditions for ballistic or diffusive dynamics in
integrable many-body systems in one dimension [74,75]. In
particular, the subclass of initial states with mA = −mB ≡ m

has been extensively studied [33,34,62,64–66,68,69,72,73].
The initial state in our work corresponds to choosing mA = 0
and mB = LB/2. Interestingly, in the situation with mA =
−mB it has been found that the magnetization dynamics during
the domain-wall melting is ballistic close to the free fermion
point, superdiffusive at the isotropic point, and diffusive in
the gapped phases [64]. While entanglement dynamics from
domain-wall initial states is interesting as such, it is also
important for the simulability of quench dynamics using
matrix-product-states-based methods, such as DMRG (density
matrix renormalization group) [76–78]. For a discussion of
transport and local quenches in spin chains in nonequilibrium
for other initial conditions, see Refs. [79–86]. We should also
mention that transport and entanglement properties have also
been studied in the dynamics induced by local impurities
[27,30,39,41,87].

Summary of the results. In this work we fully characterize
the entanglement spreading after a generic geometric quench,
focusing on the entanglement entropy between A and B.
The spreading of information (and the related entanglement
increase) is associated with the propagation of an extended
magnetization wave front. The two edges of the front expand
ballistically in the A and B parts of the chain, with two different
velocities. These coincide at the free-fermion point (XX chain,
i.e., vanishing anisotropy), where the wave front propagates
symmetrically. For the XX chain the full magnetization profile,
at any time after the quench, is obtained analytically, using a
semiclassical reasoning and free-fermionic techniques (as in
[88]). For the XXZ chain, although we do not derive analyti-
cally the full magnetization profile, we provide an approximate
expression describing the central region of the wave front.

The entanglement evolution exhibits several dynamical
behaviors at different time scales. For the XX chain all these
dynamical regimes are thoroughly investigated, exploiting
the mapping to free fermions. At short times, the von
Neumann entropy increases logarithmically, as in a local
quench. Although the well-known conformal field theory
(CFT) result for the local quench [21,23] does not apply,
we provide a heuristic extension of this result to our case,
which accurately reproduces the entanglement dynamics. One
remarkable consequence is that the entanglement dynamics,
apart from a size-dependent shift, is described by a scaling
function fs(y), with y ≡ t/LA (t is the time after the quench
and LA the size of part A). We numerically demonstrate that
the same scaling holds true in the interacting case.

At intermediate times the entanglement entropy exhibits
revivals of the short-time dynamics, superposed with a power-
law increase as SA ∼ tα (apart from possible multiplicative
logarithmic corrections). We numerically extract the exponent
α, finding α < 1. This suggests that the geometric quench
cannot be thought of as a simple superposition of a logarithmic
(i.e., local-quenchlike) and a linear (as in global quenches)
behavior.

At long times the system reaches an out-of-equilibrium
steady state, and the entropy oscillates around a stationary
value. The steady state is nonthermal and shows features of
the initial Fermi surface in part A of the chain. Finally, in spite
of the nonthermal nature of the steady state, we demonstrate
that the entanglement entropy is extensive, and its stationary
value can be determined analytically. Similar results have been
found in Ref. [33] for the quench from the state |−m〉 ⊗ |m〉,
while the constraints put on steady states due to integrability
for a similar setup and hard-core bosons, which map on the
XX model, were discussed in a seminal paper by Rigol et al.
[89].

We also discuss the information spreading after the quench
from a finite to the infinite chain. In the framework of
trapped interacting fermions, this corresponds to removing
the trap completely, i.e., to the so-called sudden expansion.
While the entanglement entropy vanishes asymptotically (i.e.,
at large times), its relaxation dynamics shows unexpected
scaling behaviors. In particular, the entanglement dynamics
is described by a scaling function f�(z) with z ≡ t/L2

A.
Furthermore, f�(z) exhibits an intriguing structure: While
at z � 1 one has f�(z) ∼ − log(1/z), a crossover to the
behavior 1/z[1 − log(1/z)] occurs at z ∼ 1. Similar scaling
behaviors have been observed in the entanglement dynamics
of noninteracting fermions in continuous space released from
a trap [90–92].

Finally, by means of tDMRG [93,94] (time-dependent
density matrix renormalization group) simulations, we inves-
tigate the role of interactions on the short-time entanglement
dynamics, focusing on the XXZ spin chain. Our main result
is that the same formula used for the XX chain remains
valid. Interestingly, since the excitations forming the wave
front propagate in the two parts of the chain with different
velocities, we find that the entanglement spreading rate is not
a trivial function of the spinon velocity.

Outline. This paper is organized as follows. In Sec. II we
introduce the XXZ spin chain and the geometric quench pro-
tocol. Sections III–VII are devoted to the XX chain. In Sec. III
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we investigate the magnetization wave-front expansion. An
overview of the entanglement dynamics after the quench is
given in Sec. IV, while the short-time behavior is discussed in
detail in Sec. V. In Sec VI we characterize the entanglement
properties in the steady state. The infinite-chain quench is then
discussed in Sec. VII. Finally, in Sec. VIII we investigate the
short-time entanglement dynamics in the XXZ model, while
a summary is provided in Sec. IX.

II. MODEL AND QUENCH PROTOCOL

A. The spin-1/2 X X Z spin chain

The open XXZ spin chain of length L is defined by the
Hamiltonian

H = J

2

L−1∑
i=1

(S+
i S−

i+1 + H.c.) + J�

L−1∑
i=1

Sz
i S

z
i+1. (2)

Here S±
i ≡ Sx

i ± iS
y

i ,Sz
i are spin-1/2 operators acting at site

i of the chain, and � the so-called anisotropy [we set J = 1
in Eq. (2)]. For a periodic chain an extra term in Eq. (2)
connects sites 1 and L. The ground-state phase diagram of the
XXZ chain exhibits a gapless spin-liquid phase with linear
dispersion at −1 < � � 1, while it is gapped at |�| > 1. At
� = 0 (XX chain) the XXZ chain reduces to a free-fermionic
model (cf. Appendix A for more details) [95].

The low-energy spectrum of Eq. (2) is linear in the spin-
liquid phase, and it is described (along with other low-energy
properties) by a CFT with central charge c = 1. At sufficiently
large L one has [96,97]

Eα = LEbulk + Ebound + πvs

L

(
hα − c

24

)
+ O(L−2), (3)

with Eα being the energy of a low-lying excitation (labeled
by α ∈ N) of Eq. (2). In Eq. (3), Ebulk and Ebound are
the usual bulk (extensive) and a boundary (in the presence
of nonperiodic boundary conditions) contributions, c is the
central charge (here c = 1), and vs the spinon velocity. Finally,
hα are the scaling dimensions of the operators (both primary
operators and their descendants [98,99]) appearing in the
CFT. In particular, α = 0 (with hα = 0) corresponds to the
ground-state energy E0. Finite-size deviations from the linear
dispersion are accounted for by the O(1/L2) term. Notice
that Eq. (3) can be thought of as the spectrum of an effective
Hamiltonian HCFT. The two energy scales set by the terms
∼1/L and ∼1/L2 in Eq. (3) imply the existence of two
typical time scales t∗s ∼ L/vs (short times) and t∗� ∼ L2/vs

(long times) (here all lengths are measured in units of the
lattice constant a = 1). We anticipate that the existence of t∗s
and t∗� will be strikingly reflected in the entanglement dynamics
after the quench.

B. Quench protocol and observables

The geometric quench protocol for the XXZ spin chain
with open boundary conditions (the generalization to periodic
boundary conditions is straightforward) is depicted in Fig. 1.
At time t < 0 [Fig. 1 (a)] two disconnected chains A and B (of
respective lengths LA and LB) are prepared in the ground state
|GS〉 of Eq. (2) and in the fully polarized (ferromagnetic) state

|F 〉 ≡ |↑↑ · · · ↑〉, respectively. The latter is an eigenstate of
Eq. (2) at any �, with eigenenergy E ≡ 〈H〉 = (L − 1)�/4.
At � � −1 in the gapless phase, which is the region of interest
here, |F 〉 is in the high-energy part of the spectrum of Eq. (2),
and at the isotropic point (� = 1) it is the highest-energy
eigenstate.

At t = 0 the two chains A and B are connected to form
a new one of total length L ≡ LA + LB [cf. Fig. 1(b)]. The
initial quantum state |	init〉 after the quench exhibits a steplike
(or domain wall) magnetization profile (with 〈Sz

i 〉 = 0 and
〈Sz

i 〉 = 1/2 for i ∈ A and i ∈ B, respectively). It is useful to
introduce the aspect ratio 0 � ω � 1 as

ω ≡ LA

L
. (4)

Finally, at t > 0 the chain evolves unitarily under Eq. (2) since
|	init〉 is not an eigenstate. In this work we focus on the real-
time dynamics of the von Neumann entropy SA between A

and B.

C. Geometric vs local quench

It is interesting to compare the geometric quench with
a local quench [21,23,24,27,29,64,100,101]. A typical local
quench is illustrated in Fig. 1(c): The initial state |	init〉 at t = 0
is now obtained by “gluing” together two identical copies of
the ground state as |	init〉 ≡ |GS〉 ⊗ |GS〉 (which implies that
ω = 1/2).

Clearly, the excess energy density, which is defined as δe ≡
|〈	init|H|	init〉 − E0|/L, vanishes in the local quench [δe ∼
O(1/L); cf. Eq. (3)] in the limit L → ∞. Oppositely, in the
geometric quench, due to the typically large energy of chain
B, one has δe ∼ O(1). As a consequence, while only few
low-lying excitations [cf. Eq. (2)] play a role in the dynamics
after a local quench, this is certainly different in the geometric
quench.

In the CFT framework the initial quantum state |	init〉 can
be decomposed [in analogy with the standard decomposition
in the eigenbasis of Eq. (2)] as

|	init〉 =
∑

a

ca|φa〉, (5)

where the sum runs over both primary and descendants
fields φa of the CFT. In principle Eq. (5) provides all the
necessary information about the postquench dynamics, after
time evolving each eigenstate |φa〉 of HCFT with e−iHCFTt .

However, the coefficients ca in Eq. (5) are not easy to
calculate for a generic initial state. For the local quench this
is possible because only one operator (the identity) and its
descendants enter in the expansion, Eq. (5) [23]. This is
related to the fact that |	init〉 has substantial overlap only
with the ground state of Eq. (2). A prominent consequence
is that the entanglement entropy dynamics after a local quench
shows perfect revivals (apart from scaling corrections) for
t ∼ nt∗s , n ∈ N, at least up to the time t ∼ t∗� , at which the CFT
description is no longer valid [cf. Eq. (3)] [23]. Conversely,
this will be strikingly different for the geometric quench (cf.
Sec. IV).
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D. Entanglement dynamics after a local quench

Here we briefly review the CFT result for the entanglement
dynamics after the local quench in Fig. 1(c) [21,23]. The real-
time dynamics of the von Neumann entropy depends only on
the central charge c, the boundary conditions, and the spinon
velocity vs . The result reads [23,27]

SA(t) = ν
c

3
log

∣∣∣∣LA

π
sin

νπvst

2LA

∣∣∣∣ + kν. (6)

Here ν = 1,2 are for open (obc) and periodic boundary con-
ditions (pbc), respectively, and kν is a nonuniversal constant.
The analog of Eq. (6) for aspect ratios ω �= 1/2 is also known
[23]. It is useful to rewrite Eq. (6) as

SA(t) = ν
c

3
log | sin(πy)| + ν

c

3
log

(
LA

π

)
+ kν. (7)

Here y is the rescaled time y ≡ νπvst/(2LA). In Eq. (7) it is
apparent that the entropy dynamics is described by a scaling
function of y, apart from the shift νc/3 log(LA). Interestingly,
the latter resembles the equilibrium ground-state entropy for
a block of size LA embedded in an infinite chain [14–17].
A similar scaling will hold for the entanglement dynamics at
short times after the geometric quench (cf. Sec. V). In the limit
t/LA � 1 (short times), Eq. (6) reduces to [21]

SA(t) = ν
c

3
log t + kν. (8)

A similar logarithmic behavior [as in Eqs. (6) and (8)] has
been observed in the entanglement dynamics induced by
local impurities or perturbations in spin or particle densities
[27,30,41,80].

III. MAGNETIZATION WAVE FRONT AFTER
THE QUENCH

In this section we discuss the real-time dynamics of the
magnetization profile 〈Sz

i 〉 after a geometric quench. Here 〈·〉
denotes the expectation value with respect to the postquench
wave function. We focus on the open XX chain [� = 0
in Eq. (2)]. At any i,t , 〈Sz

i 〉 can be computed analytically
exploiting the mapping to free fermions (see Appendix A).

Figure 2 shows 〈Sz
i 〉 versus 1 � i � L at several times

(denoted by different symbols in the figure) after the geometric
quench with ω ≡ LA/L = 1/3 and fixed LA = 60. At t = 0,
a domain-wall profile is present. A magnetization wave front
develops at t > 0 (as the domain wall “melts”) with its left and
right edges propagating ballistically with the same velocity
v = vs = 1, with vs being the spinon velocity, in part A

of the chain. At t = LA/vs , a perfect reflection of the left
wave-front edge occurs at the left boundary of the chain.
Finally, at large times translational invariance is restored,
and a stationary behavior sets in with uniform magnetization
(dashed-horizontal line in the figure).

The ballistic nature of the wave-front dynamics is further
supported by the data shown in the inset of Fig. 2, where we
plot 〈Sz

i 〉 versus the rescaled variable (i − LA)/t . Remarkably,
all data at different times and positions collapse on the
same scaling curve. This curve can be obtained analytically
using a semiclassical reasoning that was also applied in
Refs. [33,34,62,64,88,102] for the quench with initial state

50 100 150
i

0

0.2

0.4

〈Si
z〉

〈Si
z〉

t=0
t=20
t=40
t=60
t=100

-1 0 1
(i-LA)/t

0

0.2

0.4

1/4+sin-1[(i-LA)/t]/(2π)

FIG. 2. (Color online) Magnetization wave front after the geo-
metric quench with aspect ratio ω ≡ LA/L = 1/3 (cf. Fig. 1) in the
open XX chain: local magnetization 〈Sz

i 〉 at site 0 � i < 3LA in the
chain. Data are exact results for LA = 60 and several times. At t = 0
a steplike profile is present. At t > 0 a wave front forms propagating
symmetrically (with vs = 1) in parts A and B (see horizontal arrows).
The dashed line is the flat profile expected on average at t → ∞. At
t = LA/vs the wave front is reflected at the (left) boundary of the
chain. Inset: rescaled dynamics, 〈Sz

i 〉 versus (i − LA)/t . All data for
different times collapse on the same scaling function (dashed line).

|−m〉 ⊗ |m〉. The result reads〈
Sz

i (t)
〉 = 1

4
+ 1

2π
sin−1

[
i − LA

vst

]
, (9)

and is included in Fig. 2 as a dashed line. Interestingly, the
central region of the profile, at |(i − LA)/(vst)| � 1, shows a
linear dependence on (i − LA)/t :〈

Sz
i (t)

〉 ≈ 1

4
+ i − LA

vst
. (10)

It is natural to expect that Eq. (10) remains valid in the
interacting case (i.e., nonzero anisotropy), after taking into
account the renormalization, due to interactions, of the spinon
velocity vs [see Sec. VIII A for a numerical check of Eq. (10)
in the XXZ spin chain].

IV. ENTANGLEMENT SPREADING IN FREE SYSTEMS:
OVERVIEW

We now turn to the real-time dynamics of the entanglement
entropy SA between the two parts A and B of the chain. Here
we consider the open XX chain, restricting ourselves to an
aspect ratio of ω = 1/2 (see Fig. 1). The calculation of the
entanglement entropy after the geometric quench in the XX

chain is outlined in Appendix C.
Clearly, at t = 0, A is in a pure state, implying SA = 0.

Exact numerical data at t > 0 after the quench (with fixed
LA = 200) are shown in Fig. 3 [dashed-dotted line in panels (a)
and (c)]. SA exhibits different behaviors at different time scales.
At short times t � t∗s /2, with t∗s ≡ 2LA/vs [cf. Fig. 3(a)]
the entanglement entropy grows logarithmically as in a local
quench. In the time interval t∗s /2 � t � t∗s , it slightly decreases
reflecting the finite size of part A.

At intermediate times t∗s < t � t∗� [cf. Fig. 3(c)]; SA grows
with a power law [cf. the inset in Fig. 3(c)]. A fit to SA ∼ tα

yields α ≈ 0.6 (dashed line in the inset). However, we should
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FIG. 3. (Color online) Entanglement spreading after the geometric quench with aspect ratio ω ≡ LA/L = 1/2 (cf. Fig. 1) in the open XX

chain. (a) von Neumann entropy (dashed-dotted line) SA for part A of the chain as a function of time: exact results for LA = 200, 0 � t � t∗
s

(short times), with t∗
s ≡ 2LA/vs where vs = 1 is the spinon velocity. Dotted vertical lines mark the times t = t∗

s /2,t∗
s ,2t∗

s . (b) Semiclassical
interpretation: Entanglement growth is understood in terms of the ballistic propagation (with velocity vs = 1) of free effective excitations (the
lines denote their trajectories). These are created at t = 0 at the interface between A and B. At t = t∗

s /2, perfect reflection at the boundary
of the chain occurs. Entanglement “jumps” at t = mt∗

s , m = 1,2 . . . correspond to excitations crossing the center of the chain. (c) Long-time
behavior: At t ∼ t∗

� ≡ L2
A/vs [i.e., after O(LA) crossings] the system reaches a steady state with constant entropy (apart from superimposed

oscillations). Inset: approach to the steady-state entanglement (data for the same parameters as in the main figure and 0 � t � t∗
� ). A logarithmic

scale is used on both axes. The dashed line is SA ∼ tα , with α ≈ 0.6, whereas the dashed-dotted one is SA ∼ t1/2 log(t).

stress that the data are also compatible with the behavior SA ∼
t1/2| log(t)| (dashed-dotted line in the inset). A similar power-
law increase of the entanglement entropy has been observed in
quantum quenches in quasicrystals [103]. Interestingly, partial
revivals of the short-time dynamics are superposed with the
power-law growth, in contrast with the local quench, where
perfect revivals occur, apart from scaling corrections [23].

The qualitative behavior of the entanglement can be
understood in a semiclassical picture in terms of the ballistic
propagation of the magnetization wave front discussed in
Sec. III. This is illustrated in Fig. 3(b). The initial entanglement
increase at t > 0 corresponds to the two edges of the wave
front (red and blue lines in the figure) propagating with equal
velocities in the two parts of the chain. At t = t∗s /2 the two
edges are reflected at the physical boundaries. Finally, at
t = t∗s , a crossing of the two edge trajectories occurs. Every
crossing at the later times t = kt∗s , k ∈ N, is reflected in a
sudden increase in the von Neumann entropy [Fig. 3(a)]. A
similar semiclassical picture [104] holds in the case of a local
quench [22], where the entanglement growth is associated with
the propagation of two “localized” defects [24,100,101].

At t > t∗� ∼ L2
A/vs , i.e., after O(LA) crossings of the

wave-front edge trajectories [cf. Fig. 3(b)], the system reaches
a steady state and the von Neumann entropy oscillates around
a stationary value. We anticipate that, since the model is inte-
grable [89], the steady state is different from a thermal state,
although its entanglement entropy is extensive (cf. Sec. VI).

V. SHORT-TIME ENTANGLEMENT DYNAMICS

In this section we focus on the short-time entanglement
dynamics [i.e., at t � t∗s ; cf. Fig. 3(a)]. Here, in particular,
we provide an analytic expression, which accurately describes
the von Neumann entropy dynamics at short times t � t∗s ≡
min[2LA/(νvs),2LB/ν]. We motivate this formula based on

heuristic arguments. This result holds irrespective of the
quench aspect ratio ω [see Fig. 4(a)], since the spreading
of information between A and B is associated with the
propagation of the two wave-front edges [cf. Fig. 3(b)] and
part B of the chain is prepared in the “vacuum” state.

Figure 4 shows SA(t) as a function of the rescaled time
νvst/(2LA) � 1. Data are exact numerical results for the XX

chain with either open or periodic boundary conditions [panels
(a) and (b), respectively]. For the sake of simplicity we restrict
ourselves to a geometric quench with aspect ratio ω = 1/2.
Motivated by the result for the local quench [21,23,25,27],
Eq. (6), we have fitted the numerical data to

Sansatz(t) = αν log(t) + βν log

[
LA sin

νπvst

2LA

]
+ γν. (11)

where ν = 1,2 are for open and periodic boundary conditions,
respectively, vs = 1 is the spinon velocity, and αν,βν,γν are
fitting parameters. In Eq. (11) the first term is motivated by
the fact that SA(t) is not symmetric under t → 2LA/(νvs) − t ,
i.e., left-right inversion (see Fig. 4), while the second one is
similar to the local quench result, Eq. (6). We have numerically
found that βν = 2αν = ν/6. Finally, we rewrite Eq. (11) as

Sansatz(t) = ν

6
log

∣∣∣∣L3/2
A

(
νvst

2LA

)1/2

sin
νπvst

2LA

∣∣∣∣ + k′
ν, (12)

with k′
ν a constant. In the limit t/LA � 1 (short times), one

obtains from Eq. (12)

SA(t) = ν

4
log t + k′

ν, (13)

which is different from the local-quench CFT result, Eq. (8). A
similar result is discussed in Ref. [105], where the ground-state
entanglement entropy of two free-fermionic chains connected
by a narrow “transition” region is studied. The two chains
are completely full or empty, respectively, while a density
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FIG. 4. (Color online) von Neumann entropy SA for part A after
the geometric quench (with ω ≡ LA/L = 1/2,1/3) in the XX chain:
short-time behavior (at t � t∗

s ∼ LA/vs , and vs = 1 the spinon
velocity). (a) XX chain with open boundary conditions, SA versus
vst/(2LA) (exact results for several sizes LA). The crosses are data
for L = 150 and ω = 1/3. Dashed-dotted lines are one-parameter
fits to Sansatz [see Eq. (12)]. Inset: shifted entropy, SA − 1/4 log LA

versus vst/(2LA). Note the perfect data collapse for all chain sizes
and times. (b) The same as in (a) for periodic boundary conditions:
Now SA is plotted versus vst/LA. Dashed-dotted lines are fits to
Eq. (12) (notice the dependence on boundary conditions). Inset:
shifted entropy, SA − 1/2 log LA versus vst/LA.

variation in the transition region is induced by a linear chemical
potential. Interestingly, the von Neumann entropy of a block
that includes the transition region grows logarithmically with
the block size, with a prefactor 1/4, similar to Eq. (13).

It is useful to rewrite Eq. (12) as

Sansatz = ν

6
log |y1/2 sin(πy)| + ν

4
log(LA) + k′

ν, (14)

with y being the rescaled time as in Eq. (6). Clearly, the shifted
entanglement SA(t) − ν/4 log(LA) is a function of only y.

The validity of Eq. (12) is further corroborated by com-
paring with the data shown in Fig. 4: Dashed lines in the two
panels (a) and (b) are one-parameter fits to Eq. (12), with k′

ν the
only fitting parameter, which are in perfect agreement with the
numerical results. In order to demonstrate the scaling behavior,
Eq. (14), we plot SA(t) − ν/4 log LA versus νvst/(2LA) in the
insets of Fig. 4. All data for different sizes collapse on the same
curve, further confirming Eq. (12).

Finite-size deviations from Eq. (12) are illustrated in Fig. 5,
plotting SA(t) − Sansatz(t) versus νvst/(2LA) for LA = 50,100
(same data as in Fig. 4). The constant k′

ν [cf. Eq. (12)] has
been fitted and subtracted from the data. Finite-size corrections
oscillate with time and vanish in the limit of large chains. We
numerically checked that the formula

SA(t) − Sansatz(t) = 1

t
[a1 cos(t) + a2 cos(2t)] (15)
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-0.005
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0.005
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FIG. 5. (Color online) Geometric quench (ω ≡ LA/L = 1/2; cf.
Fig. 1) in the XX spin chain: short-time dynamics of the von
Neumann entropy SA for part A of the chain. Deviations from Sansatz

[see Eq. (12)] for (a) open and (b) periodic boundary conditions.
(a) SA − Sansatz plotted versus vst/(2LA). Data are exact results for
LA = 50,100 (full and dashed line, respectively). Note that k′

ν [see
Eq. (12)] has been fitted and subtracted from the curves. Inset: same as
in the main panel (circles are data for LA = 100), the continuous line
is a fit to [a1 cos(t) + a2 cos(2t)]/t . (b) Same as in (a) yet for periodic
boundary conditions: SA − Sansatz versus vst/LA. Inset: same as in
(a). The full line is a fit to [a1 cos(t) + a2 cos(2t)]/t .

accurately describes the corrections at the intermediate time
scales 0 � t � LA, as shown in the inset in Fig. 5. Symbols
are data for LA = 100, while the continuous line is a fit
to Eq. (15), with a1,a2 the fitting parameters. Notice the
increasing behavior at t ∼ νLA/vs , which could suggest a
logarithmic correction as log(t)/t . Similar corrections have
been observed in the variance of the spin current after the
quench from the domain wall state | · · · ↑↑↑↓↓↓ · · · 〉 [102].

VI. ENTANGLEMENT PROPERTIES IN THE STEADY
STATE

This section is devoted to studying entanglement properties
in the steady state after a generic geometric quench with
arbitrary aspect ratio ω (cf. Fig. 1). This corresponds to time
scales t � t∗� [cf. Fig. 3(c)]. Here we restrict our analysis to
the XX chain with periodic boundary conditions.

We first focus on the nature of the steady state after
the quench. We show that it is not a thermal state, yet it
reflects the initial half-filled Fermi sea in part A of the
chain. This observation allows us to derive an approximate
analytic expression for the steady-state entanglement entropy,
which is then checked against exact numerical results, finding
good agreement, at least in the limit LA � L. Remarkably,
despite the nonthermal nature of the state, its entanglement is
extensive. This is also confirmed through direct inspection of
the so-called single-particle entanglement spectrum (ES).
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A. Nonthermal steady state

After a Jordan-Wigner transformation (cf. Appendix A) the
XX Hamiltonian, obtained from Eq. (2) imposing � = 0, is
recast in a free-fermionic form as

HXX = −1

2

L−1∑
i=1

(c†i ci+1 + cic
†
i+1) (16)

with ci standard fermionic operators. Entanglement properties
in free-fermionic models (cf. Appendix A) are fully character-
ized by the two-point correlation function Gm,n ≡ 〈c†mcn〉 re-
stricted to the subsystem, i.e., m,n ∈ A [101,106–110]. In the
steady state, we numerically observe that the Fourier transform
of Gm,n,G̃k,k′ is approximately diagonal, i.e., G̃k,k′ ≈ nkδk,k′ ,
with nk the subsystem momentum distribution function

nk ≡ 〈c†kck〉 = 1

LA

∑
m,n

eik(m−n)〈c†mcn〉. (17)

Here k ≡ 2πs/LA, with s = 0,1, . . . ,LA − 1, is the single-
particle momentum, 〈·〉 denotes the expectation value with the
postquench wave function at time t , and m,n ∈ [1,LA].

nk is shown versus k in Fig. 6(a). Data are for the XX chain
with LA = 50 and the geometric quench with aspect ratio ω =
1/3. We restrict ourselves to times such that t � t∗� (cf. Fig. 3).
Interestingly, apart from oscillations, a steplike structure is
visible, which reflects the t = 0 half-filled Fermi sea in part
A of the chain. The steplike form of nk is better visible in
Fig. 6(b). The continuous and dashed-dotted lines denote the
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FIG. 6. (Color online) Momentum distribution function nk ≡
〈c†kck〉 restricted to part A of the chain (cf. Fig. 1) after a geometric
quench in the periodic XX chain. Here ck,c

†
k are the fermionic

operators of the corresponding free-fermion chain (cf. Appendix
A). (a) nk in the steady state (t � t∗

� ; cf. Fig. 3) plotted versus
the single-particle momentum 0 � k � 2π . Data are for LA = 50.
(b) Long-time average of nk (over the interval 20 000 � t � 40 000).
Full and dashed-dotted lines are for the geometric quench with aspect
ratios ω = 1/3 and ω = 1/2, respectively (Fig. 1). The plateaux in the
central region (π/2 � k � 3/2π ) correspond to nk = 1 − ω (arrows
in the figure).

time-averaged nk (in the interval 20 000 � t � 40 000) for two
different quenches with ω = 1/3 and ω = 1/2.

The form of nk can be derived in a semiclassical framework.
At t = 0 one can consider the excitations (particles) of the two
independent chains A and B as uniformly distributed in each
chain. Similarly, at t → ∞ these are uniformly distributed in
the final chain. Since the model is noninteracting, each mode
preserves its momentum during the postquench dynamics. The
asymptotic (i.e., at t → ∞) nk is then obtained as the “average”
of the two initial Fermi seas n0

k(A) and n0
k(B) of parts A and

B, respectively. The result reads

nk = ω n0
k(A) + (1 − ω) n0

k(B), (18)

where ω = LA/L and 1 − ω = LB/LA have to be interpreted
as the probabilities that a mode (with given momentum) is
occupied by a particle originally in A and B, respectively.
Notice that in the reasoning above we are considering L,LA →
∞, i.e., we neglect the finite lattice spacing. Using that
n0

k(A) and n0
k(B) are the half-filled and the filled Fermi seas,

respectively, one obtains

nk = 1 − ωθ

[
k − π

2

]
θ

[
3

2
π − k

]
, (19)

in perfect agreement with the numerical data in Figs. 6(a) and
6(b). We should mention that similar results have been obtained
studying the dynamics from the initial state |m〉 ⊗ | − m〉 in
Ref. [33].

B. Steady-state entanglement

The entanglement entropy of subsystem A at any time can
be given as (cf. Appendix B)

SA(t) = −
∑

l

[ζl log ζl + (1 − ζl) log(1 − ζl)], (20)

where ζl , which are related to the single-particle ES (cf.
Appendix B), are the eigenvalues of the two-point correlation
matrix Gm,n restricted to part A of the chain.

The behavior of ζl in the steady state is illustrated in Fig. 7
for the geometric quench with ω = LA/L = 1/3 and fixed
LA = 100. The continuous line is the (long) time average of
the levels. At time t > t∗� there are LA/2 (i.e., half of the
levels) with ζl = 1, which do not contribute to the entropy [cf.
Eq. (20)]. The remaining LA/2 are distributed over the whole
interval (0,1). The existence of an extensive number of levels
with ζl ∼ 1/2 suggests that SA(t) is extensive in the steady
state. This is dramatically different in the equilibrium ground
state, where only few levels of the single-particle entanglement
spectrum contribute in Eq. (20) (cf. Fig. 13 in Appendix B).

The behavior of ζl upon varying the aspect ratio ω is
illustrated in the inset in Fig. 7, showing the time-averaged
levels for ω = 2/3,1/2,1/3,1/4. Irrespective of ω an extensive
fraction (∼LA/2) of levels is in the region ζl ≈ 1. Moreover,
as ω decreases the whole distribution is shifted towards ζl = 1,
signaling that, although extensive behavior persists at any ω,
the actual value of the entropy decreases as ω → 0.

Finally, the scenario outlined above can be justified using
Eq. (19), i.e., neglecting the oscillations in Fig. 6(a). Within this
approximation, Gm,n has LA/2 identical eigenvalues ζl = 1 −
ω (and LA/2 unit eigenvalues). Notice that these are different
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FIG. 7. (Color online) Entanglement in the steady state after a
geometric quench with ω = 1/3 in the periodic XX chain. Single-
particle entanglement spectrum levels ζl (l = 1,2, . . . ,LA) at long
times t > t∗

� (see Fig. 3). Data are exact results for a chain with LA =
100 and several times 8000 � t � 20 000. Note the first LA/2 levels
with ζl = 1. The full line is the long-time average. Inset: Long-time
average of the single-particle entanglement spectrum for quenches
with several values of ω ≡ LA/L = 2/3,1/2,1/3,1/4. The arrow
indicates decreasing ω. Notice that the time-averaged ζl are in general
different from the time-averaged nk in Fig. 6(b).

from the long-time average of ζl in Fig. 7, suggesting that the
diagonal approximation G̃k,k′ ≈ nkδk,k′ might be too crude.
The von Neumann entropy, using Eq. (20), is then

SA

LA

= −1

2
[ω log ω + (1 − ω) log(1 − ω)]. (21)

The comparison between Eq. (21) and the exact data is shown
in Fig. 8, focusing on the geometric quenches with ω =
1/5,1/8,1/20,1/40 (panels from left to right in the figure).
The continuous lines are data for SA/LA at fixed LA = 50 and
104 < t < 106. Clearly, SA/LA → 0 upon decreasing ω, as
expected (cf. inset in Fig. 7). In each panel, the value according
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FIG. 8. (Color online) Extensive entanglement in the steady state
after a geometric quench. Data are for the periodic XX chain. von
Neumann entropy SA for part A of the chain (cf. Fig. 1) at large times
(t � t∗

� ; see Fig. 3): SA/LA plotted versus time t for quenches with
several aspect ratios ω = LA/L = 1/5,1/8,1/20,1/40 and LA = 50
(the same scale is used on both axes in all the panels). The dashed
line is SA/LA = −[ω log ω + (1 − ω) log(1 − ω)]/2.
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FIG. 9. (Color online) Fluctuations of the entanglement entropy
in the steady state after a geometric quench with aspect ratio ω ≡
LA/L = 1/2. Data are for the open XX chain with L = 100,200,400:
rescaled von Neumann entropy SA/LA plotted versus the rescaled
time t/L2

A. Notice that partial revivals (oscillations) persist in the
long-time regime, and do not decay with the chain size.

to Eq. (21) is shown as a dashed line. At ω = 1/5 and ω = 1/8
some deviations from Eq. (21) are observed, which have to be
interpreted as finite-size effects, due to the fact that LA ∼ L.
In the limit LA � L (equivalent to ω → 0), Eq. (21) is in
remarkably good agreement with the exact data.

It is interesting to investigate the entanglement fluctuations
in the steady state. These are illustrated in Fig. 9 plotting the
rescaled von Neumann entropy SA/LA versus t/L2

A. Data are
for the open XX chain with L = 100,200,400 and a geometric
quench with aspect ratio ω = 1/2 (cf. Fig. 1). Here we focus on
intermediate and long-time scales after the quench, i.e., t � t∗s
(see Fig. 3). Remarkably, in Fig. 9 all the data collapse on the
same curve, confirming that the steady state exhibits extensive
entanglement, in agreement with the semiclassical result,
Eq. (21). However, oscillating deviations from the steady-state
value are observed, with period ∼1/L2

A and amplitude ∼LA.
Notice that at fixed t/L2

A these oscillations do not vanish in
the limit LA → ∞.

VII. ENTANGLEMENT RELAXATION AFTER
THE INFINITE CHAIN QUENCH

In this section we discuss the real-time entanglement
dynamics after the infinite-chain geometric quench, which
corresponds to the limit ω → 0, at fixed finite LA (see Fig. 1).
Here we focus on time scales t > t∗s (for t < t∗s , one has
the same behavior as in Sec. V), considering the XX chain
with periodic boundary conditions. Although we are interested
in the limit ω → 0, in practice we consider finite (large) ω

restricting ourselves only to t < L − LA = LA(ω−1 − 1), to
avoid reflections at the boundaries of the chain.

First, one has SA(t) → 0 at t → ∞, since the wave function
becomes a product state in the limit ω → 0. However, the
entanglement relaxation dynamics, at any time t > t∗s , is
described by a scaling function f�(z) of the rescaled time z =
t/L2

A. Additionally, two different dynamical regimes appear:
While f�(z) ∼ − log(z) at z � 1, a crossover to f�(z) ∼
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FIG. 10. (Color online) Entanglement relaxation after the geo-
metric quench with aspect ratio ω ≡ LA/L � 1 in the periodic XX

chain. Symbols are exact numerical data for LA = 10,20,25,50,100.
Rescaled entropy dynamics: SA versus t/L2

A. Perfect data collapse
is observed for all LA and times. The dashed line is the analytic
result at t → ∞. Inset: same as in the main figure at t/L2

A < 1.
Note the logarithmic scale on the x axis. The dashed dotted line is
−0.4 log(t/L2

A).

1/z + 1/z log(z) occurs around z ∼ 1. The latter behavior can
be calculated analytically.

All these features are present in the data shown in Fig. 10,
plotting SA(t) versus z ≡ t/L2

A for a geometric quench with
ω = 1/30 and several LA. The perfect data collapse provides
robust evidence that the entanglement dynamics at t > t∗s is
described by a scaling function f�(z). The behavior of f�(z) at
z → ∞ is given analytically as (cf. Appendix E)

SA(t) ≈ L2
A

2πt

[
1 − log

L2
A

2πt

]
. (22)

This is shown in Fig. 10 as a dashed line, in perfect agreement
with the numerical data already at t/L2

A ∼ 1/2. On the other
hand, at t/L2

A � 1, one has the strikingly different behavior
SA(t) = −α log(t/L2

A) + β, as numerically demonstrated in
the inset of Fig. 10. In particular, a fit of the numerical data
gives α ≈ 0.4 (dashed-dotted line in the figure).

VIII. GEOMETRIC QUENCH IN THE X X Z CHAIN

We now turn to the postquench dynamics in interacting
models, considering the XXZ chain in the gapless phase at
−1 < � � 1. We restrict ourselves to short time scales, which
can be accessed efficiently using tDMRG [77,78,93,94].

We provide numerical evidence that qualitative and quan-
titative features are similar to the XX chain. First, after
the quench a magnetization wave front forms, spreading
ballistically in the two parts of the chain A and B (cf. Fig. 1).
However, while in the XX chain the two wave-front edges
propagate with the same velocity (i.e., v = 1; see Sec. III), here
two different velocities appear. More precisely, the propagation
in parts A and B happens at the spinon velocity vs(�) and
v = 1, respectively. Interestingly, we find that the central
region of the wave front is described by Eq. (10).

On the other hand, the entanglement dynamics is well
described by the same formula derived for the XX chain [cf.
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(b)  Δ=-0.3

(c)  Δ=-0.2

(d)  Δ=0.5

FIG. 11. (Color online) Magnetization wave front after a geo-
metric quench with aspect ratio ω ≡ LA/L = 1/3 in the XXZ

spin chain. Symbols are tDMRG data for LA = 60 and anisotropies
� = −0.5, − 0.3, − 0.2,0.5 [panels (a)–(d) in the figure]. The same
scale is used on the x axis in all panels. The local magnetization 〈Sz

i 〉
is plotted versus (i − LA)/t , with i being the position in the chain.
All the data collapse on the same �-dependent scaling function.
The dashed vertical line corresponds to (i − LA)/t = 1, while the
dashed-dotted one is (i − LA)/t = −vs(�), with vs(�) the spinon
velocity. The continuous lines are fits to s0 + (i − LA)/(2πvs(�)t),
with s0 ≈ 1/4 the fitting parameter.

Eq. (12)]. However, as the wave fronts (and consequently the
information) propagation is anisotropic in the two parts of
the chain, a remarkable difference is that one has to replace
vs → ve in Eq. (12), with ve being an effective entanglement
spreading rate. We numerically find that ve ≈ vs for � < 0
(i.e., the entanglement spreads with the wave-front edge
velocity), whereas one has ve < vs at � > 0.

A. Ballistic wave-front propagation

The local magnetization 〈Sz
i (t)〉 as a function of the site

position i in the chain is shown in Fig. 11 for several times
after the geometric quench. We restrict ourselves to ω = 1/3,
showing data at fixed LA = 60 and several values of the
anisotropy � in the spin-liquid phase [� = −0.5, − 0.3, −
0.2,0.5; panels (a)–(d) in the figure]. Symbols denote tDMRG
data for an XXZ chain with open boundary conditions and
t � LA to avoid effects from reflections at the boundary of
the chain.
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The formation of two propagating wave fronts at t > 0 is
clearly visible for all values of �. Their left and right edges
propagate ballistically in the two parts of the chain (see also
Refs. [79,111]). This is illustrated plotting 〈Sz

i 〉 versus the
rescaled variable (i − LA)/t . At each �, the data collapse on
the same function for all times and positions. The vertical
dashed-dotted line in Fig. 11 marks the point (i − LA)/t =
−vs . For the XXZ chain in the zero magnetization sector vs

is given as [112]

vs(�) = π

2

sin γ

γ
with cos γ = � . (23)

Clearly, 〈Sz
i 〉 = 0 at (i − LA)/t = −vs , demonstrating that the

left edge of the wave front propagates with vs . On the other
hand, the right one propagates at unit velocity [the dashed lines
in all panels mark the point (i − LA)/t = 1]. Although the full
scaling function 〈Sz

i 〉 ≡ m[(i − LA)/t] is not easily accessible,
at (i − LA) � t (central region in the panels in Fig. 11) the
magnetization profile exhibits the linear behavior 〈Sz

i 〉 ∼ (i −
LA)/t . It is reasonable that this is given analytically by [as a
generalization of Eq. (10)]〈

Sz
i

〉 ≈ s0 + i − LA

2πvs(�)t
. (24)

The validity of Eq. (24) is confirmed in Fig. 11. Continuous
lines in the figure are fits to Eq. (24) (with s0 ≈ 1/4 the fitting
parameter), and are in excellent agreement with the tDMRG
data.

B. Short-time entanglement dynamics

In this section we investigate the entanglement spreading
after a geometric quench in the (open) XXZ chain in the
gapless phase (i.e., −1 < � � 1). At short time scales that
can be accessed by tDMRG it is natural to generalize the
result at � = 0 [cf. Eq. (12)] as

Sansatz(t) = ν

6
log

[
L

3/2
A

(
ν vet

2LA

)1/2

sin
νπvet

2LA

]
+ k′

ν (25)

with ν = 1 for open and ν = 2 for periodic boundary con-
ditions, k′

ν a �-dependent constant, and ve an entanglement
spreading rate. Equation (25) is expected to hold at t � 2LB ,
although we are not able to provide its precise regime of
validity, which would require the exact expression for ve.
From Eq. (25) one finds that SA(t) − ν/4 log(LA) is a scaling
function of t/LA. The validity of Eq. (25) is shown in
Fig. 12, considering tDMRG data for the XXZ chain at
� = −1/2 [panel (a) in the figure] and � = 1/2 [panel (b)].
We provide data for LA = 20,30,40,60, restricting ourselves
to a geometric quench with ω = 1/3. Strikingly, all the data
for different system sizes collapse on the same scaling curve,
in agreement with Eq. (25). To further proceed we fit the
data to Eq. (25) (k′

ν and ve being the only fitting parameters).
Remarkably, at � = −1/2, we obtain ve ≈ vs (the vertical
dotted line in Fig. 12 marks the point at 2LA/t = vs). Also,
we numerically verified that ve ≈ vs in the whole interval
−1 < � � 0. However, at � = 1/2 we obtain ve ≈ 1.13 <

vs ≈ 1.3 [the vertical-dashed line in Fig. 12 marks the point
t/(2LA) = 1/vs]. Our analysis suggests that although the
information spreading between the two parts A and B of

0.5 1.0 1.5
t/(2LA)

-1

-0.5

0

0.5

S
A
-1

/4
lo

g(
L A

)

LA=20

LA=30

LA=40
ansatz

Δ= -1/2

1/ve

(a)

0.25 0.50 0.75
t/(2LA)

-1

-0.5

0

S
A
-1

/4
lo

g(
L A

)
LA=20

LA=30

LA=60
ansatz

Δ= 1/2

(b)

1/ve

FIG. 12. (Color online) Entanglement spreading after the geo-
metric quench with aspect ratio ω ≡ LA/L = 1/3 (see Fig. 1) in
the XXZ spin chain at � = −1/2 (a) and � = 1/2 (b). (a) Shifted
von Neumann entropy SA − 1/4 log LA versus t/(2LA). Symbols
are tDMRG data for LA = 20,30,40. Notice the perfect data collapse
for all sizes and times. The dashed lines are fits to Sansatz [Eq. (25)],
with ve (entanglement spreading rate) and k′

ν the fitting parameters.
The vertical dotted line marks the point 2LA/t = ve. The fit gives
ve ≈ vs(�). (b) Same as in (a) for � = 1/2 and LA = 20,30,60. The
fit to Eq. (25) now yields ve ≈ 1.13 < vs ≈ 1.3. In both panels, the
vertical dashed line is 1/vs(�).

the chain is associated with the wave-front propagation, the
spreading rate ve is not a trivial function of the wave-front
edges’ velocities.

IX. SUMMARY AND CONCLUSIONS

In this work we investigated the entanglement dynamics
after a geometric quench in the XXZ chain in the gapless
phase, both analytically and numerically. The initial state
after the quench is obtained joining two chains A and B, of
lengths LA and LB , prepared in the ground state of the XXZ

chain in the sector with zero and maximum magnetization,
respectively. The latter is the fully polarized state, which
can be a high-energy eigenstate of the model, depending
on the exchange anisotropy. Equivalently, in the language of
interacting fermions confined in a hard-wall trap, the geometric
quench corresponds to a sudden change in the trap size. From
the energy point of view, this quench falls into the class of
global quenches, since the excess energy density above the
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ground state of the final Hamiltonian is finite. On the other
hand, both A and B are in eigenstates of the XXZ model,
implying that the postquench dynamics originates locally from
a “defect” at the interface between the two chains, as in typical
local quenches.

The entanglement growth after the quench is associated
with the formation of a magnetization wave front, whose
edges propagate ballistically in the two parts of the chain,
at different velocities. To be precise, while the wave front
expands in part A with the spinon velocity, in part B this
happens at unit velocity. For the XX chain we derived the
exact analytical expression of the wave-front profile using free-
fermionic techniques and semiclassical arguments. For the
XXZ model we found that the central region of the wave front
is described by a simple function, which depends on the spinon
velocity.

Focusing on the XX chain we observed that the entangle-
ment dynamics after the quench exhibits several interesting dy-
namical regimes. Specifically, at t � t∗s ∼ LA/vs (short time
scales) the von Neumann entropy increases logarithmically.
Moreover, while the well-known CFT result [21–23] for the
entanglement growth in local quenches does not apply, we
provided an analytic formula, derived from heuristic argu-
ments, that describes accurately the short-time entanglement
dynamics. Remarkably, the entanglement entropy exhibits
the scaling behavior SA(t) = fs(y) + s(LA), with y = t/LA,
s(LA) = ν/4 log(LA) (here ν = 1,2 for open and periodic
boundary conditions, respectively), and fs(y) a scaling func-
tion. At larger times (t∗s � t � t∗� , with t∗� ∼ L2

A/vs) the von
Neumann entropy shows partial revivals of the short-time
dynamics superposed with a power-law increase SA ∼ tα . We
numerically found α < 1.

At very long times t � t∗� the system reaches a steady
state and the entanglement entropy saturates, apart from
oscillations. As expected, since the model is integrable, the
steady state is not thermal. More precisely, we observed
that the subsystem momentum distribution function shows
discontinuities at k = π/2, reflecting the initial half-filled
Fermi sea in part A of the chain. Finally, we provided numerical
and analytical evidence that the steady-state entanglement is
extensive.

We also considered the geometric quench from a finite to the
infinite chain. While at large times one has SA → 0, reflecting
the wave function being an almost perfect product state, the
entanglement relaxation dynamics exhibits the scaling form
SA(t) = f�(z), with z ≡ t/L2

A. Interestingly, the behavior of
f�(z) changes dramatically at z ∼ 1 (i.e., t ∼ L2

A). Namely, we
numerically observed that f�(z) ≈ −γ log(z), with γ ≈ 0.4
at z � 1. On the other hand, at z � 1 we derived analytically
f�(z) ≈ 1/z[1 − log(1/z)].

Finally, by means of tDMRG simulations we discussed the
role of interactions in the short-time entanglement dynamics,
considering the XXZ chain in the gapless phase −1 < � �
1. Interestingly, we numerically demonstrated that the same
formula conjectured for the free-fermion case fully reproduces
the short-time entanglement dynamics after the quench. Due
to the anisotropic propagation of the wave front in the two
parts of the chain A and B, the entanglement spreading rate
is not trivially related to the velocity of a single wave-front
edge.
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APPENDIX A: DIAGONALIZATION OF THE SPIN-1/2 X X
CHAIN

The spin-1/2 open XX chain [113–117] of length L in an
external magnetic field h is defined as

HXX = −J

L−1∑
i=1

(
Sx

i Sx
i+1 + S

y

i S
y

i+1

) + h

L∑
i=1

Sz
i , (A1)

with S
x,y,z

i ≡ σ
x,y,z

i /2, σα
i being the Pauli matrices acting on

site i. For periodic boundary conditions one has an extra term in
Eq. (A1) connecting site L with site 1. Hereafter we fix J = 1
for convenience. After the Jordan-Wigner transformation

ci =
(

i−1∏
m=1

σ z
m

)
σx

i − iσ
y

i

2
, (A2)

Eq. (A1) is recast in the free-fermionic form

HXX = −1

2

L−1∑
i=1

(c†i ci+1 + cic
†
i+1) + h

2

L−1∑
i=1

c
†
i ci , (A3)

with ci spinless fermionic operators satisfying the canonical
anticommutation relations {cm,c

†
n} = δm,n. Notice in Eq. (A2)

the nonlocal term (Jordan-Wigner string) in the brackets. The
mapping between Eq. (A1) and Eq. (A3) is exact apart from
boundary terms (that we neglect here) giving a vanishing
contribution (as 1/L) to physical quantities in the large chain
limit.

Periodic boundary conditions (pbc). For periodic boundary
conditions the spectrum of Eq. (A3) can be obtained going
to momentum space. After defining the Fourier transformed
operators ck as

ck = 1√
L

L∑
m=1

ei(2πk/L)mcm, (A4)

and substituting in Eq. (A3), one obtains the single-particle
dispersion Ek of the XX chain as

Ek = − cos
2πk

L
+ h with k = 0,1, . . . ,L − 1, (A5)

with 2πk/L and Ek the single-particle momenta and energies,
respectively. The single-particle eigenstate |vk〉 corresponding
to the eigenvalue Ek reads

|vk〉 = 1√
L

L∑
m=1

ei(2πk/L)mc†m|0〉, (A6)

with |0〉 denoting the vacuum state for the fermions.
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Open boundary conditions (obc). For the XX chain with
open boundary conditions one has instead

E′
k = − cos

πk

L + 1
+ h with k = 0,1, . . . ,L − 1, (A7)

while the single-particle eigenstates are

|v′
k〉 =

√
2

L + 1

L∑
m=1

sin

[
πmk

L + 1

]
c†m|0〉. (A8)

The spectrum of the model [cf. Eqs. (A5) and (A7)] is gapless
in the thermodynamic limit at |h| < 1, while it is gapped
otherwise. The ground state at h = 1 (h = −1) corresponds
to an empty (fully filled) band.

The ground state of the XX chain is obtained by filling the
single-particle levels [cf. Eqs. (A5) and (A7)] below the Fermi
level kF = L/(2π ) cos−1(h) and kF = (L + 1)/π cos−1(h)
for periodic and open boundary conditions, respectively.
Notice that for convenience, the Fermi level kF is defined
as an integer. In this work we restrict ourselves to the XX

chain with zero magnetic field (h = 0).

APPENDIX B: ENTANGLEMENT ENTROPIES IN
FREE-FERMIONIC CHAINS

Here we briefly review how to calculate the entanglement
entropy for a generic eigenstate of a free-fermionic model
[101,106–110,118], focusing, in particular, on the ground-state
entropy. The von Neumann entropy (and Renyi entropies as
well) of a single interval A ≡ [1,LA] (of length LA) embedded
in a free-fermionic chain can be obtained from the two-point
correlation function Gm,n restricted to the subsystem A:

Gm,n = 〈c†mcn〉 with m,n = 1,2, . . . ,LA. (B1)

Here 〈·〉 denotes the expectation value over a generic eigenstate
of Eq. (A3).

Ground-state correlation matrix. The correlation matrix
Gm,n [cf. Eq. (B1)] for a generic eigenstate of Eq. (A3)
can be obtained using the explicit form of the single-particle
eigenvectors Eqs. (A6) and (A8). For the ground state of
Eq. (A3) and periodic boundary conditions one obtains

G(pbc)
m,n = 2

L

L/4−1∑
k=0

cos

[
2π (m − n)k

L

]
− 1

L
. (B2)

Performing the summation over k one obtains

G(pbc)
m,n = 1

L

sin
[(

π
2 − π

L

)
(m − n)

]
sin

[
π
L

(m − n)
] . (B3)

In the limit of an infinite chain, Eq. (B3) reduces to

G(pbc)
m,n (L � 1) → sin

[
π
2 (m − n)

]
π (m − n)

. (B4)

Finally, for open boundary conditions G(obc)
m,n reads

G(obc)
m,n = 1

2(L + 1)

[
sin π

2 (m − n)

sin π
2(L+1) (m − n)

− sin π
2 (m + n)

sin π
2(L+1) (m + n)

]
. (B5)

For free-fermionic models the reduced density matrix for A

can be written as

ρA = 1

Z
exp(−HE), (B6)

where Z ensures the normalization Tr ρA = 1, and HE is
the so-called entanglement Hamiltonian. The spectrum of the
reduced density matrix ρA in Eq. (B6), which is expressed
in the free-fermionic variables ci , coincides with that of the
reduced density matrix of the same block A expressed in
the original spin variables σ

x,y,z

i . Since the Jordan-Wigner
transformation Eq. (A2) is nonlocal, this is a nontrivial fact,
and it rests on subsystem A being a single interval. In fact,
it does not remain true for two (or many) disjoint intervals
[119–124].

The spectrum of HE (single-particle entanglement spec-
trum) is of the free type, reflecting the original Hamiltonian
Eq. (A3) being quadratic, and its single-particle levels εl (l
being an arbitrary label) are obtained from the eigenvalues ζl

of Gm,n [cf. Eq. (B1)] as

εl = log

[
1 − ζl

ζl

]
. (B7)

Finally, the von Neumann entropy SA of A is obtained as

SA =
LA∑
l=1

[
log(1 + e−εl ) + εl

1 + eεl

]
. (B8)

Equivalently, in terms of ζk one can write

SA =
LA∑
l=1

[ζl log ζl − (1 − ζl) log(1 − ζl)]. (B9)

It is noteworthy that the term in the sum in Eq. (B9) has a
maximum at ζl = 1/2, whereas it is vanishing for ζl = 0,1.

An example of a single-particle entanglement spectrum is
shown in Fig. 13 plotting the eigenvalues ζl for a periodic XX

chain with L = 300 and block A with LA = 75 and LA =
150 (rhombi and circles in the figure, respectively). Clearly, a
large fraction of the spectrum (levels with ζl = 0,1) does not
contribute to the entanglement entropy [cf. Eq. (B9)].

0 50 100 150
eigenvalue index l

0

0.2

0.4

0.6

0.8

1

ζl

LA=150
LA=75

FIG. 13. (Color online) Ground-state single-particle ES levels
for the XX chain. Symbols are exact results for a chain of length
L = 300. The ES levels are for a subsystem with LA = 75 (rhombi)
and LA = 150 (circles). Only few ES levels (with ζl �= 0,1) contribute
to the entanglement entropy.
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APPENDIX C: ENTANGLEMENT ENTROPIES AFTER
A GEOMETRIC QUENCH

In this section we illustrate the calculation of the entangle-
ment entropy at any time after a generic (i.e., with arbitrary
aspect ratio ω; see Fig. 1) geometric quench in the XX chain.
Similar results can be obtained for the one-dimensional XY

model (see Refs. [114–117]) or the transverse-field Ising chain
(see Refs. [125,126], and references therein). For simplicity,
here we consider the situation in which both the initial chain
A (see Fig. 1) and the final one have periodic boundary
conditions. Notice that this implies that the quench protocol
(see Fig. 1) involves a “cut and glue” step.

At t = 0 the initial state of the XX chain is obtained by
gluing together the zero-magnetization ground state of a chain
of length LA with a fully polarized state |F 〉 ≡ |↑↑↑ · · · ↑〉
of length LB ≡ L − LA. The two-point correlation matrix
Gm,n(t) at t = 0 is given as

Gm,n(0) =
{
G(init)

m,n if (m,n) ∈ A

δm,n otherwise,
(C1)

with G(init)
m,n the t = 0 correlation function in part A of

the chain, and δm,n the Kronecker delta. Here we choose
G(init)

m,n = G(pbc)
m,n [Eq. (B3) after replacing L → LA]. At t > 0

after the quench Gm,n(t) is obtained as follows. One first
defines Ukj ≡ ∑

m RkmeiEmt (R†)mj , where Rkj is constructed
as Rkj ≡ 〈0|cj |vk〉 and Em is given by Eq. (A5). One then has

G(t) = U †G(0)U. (C2)

The explicit expression after performing the matrix multipli-
cations in Eq. (C2) reads

Gm,n(t) =
∑
k,k′

e−2πi(k/L)m+2πi(k′/L)n+i(Ek′ −Ek)t

×
[

1

L
δkk′ − 1

L2

1

LA

kF∑
r=−kF

1 − e2πiωk

1 − ei(2π/LA)(r+ωk)

× 1 − e−2πiωk′

1 − e−i(2π/LA)(r+ωk′)

]
. (C3)

It is convenient to define the matrix Fr,m(t) as

Fr,m(t) ≡ 1

L

∑
k

e−2πi(k/L)m−iEkt
1 − e2πiωk

1 − ei(2π/LA)(r+ωk)
. (C4)

Thus one can rewrite Eq. (C3) in the form

Gm,n(t) = δm,n − 1

LA

kF∑
r=−kF

Fm,r (t)F∗
n,r (t). (C5)

Finally, the entanglement entropy for part A of the chain after
the geometric quench is obtained from the eigenvalues of
Eq. (C5) restricted to A, using Eq. (B9).

APPENDIX D: DYNAMICS AFTER QUENCHING TO
THE INFINITE CHAIN

In this section we focus on the entanglement dynamics after
a geometric quench in the limit ω → 0 (quench to the infinite
chain; cf. Fig. 1). Notice that the limit ω → 0 is taken at fixed
finite LA.

The time evolved correlation function Gm,n(t) has the same
form as in Eq. (C5) after redefining Fm,r (t) as

Fm,r (t) = 1

2π

∫ 2π

0
dk

1 − eiLAk

1 − ei(2πr/LA)+ik
e−imk+it cos k. (D1)

One should observe that in the limit LA � 1, the second term
in the numerator in Eq. (D1) is highly oscillating and one can
write

Fm,ks
(t)

LA�1−−−→ 1

2π
P

∫ 2π

0
dk

e−imk+it cos k

1 − ei(k+ks )

+ 1

2
eimk+it cos ks (D2)

where P denotes the Cauchy principal value of the inte-
grand and we introduced ks ≡ 2πr/LA. The approximation,
Eq. (D2), holds provided that m � LA, t � LA, and ks �= 0.

A numerically more convenient expression is obtained
writing

Fm,ks
(t) =

LA∑
p=0

eipks+i(m−p)(π/2)Jp−m(2t), (D3)

where Jq(x) is the modified Bessel function. In the limit LA →
∞, using Eq. (C5), ks becomes a continuous variable and one
can write Gm,n(t) as

Gm,n(t) = δmn − 1

2π

∫ π/2

−π/2
dks Fm,ks

(t)F∗
n,ks

(t). (D4)

After using Eq. (D3) and performing explicitly the integration
in Eq. (D4), Gm,n(t) reads

Gm,n(t) = δmn −
LA−1∑
p,q=0

sin
[

1
2π (p − q)

]
π (p − q)

× Jp−m(2t)J ∗
q−n(2t)im−p−n+q . (D5)

Notice that we keep LA finite in Eq. (D5), although formally
the limit LA → ∞ is taken in Eq. (D4). It is convenient to
redefine s = (p + q)/2 and d = (p − q)/2 obtaining

Gm,n(t) = δmn −
LA/2∑

d=−LA/2

LA−|d|∑
s=|d|

sin πd

2πd

× Js+d−m(2t)J ∗
s−d−n(2t)im−n−2d . (D6)

Since sin(πd)/d is highly oscillating, in practice in Eq. (D5)
it is possible to restrict the summation to the first few values
of d. It is also worth reminding that Jq(x) are exponentially
vanishing at |q| > x, implying in Eq. (D6) that the contribution
of the sum vanishes at |s + d − m|/2 > t and |s − d − n|/2 >

t , which is a manifestation of the Lieb-Robinson bound [127]
in free models.

APPENDIX E: SOME REMARKABLE SCALING
PROPERTIES AT LARGE TIMES

In this section we derive the scaling form Eq. (22) for the
von Neumann entropy at large times t → ∞ after the quench
from a finite to the infinite chain (cf. Appendix D).

The main ingredient of the calculation is the asymptotic
behavior at t → ∞ of the matrices Fm,r (t) [cf. Eq. (D1)].
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This is obtained using the stationary phase method [128]. The
large-time behavior of Fm,r depends crucially on the parity of
LA and on the value of r .

In particular, for r = 0, irrespective of the parity of LA, one
obtains

Fm,0(t) ≈
√

2√
πt

[
(−1)m

2
eit−i(π/4) + LAe−it+i(π/4)

]
, (E1)

where we neglect terms O(t−1). For generic r �= 0 and odd LA

one has

Fm,r (t) ≈ (−1)m
eit

√
4πt

[
(1 − i) − (1 + i)

sin ks

1 + cos ks

]
(E2)

with ks as in Eq. (D1). Finally, for r �= 0 and even LA the result
reads

Fm,r (t) ≈ LA(−1)m√
8πt3

[
im(2m − LA) cos

(
t − m

π

2
+ π

4

)

+ 1

2

(
2m tan

ks

2
− LA tan

ks

2
+ i sec2 ks

2

)
eit−i(π/4)

− (−1)m
1

4
cosec2 ks

2
[2i + (LA − 2m) sin ks]

× e−it+i(π/4)

]
. (E3)

Notice that Eq. (E3) gives Fm,r (t) ∼ t−3/2, which is subleading
compared to Eqs. (E1) and (E2).

The corresponding asymptotic expansion for Gm,n(t) is
straightforward, substituting Eqs. (E1)–(E3) into Eq. (C5). We
start discussing the case with LA odd. The result reads

Gm,n(t) = δm,n − (−1)m+n

πLAt

kF∑
r=−kF

1

1 + cos 2πr
LA

+ i
e−2it [(−1)me2it+iLA][i(−1)n + e2itLA]

2πLAt
.

(E4)

It is convenient to rewrite Eq. (E4) as

Gm,n(t) = δm,n + 1

t
umun[A(−1)m+n

+B(−1)me2it + C(−1)ne−2it + D], (E5)

introducing the constants A,B,C,D as

A ≡ − 1

πLA

kF∑
r=−kF

1

1 + cos 2πr
LA

− 1

2πLA

, (E6)

B = C∗ ≡ i

2π
, (E7)

D = −LA

2π
. (E8)

In Eq. (E5) we defined um as the vector of length LA with unit
entries, i.e., um ≡ (1,1, . . . ,1). The eigenvalues of Gm,n(t) can
be calculated analytically. It turns out that G has LA − 2 unit
eigenvalues. Only two eigenvalues contribute nontrivially to
the entanglement entropy, which are given as

ζ± = 1 + ALA + DLA ± LA

√
A2 + 4BC − 2AD + D2

t
.

(E9)

Using Eqs. (B9) and (E9), and considering the limit 1 � LA �
t , one obtains that the entropy is a scaling function of t/L2

A,
and can be given as

SA(t) ≈ L2
A

2πt

[
1 − log

L2
A

2πt

]
. (E10)

Clearly, since SA(t) > 0 ∀t , Eq. (E10) is valid only at t � L2
A.

We now turn to the case of LA even. The correlation matrix
Gm,n(t), keeping only terms O(t−1) is given as

Gm,n(t) = δm,n + umun

2πLAt

× [i(−1)m − e−2itLA][i(−1)ne−2it + LA].

(E11)

A similar analysis as for odd LA gives the entanglement
entropy as

SA(t) = −
[

1 − 1 + L2
A

2πt

]
log

[
1 − 1 + L2

A

2πt

]
− 1 + L2

A

2πt
log

1 + L2
A

2πt
. (E12)

Notice that, as expected, in the limit 1 � LA, Eq. (E12)
reduces to Eq. (E10).
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