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Quantum oscillations in the kinetic energy density: Gradient corrections from the Airy gas
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2Multi-Scale Science MS 1322, Sandia National Laboratories, Albuquerque, New Mexico 87185-1322, USA

(Received 4 March 2014; revised manuscript received 16 June 2014; published 22 August 2014)

We derive a closed-form expression for the quantum corrections to the kinetic energy density in the Thomas-
Fermi limit of a linear potential model system in three dimensions (the Airy gas). The universality of the expression
is tested numerically in a number of three-dimensional model systems: (i) jellium surfaces, (ii) confinement in
a hydrogenlike potential (the Bohr atom), (iii) particles confined by a harmonic potential in one and (iv) all
three dimensions, and (v) a system with a cosine potential (the Mathieu gas). Our results confirm that the usual
gradient expansion of extended Thomas-Fermi theory does not describe the quantum oscillations for systems that
incorporate surface regions where the electron density drops off to zero. We find that the correction derived from
the Airy gas is universally applicable to relevant spatial regions of systems of types (i), (ii), and (iv), but somewhat
surprisingly not (iii). We discuss possible implications of our findings to the development of functionals for the
kinetic energy density.
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I. INTRODUCTION

Since the early days of quantum mechanics, there has been
an interest in accurately describing the kinetic energy (KE) of
a system of noninteracting fermions given the particle density.
Such descriptions have been paramount in the development
of schemes for computations of physical properties of atoms,
molecules, and solids which are in ubiquitous use today across
disciplines. An exact treatment of the KE is provided by
density functional theory (DFT) [1] à la Kohn-Sham (KS) [2],
but the derivation and evaluation of approximate expressions
of the kinetic energy is still an active area of research
with applications in, e.g., orbital-free DFT (OF-DFT) [3–7],
high-temperature applications of DFT, and as an intermediate
step in developing improved approximations for the exchange-
correlation energy. Applications are also found in the field of
nuclear DFT [8] and trapped degenerate fermion gases [9].

A common starting point for most approximations of
the KE is Thomas-Fermi (TF) theory [10,11], which is
exact for a uniform electron gas. A number of historically
important works have derived corrections to TF for a weakly
inhomogeneous electron system as an expansion in gradients
of the electron density [1,12–15], and we will refer to this as
the extended TF (ETF) gradient expansion (GE). However, it
has also been noted that for systems with surface regions, i.e.,
regions where the electron density drops to zero, the ETF GE of
the kinetic energy density is not valid and further corrections of
the same order in the density and density gradient are necessary
(see, e.g., Refs. [16] and [17] and references therein for an
extended discussion). Despite a frequent appeal to TF and
ETF theory in the literature, the need for such corrections is
rarely discussed.

In the present paper, we utilize a closed-form expression
of the noninteracting KE of the Airy gas (AG) surface model
system [18] to derive a modified ETF GE that includes the
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quantum corrections. When applying the obtained expression
to other model systems with electron surfaces, e.g., the
jellium surface model, or particles confined by hydrogenlike
or harmonic potentials, we find these quantum corrections to
provide a crucial correction to the local description of the
kinetic energy density (KED). However, for two other systems
that we investigate, i.e., a system with a cosine potential
and a system confined by a harmonic potential in only one
dimension, we find that neither of the two expansions holds
unreservedly.

As was mentioned above, a prime reason for our interest in
an accurate description of the KED of noninteracting fermions
is the application of such a description in OF-DFT. The search
for improved approximations of the KE has a long history in
this field [3–5]. A few notable recent developments of generic
KE approximations follows. Perdew and Constantin [6] have
constructed a set of Laplacian-level density functionals based
on an interpolation between the fourth-order GE and the von
Weizsäcker, which give good results for, e.g., jellium surfaces
and the AG. Lee et al. [7] extract coefficients for a GE expan-
sion from neutral atoms in the limit of large atomic numbers Z

and discuss the implications for coefficients in a generalized-
gradient-type approximation. More sophisticated expressions
are also being developed, e.g., approximations with density-
dependent kernels from linear-response theory [5]. The present
paper differs from these and other recent contributions in the
field of OF-DFT in that the central result is not intended as
a generalized approximation for the total KE. The focus in
this work is instead to extract and study the formally exact
behavior of the kinetic energy density in the limit of slowly
varying densities in a system where a surface region is present.
Exact limits such as this have historically been very important
in the development of general approximations.

The rest of the paper is organized as follows: in Sec. II,
we summarize the important equations for the kinetic energy,
the class of edge electron gas model systems, and the Airy
gas model. In Sec. III, we derive the central expression of
this work: a gradient expansion of the kinetic energy density
which includes the quantum corrections stemming from the
Airy gas surface. In Sec. IV, we investigate the universality
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of the obtained expressions in a range of numerical tests. In
Sec. V, we discuss our findings. Finally, Sec. VI presents a
summary and our main conclusions.

II. BACKGROUND

Our primary interest in the KE of noninteracting fermions
is due to its central importance in KS-DFT [2], and thus we
will adopt the relevant terminology from this field. Hence,
consider a system of N noninteracting fermions with ground-
state particle density n(r) which we assume to be continuous
everywhere. The KE is given exactly in Hartree atomic units
by the functional

Ts[n] = −1

2

∑
ν:εν�μ

∫
d3rψ∗

ν (r)∇2ψν(r), (1)

where ν labels available states including the spin degree
of freedom, μ is the self-consistent chemical potential, and
{ψν}∞ν=1 are the KS orbitals with corresponding eigenvalues
{εν}∞ν=1. The KS orbitals are formally functionals of n(r),
making Eq. (1) an implicit functional. Equation (1) directly
defines one possible kinetic energy density (KED) as

τ1(r) = −1

2

∑
ν:εν�μ

ψ∗
ν (r)∇2ψν(r). (2)

The KED is only unique up to a term that integrates to zero over
the system in Eq. (1). In a closed or periodic system, Gauss’
divergence theorem applied to ∇n gives that the Laplacian
of the electron density ∇2n integrates to zero. This can be
exploited to construct the following alternative KED, which is
positive at all points in space:

τ (r) = τ1(r) + 1

4
∇2n(r) = 1

2

∑
ν:εν�μ

|∇ψν(r)|2. (3)

This choice of KED is advantageous for developing approx-
imations, since an approximation that fulfills the constraint
τ (r) � 0 will avoid the unphysical result Ts < 0 for all n(r).
We stress that Eq. (3) is taken as a definition, which makes τ

valid without ambiguity even for open nonperiodic systems.
However, the caveat for such systems is that τ is then not
strictly a KED, since integration will not give Ts [one would
instead need to integrate τ (r) − (1/4)∇2n(r)].

A starting point for many approximations of τ is the TF
approximation,

τTF[n] = CTFn
5/3(r), (4)

with CTF = (3/10)(3π2)2/3. Based on the scaling relation of
the total noninteracting kinetic energy [19], one can assume τ

to be homogeneous of degree 5/3 under uniform coordinate
scaling [20]. Hence, a (semi)local density-functional approxi-
mation (DFA) of the KED takes the form

τDFA[n] = τTF[n]F DFA
τ (s,q, . . .), (5)

where F DFA
τ is the refinement factor, and the scaled gradient s

and Laplacian q are

s = |∇n(r)|
2(3π2)1/3n4/3(r)

, (6)

q = ∇2n(r)

4(3π2)2/3n5/3(r)
. (7)

We define as a limit of slowly varying density any limit where
s,q and all higher-order terms → 0.

Early efforts to find improved approximations of τ date
back to 1935, when von Weizsäcker [21] derived a KED
approximation with F vW

τ = (5/3) s2. Kirzhnits [12,13] used
commutator operator formalism to derive gradient corrections
to TF theory in the limit of a weakly perturbed uniform
electron gas. A number of extensions to the original result
have followed. Hohenberg and Kohn [1] developed a density
gradient technique based on linear-response formalism. An
expansion in � of the Green’s-function representation due
to Wigner and Kirkwood has also been calculated [22]. In a
paper by Yang, corrections are derived in terms of the Green’s
function from the first-order reduced density matrix [15]. From
these past works, it is well established that the ETF gradient
corrections to TF, i.e., the gradient corrections for the slowly
varying limit of a weakly perturbed uniform electron gas, are,
to second order,

F ETF
τ (s,q) = 1 + 5

27 s2 + 20
9 q. (8)

However, as explained in Sec. I, it has been observed that
the ETF expansion does not apply universally to regions of
slowly varying electron density in a system that is not a weakly
perturbed uniform electron gas, but rather has surface regions,
i.e., regions where the electron density drops to zero (see, e.g.,
Refs. [16] and [17]). The main idea put forward in this paper
is to derive explicit corrections from a surface model system
(the AG) and investigate how general the resulting expression
is when applied to other model systems.

We note that the kinetic energy of the AG model and
related systems has been discussed in other recent works.
Vitos et al. [23] and Constantin and Ruzsinszky [24] have
both presented KED functionals based on parametrizations of
the AG KED. Both works discuss the role of the Laplacian term
in achieving an optimal local description of the KED across
the surface. Constantin and Ruzsinszky specifically enforce
the ETF GE in the limit of slowly varying density. In contrast,
in the present work, our focus is the exact behavior in the limit
of slowly varying electron density far inside the surface.

Electronic edges and the AG

The derivations in the present work start from the formalism
and results by Kohn and Mattsson [18], which are outlined in
the following. We start from the general model system of an
edge electron gas (EG) taken to be an inhomogeneous system
of electrons with an electronic edge. The edge is defined in
terms of the classical turning points

vs(r) = μ, (9)

where vs is the KS effective potential and μ is between the
highest occupied and lowest unoccupied KS eigenvalue. This
describes a surface (in the mathematical sense) outside of
which the orbitals decay at an exponential rate. We take vs

to be constant in two spatial directions while varying in the
third. The resulting KS orbitals are labeled with the quantum
numbers ν = (k1,k2,η), where the ki are plane-wave numbers
for the x and y dimensions and η is the quantum number
associated with the z dimension. Note that η can either
be a continuous or discrete quantum number, depending on
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the energy spectrum of the potential across the surface. In
Ref. [18], the electron density of the EG for a general vs(z) is
found to be

nEG(r) = 1

π

∑
η:εη�μ

ϕ2
η(z)|μ − εη|, (10)

where {ϕη}∞η=1 are the corresponding eigenfunctions in the z

direction.
Furthermore, the AG is an edge gas with a linear potential,

vAG
s (r) =

{
Fz, z � −L

+∞ otherwise,
(11)

where F > 0 is the slope in the potential. This slope defines

a characteristic length l ≡ 3

√
1

2F
. Apart from Ref. [18], similar

models have also been investigated in a number of previous
works [23–28]. The KS equation

(
−1

2

d2

dz2
+ Fz

)
ϕη = εηϕη(z), (12)

with ϕη(−L) = ϕη(∞) = 0, has the solutions

ϕη(z) =
√

π
4
√

Ll
Ai

(
z

l
+ εη

ε

)
, (13)

and eigenvalues

εη = −η

√
l

L
πε̃, with ε̃ ≡ 3

√
F 2

2
, (14)

where Ai are Airy functions. The orbitals and eigenvalues
scale directly with l, which makes the AG effectively a zero
parameter model. The absolute energy scale is chosen to make
the chemical potential equal to zero. The eigenvalues {εη}∞η=1
are equally spaced and form a countable set. We introduce the
scaled coordinate and scaled eigenvalues as, respectively,

ζ ≡ z/l, ε ≡ εη/ε̃. (15)

As we take the limit L → ∞, the eigenvalues turn into a
continuous eigenspectrum, i.e.,


εη

ε̃
→ dε ⇒

∑
εη


εη

ε̃
→

∫
dε. (16)

Using Eqs. (13) and (16) in Eq. (10) gives the AG electron
density,

nAG
0 (ζ ) = 1

2π

∫ ∞

0
dεε Ai2(ζ − ε), (17)

with nAG(z/l) = (1/l3)nAG
0 (ζ ). By Eq. (A.4) in Ref. [29], we

then have

nAG
0 (ζ ) = 1

6π

[
2ζ 2Ai2(ζ ) − Ai(ζ )Ai′(ζ ) − 2ζAi′2(ζ )

]
. (18)

Successive differentiation with respect to ζ gives, for the
dimensionless scaled gradient and Laplacian, respectively,

sAG(ζ ) = 1

2π

Ai′2(ζ ) − ζAi2(ζ )

2(3π2)1/3
[
nAG

0 (ζ )
]4/3 , (19)

qAG(ζ ) = 1

2π

Ai2(ζ )

4(3π2)2/3
[
nAG

0 (ζ )
]5/3

, (20)

where we note that ζ → −∞ ⇒ s,q → 0, which means
that the far inner region of the AG is a limit of slowly
varying density. However, this limit of slowly varying density
is fundamentally different from that in a weakly perturbed
uniform electron gas.

III. THE KED IN THE AIRY GAS

In this section, we derive the central result of this work: a
GE based on the AG model system, i.e., a GE up to second
order in s and q that includes the quantum corrections due to
the surface. Starting from the definition of the positive KED
in Eq. (3) and using Eq. (10) gives

τEG(z) = 1

2

∑
η:εη�μ

[ |μ − εη|2
2π

ϕ2
η(z) + |μ − εη|

2π
ϕ′2

η (z)

]
, (21)

where we have used that the orbital energies satisfy
1
2 (k2

1 + k2
2) + εη � μ. Equation (21) is a general expression

for the positive KED of an EG. As was previously mentioned,
we take, for the AG, μ = 0.

Inserting the AG orbitals of Eq. (13) into Eq. (21) and
taking L → ∞ results in an expression for the KED in terms
of integrals over Ai functions,

τAG
0 (ζ ) =

{
1

8π

∫ ∞

0
dεε2Ai2(ζ − ε)

+ 1

4π

∫ ∞

0
dεε

[
d

dζ
Ai(ζ − ε)

]2 }
, (22)

where τAG(z/l) = l−5τAG
0 (ζ ). Equation (22) has previously

been derived in Refs. [23] and [24], but we take the extra step
using Eqs. (A.6) and (A.7) found in Ref. [29], arriving at

τAG
0 (ζ ) = 1

20π
[2(1 − ζ 3)Ai2(ζ ) + ζAi(ζ )Ai′(ζ ) + 2ζ 2Ai′(ζ )].

(23)

This is an exact expression of closed form valid throughout the
AG system. We are interested in the quantum oscillations in the
regime of slowly varying electron density, i.e., where s,q → 0
far inside the classically allowed region of the system.

In this limit, both nAG
0 (ζ ) and τAG

0 (ζ ) are unbounded
continuous functions. Moreover, τTF[nAG

0 ] is continuous and
the exact refinement factor,

F AG(ζ ) = τAG
0 (ζ )

τTF
[
nAG

0

] , (24)
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is bounded and analytic as ζ → −∞. Expanding Eq. (24) in
a series around ζ = −∞ gives

F AG(ζ ) = 1 + 5
[
5 + 6 sin

(
4
3ζ

3
2
)]

48ζ 3

− 55

192

(
1

ζ

) 9
2

cos

(
4

3
ζ

3
2

)
+ O

(
1

ζ 5

)
. (25)

This expansion has previously been derived by Baltin [26]. In
that paper, however, the KED is given in terms of n, rather than
in the coordinate ζ . We now proceed by expanding the scaled
gradient sAG(ζ ) and Laplacian qAG(ζ ) in a Taylor series in the
same way. This gives us

sAG(ζ ) = 3

4

(
1

ζ

) 1
3

− 3 cos
(

4
3ζ

3
2
)

16ζ 3
+ O

(
1

ζ
1
9

)
(26)

and

qAG(ζ ) = 3
[
1 + sin

(
4
3ζ

3
2
)]

16ζ 3

− 5

128

(
1

ζ

) 9
2

cos

(
4

3
ζ

3
2

)
+ O

(
1

ζ 6

)
, (27)

respectively. We note that Eqs. (25) and (27), to leading order,
both contain terms proportional to

1

ζ 3
sin

(
4

3
ζ

3
2

)
. (28)

Hence, by identification, we can extract the coefficient for a
term proportional to the scaled Laplacian qAG(ζ ). We get, to
leading order,

F AG(ζ ) = 1 + 10

3
qAG(ζ ) − 5

48

1

ζ 3
. (29)

The leading term in Eq. (26) is nonoscillatory, and
the expression can thus be inverted to give, to leading
order in s,

ζ AG(s) = 1

2

(
9

2s2

) 1
3

. (30)

If we substitute Eq. (30) into Eq. (29), we finally obtain, to
second order in |∇n|, the expression

F (s,q) = 1 − 5
27 s2 + 10

3 q. (31)

The derivation of Eq. (31) is based on the identification of
terms between Eqs. (25)–(27), but is unique in the sense
that no other expression with only linear dependence on s2

and q (i.e., to second order in |∇n|) can exactly reproduce
the oscillatory first-order term in Eq. (25). The result is a
refinement function derived from the limit of slowly varying
density far inside the surface from a linear potential, i.e., it is a
GE that itself includes the quantum corrections from a surface.
Note that the term proportional to s2 in Eq. (31) has the same
coefficient as the ETF GE given by Eq. (8), but differs in sign,
whereas the term proportional to q is completely different. The
expression is a main result of this paper, and we will refer to
it as the AG-GE. We are not aware of prior works that address
the system dependence of GEs with quantum corrections, so

there is no a priori reason to expect this expression to be
broadly applicable to a large set of systems with surfaces.
Nevertheless, in the following, we will investigate the possible
generality of this expression in regions of slowly varying
electron density in other model systems. However, our first
numerical investigation is the behavior of the ETF GE and the
AG-GE for the actual AG model system itself.

In Figs. 1(a) and 1(b), we compare numerically the exact
AG KED, the AG-GE, and the ETF GE far inside the inner
region of the AG, and across the surface region. We see that the
correction provided by Eq. (31) over ETF is crucial to properly
account for the oscillations in the KED far from the surface.
In the edge region, both of the expansions are expected to fail,
since in this region the density is not slowly varying. However,
it appears that the quantum corrections included in Eq. (31)
worsen the result in this region compared to ETF.

IV. NUMERICAL RESULTS

In the following sections, we will explore the validity of
Eq. (31) in comparison with the ETF GE for a number of
model systems. We stress that these model systems are to be
understood formally as giving model densities, which follows
from the fact that the exact solution for a given KS potential
is known. Consequently, no iteration for self-consistency is
involved; we simply take the exact density of the model system
and insert it into the respective expressions.

A. Jellium surface model

We turn first to the jellium surface model system [30]. The
jellium surface under consideration has a value of the Wigner-
Seitz radius rs = {3/[4πn(r)]}1/3 equal to 2. The numerically
calculated exact refinement factor is shown together with both
of the GEs in Figs. 1(c) and 1(d) far inside the surface where
s,q → 0, and across the surface region. The results are very
similar to Figs. 1(a) and 1(b) for the AG. We see how the
KED is accurately described by the AG-GE in Eq. (31) in
the region of slowly varying electron density, while the ETF
GE produces oscillations with a slightly too low amplitude.
As we discussed for the AG, here also the ETF GE reproduces
the exact behavior better across the surface region, whereas the
AG-GE deviates more as we leave the region of slowly varying
electron density. The results shown in Figs. 1(c) and 1(d) are
also representative for other values that we investigated in the
range 2 to 4 of the Wigner-Seitz radius. This is expected due
to the scaling behavior of the KED.

B. Isotropic harmonic oscillator

Next we consider a model system that is very different from
the AG and jellium surface: the isotropic (radially symmetric)
harmonic oscillator (HO) in three dimensions. This model
system contains a finite number of N electrons. The potential
is

vHO
s (r) = 1

2ω2r2, (32)

where ω is the angular frequency and r is the radial distance
from the position of equilibrium. We let η = 0,1, . . . be the
collective principal quantum number of the three oscillating
modes and introduce the curvature parameter w = ω/2. At
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FIG. 1. (Color online) The ETF GE and the AG-GE in Eq. (31) compared to the exact KED for (a), (b) the AG and (c), (d) a jellium
surface with rs = 2. The AG system shown in (a) and (b) is the system used to derive the AG-GE. These panels are placed side by side with
the corresponding application of the expressions in (c), (d) the jellium system for comparison. (a) The behavior far inside the AG surface
(ζ → −∞) as a function of the scaled coordinate ζ . The GE derived from the AG unsurprisingly describes the oscillations in the KED well,
whereas the ETF GE does not. (b) The behavior in the surface region of the AG. The vertical line shows the position of the classical turning
point. The inset shows the difference between the two expansions and the exact KED. (c) The regime of slowly varying electron density at
large negative z of the jellium model. Also for the jellium system, the AG-GE describes the oscillations in the KED well, whereas the ETF GE
fails to do so. This closely mimics the behavior seen for the AG in (a). (d) The surface region of the jellium model. In both (b) and (d), the ETF
GE deviates less than the AG-GE from the exact KED over the surface region.

curvature ω, the first (η + 1)th energy levels are filled, where

η =
⌊

1

2w
− 3

2

⌋
. (33)

Hence, systems with smaller w, which is a wider potential,
contain more electrons.

Figures 2(a) and 2(b) show a HO system filled up to the
30th energy level, both close to the center (where the density
is slowly varying) and across the surface. Despite the fact
that the isotropic HO is a closed finite system, the results are
surprisingly similar to the open AG and jellium models shown
in Fig. 1. In the regime where the electron density is slowly
varying, i.e., where s and q are relatively small, the oscillations
reproduced by the ETF are too small in amplitude, but they
are well reproduced by the AG-GE in Eq. (31). On the other
hand, across the surface, the ETF more closely follows the
exact KED, for this finite system also.

The study in Fig. 2 is of a specific highly filled HO system
such that the electron density is sufficiently slowly varying.
However, to truly realize the limit of slowly varying electron
density in this system requires taking the curvature parameter

w → 0. Hence, in Fig. 3(a), we have selected one arbitrary spa-
tial point in the system, r0 = 0.2, and show the behavior of both
GEs as w → 0. This study confirms the foregoing conclusions:
the AG-GE in Eq. (31) shows a strongly convergent trend,
whereas the ETF appear consistently inaccurate as w → 0.

As an aside on the topic of the KE in the HO model, we
remark that the KE and electron densities of the harmonic
oscillator in arbitrary dimensions d have been thoroughly in-
vestigated by Brack and van Zyl [31]. In their paper, they show
that the TF KED, i.e., τTF[n], locally is a good approximant to
the exact kinetic energy density for any value of d, but they do
not discuss in detail the nature of the gradient corrections to
the TF. Moreover, for d = 2, they verify that τTF[n] gives the
exact total energy when integrated. It has been proven that TF
densities are good approximations in the large particle-number
limit N → ∞ [32], and this fact has been demonstrated
explicitly for the isotropic harmonic oscillator [33].

C. The Bohr atom

Another radially symmetric finite system of general interest
is particles confined in a hydrogenlike potential, a model
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FIG. 2. (Color online) The ETF GE and the AG-GE in Eq. (31) compared to the exact KED for the (a), (b) isotropic harmonic oscillator
and (c), (d) Bohr atom. Both systems show the same characteristics as were observed in Fig. 1. The AG-GE accurately describes the oscillations
where the density is slowly varying, i.e., s and q are small [shown in (a) and (c)], whereas ETF fails to do so. However, across the edge [shown
in (b) and (d)], the error in ETF GE is generally smaller than for the AG-GE.

system previously referred to as the Bohr atom [34]. The
potential is

vHL
s (r) = − Z

|r| , (34)

where Z is the atomic number. For any positive Z, this system
has infinitely many bound states with eigenvalues

εη = −Z2

2

1

η2
, (35)

(a) (b)

FIG. 3. (Color online) Convergence of the ETF GE and the AG-GE in Eq. (31) in an arbitrarily chosen single point for the (a) isotropic HO
and (b) Bohr atom. (a) The isotropic HO at r0 = 0.2 for the curvature parameter w → 0, i.e., as the system fills up with more particles. Even
at moderate values of w, the AG-GE reproduces the exact KED with great accuracy, whereas the ETF GE does not. (b) The Bohr atom at the
arbitrarily chosen point r0 = 0.5 as the number of filled shells Nshell increases. Similar to (a), the AG-GE accurately reproduces the KED in the
limit of large Nshell, but the ETF GE does not.
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where η = 1,2, . . . is the principal quantum number and there
is an η2-fold degeneracy in quantum numbers l and m. We
take the system to be filled with particles up to η = Nshell,
which means that it contains N = 2

∑Nshell
η=1 η2 = (1/3)Nshell

(Nshell + 1)(2Nshell + 1) particles (including the spin degree
of freedom). Note that the Z parameter just becomes a scaling
factor in all expressions. Hence, the Bohr atom is effectively
a one-parameter model. There is therefore no need to enforce
Z = N (i.e., the choice that would correspond to a neutral atom
for interacting particles), and we can instead take Z = N2

shell to
simplify the expressions without loss of generality. This makes
the single parameter in this model Nshell. Appendix A1 give
further details on this model, including the expression for τ .

Figures 2(c) and 2(d) shows a Bohr atom filled up to the
30th shell. In Fig. 2(c), the region where the electron density
varies the least is pictured, i.e., where s and q are of smallest
magnitude at an intermediate distance from the center. In
Fig. 2(d), a region across the electronic surface of the atom
is shown. The Bohr atom shares the same general behavior
as the other models considered so far. In the region where
the electron density is slowly varying (i.e., where s and q are
relatively small), the oscillatory behavior is well described by
the AG-GE in Eq. (31), whereas the ETF give oscillations
with too small amplitude. Across the surface, we see how the
ETF again follows the exact KED much more closely than the
AG-GE. We also provide in Fig. 3 the behavior for the Bohr
atom of the two GEs for one arbitrarily chosen spatial point in
the system, i.e., r0 = 0.5, as N is increased. This test further
corroborates the conclusion of the convergence of the AG-GE
in the limit of slowly varying density.

D. Mathieu gas

We now turn to a model system that, in contrast to
the previous model systems, can model a weakly perturbed
uniform electron gas. This model system is called the Mathieu
gas (MG), and it has been investigated in detail in Ref. [35].
The potential is taken to be periodic in the z dimension,

vMG
s (r) = λ(1 − cos(pz)), (36)

where λ is the amplitude and p is the wave vector assigned to
the oscillation. We introduce the scaled parameters

λ̄ = λ

μ
, p̄ = p

2kF
, and z̄ = kFz, (37)

where kF = √
2μ is the Fermi wave vector of the uniform

electron gas, taken in the semiclassical limit as independent
of position. Depending on the choice of λ̄ and p̄, the chemical
potential μ will be above or below the maximums of vs, i.e.,
the MG can be made to represent either a perturbed uniform
electron gas or a system with an infinite number of classically
forbidden regions. For further details on the properties relevant
to this work, see Appendix B.

This model system has a two-dimensional parameter space
set by the unitless numbers λ̄ and p̄. When λ̄ → 0, we approach
the free-electron gas, and when λ̄ → ∞, the occupied energy
levels in the z direction reach those of an Hermite gas (HG);
see Sec. IV E. The parameter space is shown in Fig. 4. Any
sequence of MG systems that approaches the origin of this
plot (

√
2λ̄p̄2 → 0 and p̄ → 0) represents a possible limit of

FIG. 4. (Color online) The parameter space of the Mathieu gas.
The shaded area is defined by values of the chemical potential μ that
belong to one of the possible energy bands of the energy spectrum in
the z dimension. The light area is defined by values of the chemical
potential μ in the FE continuum in x and y between the bands.
Yellow lines correspond to values of the chemical potential situated
precisely on the band edges of the energy spectrum in the z dimension.
The straight lines in the parameter space correspond to different
paths along which one can approach the limit of slowly varying
electron density in the MG. The black line splits the parameter space
into two distinct regions. The blue dashed line indicates a path to
the limit of slowly varying density for which λ̄ < 1/2, and the red
dashed line indicates a path to the limit of slowly varying density for
which λ̄ > 1/2.

slowly varying density. There are infinitely many sequences of
this kind. A path with λ̄ > 1/2 means the chemical potential
stays below the maximum of the potential, and the system will
have classically forbidden regions repeated periodically along
the z axis. A path with λ̄ < 1/2 means the chemical potential
stays above the maximums of the potential, and the system
approaches a slowly varying limit along a path that resembles
a perturbed uniform electron gas. The path with exactly the
border value λ̄ = 1/2 represents systems where the chemical
potential exactly tangents the maximums of the potential. This
path is indicated by a solid line of Fig. 4 and splits the entire
parameter space into two distinct regions, which we will refer
to as the HG regime (values of λ̄ > 1/2) and the free-electron
(FE) regime (values of λ̄ < 1/2).

Our numerical investigation focuses on three different MG
systems. The first MG system has λ̄ = 0.1 and p̄ = 0.02. This
MG is in the FE regime of the parameter space, i.e., the system
has no classical turning points. In Figs. 5(a) and 5(b), we show
the KED of this system compared to the ETF GE and the
AG-GE as a function of the scaled coordinate z̄. As should be
expected for a system which essentially is a straightforward
realization of a weakly perturbed uniform electron gas, the ETF
GE describes the KED well. On the other hand, the AG-GE
clearly fails to reproduce the KED and appears shifted down
even in the region near z̄ = 0, i.e., the region near the potential
minimum where the values of s and q are the smallest.

Next we consider an MG with λ̄ = 0.5 and p̄ = 0.015, i.e.,
μ is precisely on the intersecting line between the HG and the
FE regime. In this system, μ precisely tangents the maximums
of the cosine potential. The result is shown in Figs. 5(c)
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(a)

(c)

(e) (f)

(d)

(b)

FIG. 5. (Color online) The ETF GE and the AG-GE in Eq. (31) compared to the exact KED for three different MG systems as a function
of scaled spatial coordinate z̄. (a), (b) The MG with λ̄ = 0.1, p̄ = 0.02, which has no forbidden regions and thus is FE-like. The ETF GE
accurately describes the KED, whereas the AG-GE fails to do so. (c), (d) The MG with λ̄ = 0.5, p̄ = 0.015. In this MG, the chemical
potential tangents the top of the potential. The ETF GE describes the system fairly well, but there appears to be a minor discrepancy in the
amplitude of the oscillations. The AG-GE gives a description that is severely downshifted as compared to the exact KED. (e), (f) The MG with
λ̄ = 0.9, p̄ = 0.02, where the chemical potential is far below the maximum values of the cosine potential, i.e., a system with an infinite number
of classically forbidden regions. Both the ETF GE and AG-GE have oscillations that are similar to the exact KED. However, the oscillations in
ETF appear to be of too small amplitude, whereas the AG-GE is shifted down relative to the exact KED.

and 5(d). In Fig. 5(c), oscillations have started to form
because surfacelike behavior starts to manifest even before
there are strictly classically forbidden regions—it is sufficient
with regions where the potential maximums are close to the
chemical potential. The ETF GE captures these oscillations
but there is a visible discrepancy in the amplitude of the
oscillations prevalent throughout the system. The AG-GE also
displays the oscillations, but with a downwards shift compared
to the exact KED. Figure 5(d) shows the surfacelike region
of this MG. By periodicity, these regions repeat throughout
the entire system. Similar to the other model systems studied

above, the ETF appear to better reproduce the behavior in
this region.

We finally consider the MG with an amplitude λ̄ = 0.9 and
p̄ = 0.02. Here, μ is far below the maximums of the cosine
potential. The exact KED is compared to the ETF GE and
the AG-GE in Figs. 5(e) and 5(f). The general features are
similar to the λ̄ = 0.5 case, but more clear here. Both of the
GEs display oscillations similar to those in the exact KED.
The ETF GE appears to underestimate the amplitude, whereas
the AG-GE is shifted down. In absolute numbers, the incorrect
offset of the AG-GE increases along the sequence of systems
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(a) (b)

(c) (d)

FIG. 6. (Color online) Convergence of the ETF GE and the AG-GE in Eq. (31) in one single arbitrarily chosen spatial point for MG systems
(z̄ = 0.01) with (a)–(c) different parameters and (d) in the HG for z̄ = 0. (a) The convergence as the scaled wave vector p̄ approaches zero
for a MG with λ̄ = 0.1. In this MG, there are no classical turning points and the ETF GE appears to reproduce the exact KED well, whereas
the AG-GE generally fails. (b) A MG with λ̄ = 0.5 for which the chemical potential tangents the top of the potential. (c) A MG with λ̄ = 0.9
where the chemical potential is far below the maximum values of the cosine potential, i.e., a system with an infinite number of classical turning
points. Both the ETF GE and the AG-GE have oscillations that are similar to the exact KED in (b) and (c). However, the oscillations in ETF are
of too small amplitude, whereas the AG-GE appears to be shifted down. (d) The HG in the limit of a curvature parameter w → 0. The general
behavior in the MG with large λ̄ in (c) and the HG in (d) are very similar.

with increasing amplitude λ̄, shown in Figs. 5(a), 5(c), and 5(e).
However, relative to the size of the oscillations that appear in
the systems, the offset becomes smaller.

We now move on to compare the convergence between
the ETF GE and the AG-GE for one single arbitrary spatial
point of the MG. For the three different MG systems with the
rescaled amplitudes λ̄ = 0.1, λ̄ = 0.5, and λ̄ = 0.9, we will
study the behavior in the arbitrarily chosen spatial point at
scaled coordinate z̄ = 0.01. We let the scaled wave vector p̄

approach zero, which takes us in a limit of a slowly varying
density, s,q → 0. The result is shown in Fig. 6. In Fig. 6(a),
the MG with λ̄ = 0.1 is shown. As p̄ → 0, the ETF GE moves
closer to the exact KED, whereas the AG-GE consistently is too
low. Figure 6(b) shows the convergence when λ̄ = 0.5. Now,
the KED curve has visible oscillations. Then, as we approach
the high-amplitude limit with λ̄ = 0.9, we see in Fig. 6(c)
how the oscillations become sharper. Figures 6(b) and 6(c)
confirm the same conclusions as were found in Fig. 5: neither
the AG-GE nor the ETF appear to describe the limit of slowly
varying density in MG model systems with large values of
λ̄ well. The ETF reproduces the oscillations with too small
amplitude, and Eq. (31) is generally shifted down with respect
to the exact KED.

E. Hermite gas

Since, in the previous section, we identified an issue
with describing the KED of the MG in the large amplitude
regime i.e., λ̄ > 1/2, we will now study a model system that
represents the extreme case of λ̄ → ∞. This limit is an EG
with a harmonic oscillator potential, i.e., the Hermite gas (HG)
discussed in Refs. [35] and [36]. The potential is

vHG
s (z) = ω2

2
z2, (38)

where ω is the angular frequency of the oscillation and z is the
distance from the equilibrium. The normalized eigenfunctions
in the z direction are proportional to Hermite polynomials. The
scaled parameters in this case are

w = ω

μ
, N (μ) =

⌊
1

w
− 1

2

⌋
, z̄ = kFz, (39)

where kF = √
2μ, μ is the chemical potential, and N (μ) is

the number of occupied orbitals in the z direction that is
directly linked to the curvature parameter w which sets the
curvature, and thus the width, of the potential parabola. Hence,
the HG is effectively a one-parameter model. See Ref. [36] for
additional properties of the HG. Further details regarding the
HG relevant to this work can be found in Appendix C. The
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(a) (b)

FIG. 7. (Color online) The HG filled up to the 30th energy level in the z-dimension energy spectra. (a) The exact KED for this system
compared to the ETF GE and the AG-GE in Eq. (31) as a function of the scaled coordinate z̄. The ETF GE underestimates the amplitude of the
exact oscillation, whereas the AG-GE has a relative offset compared to the amplitude. (b) The surface region of the same system, where the
vertical line is the classical turning point. The AG-GE has larger errors than the ETF GE in this surface region.

limit of slowly varying density is reached for w → 0, which
opens the harmonic potential to infinite width, while keeping
the chemical potential constant.

We note briefly that the HG system expressions can be
rescaled to give a different, but equivalent, view. The curvature
w can be taken as fixed and the single parameter can be taken
as μ. The limit of slowly varying density is then realized in
a fixed energy spectra of the HG, with the levels filling up
as μ → ∞.

We now study a HG filled with electrons up to the 30th
energy level in the z direction. We are interested first in
the classically allowed region. Figure 7(a) shows the exact
KED for this system far away from the classical turning
points compared to the ETF GE and the AG-GE in Eq. (31)
as functions of the scaled coordinate z̄. Similar to our
observations for the large λ̄ region of the MG model, we find
that the ETF GE consistently underestimates the amplitude
of the oscillations of the KED. On the other hand, Eq. (31)
reproduces the amplitude well, but is shifted down compared
to the exact KED. The surface region of this system is shown
in Fig. 7(b). The ETF GE and the AG-GE both closely follow
the exact KED in this region, but Eq. (31) deviates more than
ETF near the classical turning point. In Fig. 6(d), convergence
at the chosen point z̄ = 0 is shown. The tendency of the ETF
GE to underestimate the amplitude of the oscillation and the
relative offset of the AG-GE is seen here as well.

F. Comparison with other AG-based functionals

As was previously mentioned, the linear potential model
system has been studied in several works. An early notable
effort by Baltin [25,26] investigated the limits s → 0 and
s → ∞, respectively, after obtaining the KED essentially by
eliminating the potential and its gradient from the calculated
first-order density matrix. Vitos et al. [23] performed a similar
inversion but isolated a Laplacian term. We note that the
functionals by Constantin and Ruzsinszky [24] are constructed
to explicitly reproduce the ETF GE in s for the limit of a slowly
varying density. They suggest that their A1/6 functional will
generally reproduce the surface data most accurately. These
inversions are not, however, unique. They will all reproduce the
exact KED specifically in the AG system, but will generally be

different in other systems. The present work shows, however,
that in the limit of slowly varying densities, the AG is
locally exactly described by only one unique second-order GE.
Figures 8(a) and 8(b) show the exact KED of a jellium surface
for which rs = 1, together with the AG-GE of Eq. (31) and the
functionals proposed by Baltin and by Vitos et al. and the A1/6

functional of Constantin and Ruzsinszky, respectively, for both
the far inner region and across the surface region. The figure
shows Eq. (14) of Vitos et al., as Eq. (16) in their work behaves
nonanalytically due to repeated singularities stemming from
the zeros in the second-order derivative of the density. It is
seen in Fig. 8(a) that the precise limit of the slowly varying
density of only the jellium surface is accurately reproduced by
Eq. (31), which means that none of the functionals reproduce
the same GE in the limit of slowly varying electron density.

G. Total kinetic energies

Having discussed the performance of Eq. (31) as a semilocal
approximation of the positive KED for edge systems, we now
consider integrated values, i.e., total energies. The AG-GE is,
by construction, only valid in the limit of a slowly varying
density. We stress again that our aim in this work has been
to investigate the exact behavior in this limit, not to develop
an approximation that can be applied throughout a complete
system with a surface region. An approximate expression that
targets the whole system would clearly need to handle evanes-
cent regions differently as compared to how the approximation
was derived in the limit of a slowly varying density. For this
reason, integrated values using Eq. (31) are expected to be
outperformed by the ETF-GE because of the larger deviation
from the exact KED we consistently see across the surface
regions. The values of the integrated KEs are shown in Table I.
The AG and jellium surface are completely open systems,
infinite in size, and have therefore been omitted. In Table II, a
comparison of the relative errors in the integrated KE values for
the model systems is presented. To obtain numerical results, we
used F = 1/2 and l = 1, but the relative error is independent of
these values. Similarly, for the HG, we take the value μ= 1/2
so that kF = 1. Finally, for the MG, we take μ= 1/2 so that
kF = 1. As is revealed in the tables, the ETF yields generally
better values when used over the entire system.
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FIG. 8. (Color online) Exact KED for a jellium surface (rs = 1) compared to the KEDs of other AG-based functionals (Baltin [25,26],
Vitos et al. [23], and the A1/6 functional of Constantin and Ruzsinszky [24]). (a) The limit of a slowly varying density. The expression by Baltin
lacks a term proportional to the Laplacian and has oscillations of much less amplitude than the other functionals. The functional by Vitos et al.
and the A1/6 both somewhat underestimate the amplitude of the oscillations, whereas the AG-GE of Eq. (31) reproduces the amplitude correctly.
(b) The surface region of the same system. The KED is well described by the functionals by Vitos et al. and Constantin and Ruzsinszky. The
AG-GE and the expression by Baltin both significantly deviate from the exact KED in this region.

V. DISCUSSION

In this work, we have considered the influence of quantum
oscillations due to electronic edges in the KED in the limit
of slowly varying electron density. This has been achieved
using the AG model system, which is a useful approximation
of an inhomogeneous system of many electrons with a well-
defined surface region [18]. Quantum oscillations in the KE
and electron densities have previously been discussed [16,37]
and they are known to not be captured by the ETF GE. On the
other hand, the AG-GE in Eq. (31) is a gradient expansion that
includes quantum gradient corrections from a linear surface.
It is shown to describe the oscillations in the regime of slowly
varying density in the jellium surface model and also in regions
of slowly varying density in finite systems, i.e., the isotropic
HO and the Bohr atom.

In surface regions, we observe from our numerical results
that the ETF GE is generally more accurate than the AG-GE.
This may seem surprising, given that the AG-GE is derived
from a system that contains such a surface. The AG-GE and
ETF GE are derived in very different ways, with the ETF GE

TABLE I. Comparison of integrated total KE values for the model
systems discussed in this paper. For the closed systems (HO and the
Bohr atom), values are given in hartree. For the HG, values are given
in hartree per unit area. For the MG, the values are given in hartree
per unit area and per period. The AG and jellium surface give infinite
total energies. For the parameters chosen for the MG, the absolute
difference between ETF and AG-GE is smaller than can be seen in
the significant digits shown here. See Table II for the relative error.

Model system Exact refinement ETF AG-GE

Iso. HO 7.380×103 7.382×103 7.371×103

Bohr atom 2.430×107 2.428×107 2.408×107

MGλ̄=0.1 6.1857×10−1 6.1857×10−1 6.1857×10−1

MGλ̄=0.5 3.6024×10−1 3.6022×10−1 3.6022×10−1

MGλ̄=0.9 1.9276×10−1 1.9277×10−1 1.9263×10−1

HG 2.4112 2.4112 2.4108

based on a perturbed uniform electron gas, and the AG-GE
as the extreme limit away from the surface. Hence, both GEs
are far outside their formal domains of validity in the surface
region. It appears that an exact description of the limit of
the oscillatory behavior of the KED far away from a surface
is different from correctly describing the physics across the
surface. We have no further explanation as to why exactly the
ETF GE appear to work better in this region. Furthermore,
the AG-GE does not appear to represent the KED well in the
limit of slowly varying density of the MG and HG model
systems. In the low-amplitude regime (i.e., λ̄ < 1/2) of the
MG, this is perfectly expected, since there is no classically
forbidden region in the system, i.e., the system has no surface.
For this case, the ETF GE is within its domain of validity
throughout the system without any quantum oscillations. One
may at a first think that the KED of the high-amplitude
MG, and indeed the HG, should be well represented by the
AG-GE, since these systems have surface regions. What is
seen, however, is that none of the expansions reproduce well
the KED in these systems.

The failure of both of the GEs for the MG and HG systems
may be the result of system dependence of the quantum
corrections in spite of the apparent generality of the AG-GE
for other systems with surfaces. However, our results lead us to
speculate that the behavior may rather be a consequence of the

TABLE II. Comparison of relative errors in integrated total KE
values for the model systems discussed in this paper.

Model system ETF AG-GE

AG −7.2271×10−6 2.0192×10−5

Jellium (rs = 2) −3.7361×10−4 −3.1099×10−3

Iso. HO 1.9907×10−4 −1.2840×10−3

Bohr atom −8.3199 × 10−4 −9.1661 × 10−3

MGλ̄=0.1 −1.1313×10−6 −1.1322×10−6

MGλ̄=0.5 −5.1908×10−5 −6.0318×10−5

MGλ̄=0.9 5.0042×10−5 −6.7016×10−4

HG −1.8925×10−5 −2.9987×10−4
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very strong anisotropy between the dimensions in the MG and
HG systems. The energy levels in the AG are infinitely dense
in all three dimensions. The two finite systems considered (the
HO and the Bohr atom) are spherically symmetric and thus
give a finite number of energy levels that are equally dense in
all dimensions. However, the MG with large λ̄ and the HG both
have infinitely dense levels only in the x and y dimensions,
whereas for the z dimension there is a discrete spectrum (HO)
or a band structure (MG) where the bands get thinner as the
potential amplitude λ̄ increases. Our hypothesis thus means
that the MG and HG systems may display a mix of both of
the GEs. The ETF describes the changes in the KED as the
chemical potential moves between two discrete energy levels
in the z dimension, since such a change only adds plane-wave
states in the x and y dimensions. On the other hand, as the
chemical potential moves past the eigenvalues of states in the
z dimension, the change in the KED is supposedly described
well by the AG-GE. This would explain why the true behavior
of the KED in these systems appears to share features of both
GEs. However, if this interpretation is true, then the AG-GE
may be of very broad general validity in describing quantum
oscillations in systems with surface regions, as long as the
systems do not have unreasonably anisotropic dimensions.

Development of kinetic energy functional Ts[n]

It is a long-term goal of functional development to construct
viable approximations of the exchange-correlation and kinetic
energy in DFT. Prior work on quantum corrections, as well as
the present one, suggest that the electron density and KED in a
classically allowed region where the electron density is slowly
varying depend on the influence of nonlocal information, in
the sense that the quantum oscillations are determined by
the behavior of vs(r) outside the immediate neighborhood
of the point r . Surfaces and/or classical turning points are
examples of such signatures in the topological landscape
of the single-particle potential that influences the classically
allowed region. The local energetics of the system in this region

FIG. 9. (Color online) Contour plot that shows s2 vs q over all
values of r for the Bohr atoms filled up to and including the third
shell. As the shell variable Nshell is increased, the number of loops
increases and the curve approaches the origin, which demonstrates
how the limit of slowly varying density is reached in this system
within an intermediate region of r values.

FIG. 10. (Color online) Contour plot of the scaled gradient s2 vs
the scaled Laplacian q in the limit of slowly varying density for the
case of a jellium surface (rs = 1) as z → −∞ and a Mathieu gas
(λ̄ = 0.1) as p̄ → 0.

thus appears to differ between dissimilar systems and cannot
uniquely be described in terms of a straightforward extension
of TF theory solely by adding more terms in the local expansion
(as is sometimes suggested, see, e.g., Ref. [38]).

One may at this point ask if a successful general semilocal
approximation to τ valid for all limits of slowly varying
electron density is even possible. Is it possible for such a
semilocal approximation to differentiate between a situation
where the ETF GE applies vs when the AG-GE applies, based
only on the semilocal information available in n(r), s, and q?
To investigate this question, we look at the path in a contour
plot of s2 and q as we take the limit of slowly varying density
in a few different model systems.

Two such contour plots are shown in Figs. 9 and 10. In
Fig. 9, the behavior of the Bohr atom is shown to illustrate
the complexity of how the limit of slowly varying density
is achieved in these model systems. However, to address the
question of the information available from s and q alone,
we show in Fig. 10 both the jellium surface model and a
low-amplitude MG overlaid into the same figure. We know
that the limit of slowly varying density of the jellium surface
model is accurately described by the AG-GE, whereas the
ETF GE describes this particular low-amplitude MG very
well. As is seen in the figure, the two systems approach the
limit of slowly varying density very differently. However,
there are points where the curves intersect and the local
value of the two expansions are not the same in these points.
This suggests that there cannot exist a simple semilocal
approximation of F (s,q) that gets both types of limits right.
This appears to be a problematic conclusion in the development
of approximative expressions. Nevertheless, it is possible that
the precise difference between the AG-GE and the ETF GE this
far into the limit of slowly varying electron density turns out to
be energetically less relevant than other features of the KED.

VI. SUMMARY AND CONCLUSIONS

We have studied the AG in the limit far from the surface
where the electron density is slowly varying. The presence of
a surface region in the system (i.e., where the density decays
to zero) requires quantum corrections compared to the usual
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ETF GE. We have derived an expression for a GE incorporating
such quantum corrections from the AG, i.e., the AG-GE, and
find it to describe systems of both finite and infinite size with
surface regions well. However, neither ETF nor the AG-GE
appear to apply directly to the two model systems considered
where the energy-level spacing is very anisotropic between
different dimensions. Furthermore, while the present work has
exclusively discussed the kinetic energy density τ , we now
make a brief speculative remark on the possible relation of our
findings to a different topic, i.e., the exchange energy density.
The gradient coefficient in the GE for the exchange energy has
been the subject of some debate, with Kleinman and Lee [39]
arriving at the presently accepted value of 10/81 for a partially
integrated GE that avoids a Laplacian term. The physics in
the exchange term should be expected to be fundamentally
different from the KE due to, e.g., the contributions from
Coulomb interaction and Pauli repulsion. However, the present
findings for the KED still highlight as a question whether it is
possible that more than one relevant local gradient expansion
could also exist for exchange. However, the situation for a local
GE of the exchange energy density is much less clear than for
the KED. Two of us have, in previous works, found that even
for the MG in the limit of a weakly perturbed uniform electron
gas, no such local GE appear to exist [35,40].
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APPENDIX A: SYSTEMS WITH RADIAL SYMMETRY

Consider N noninteracting fermions in the spheri-
cally symmetric potential vs(r). The separable solutions to
Ĥsφν = ενφν are

φν = φnlm(r,θ,φ) = Rnl(r)Ylm(θ,φ), (A1)

where each Rnl is a radial distribution function and Ylm are
spherical harmonics. We wish to calculate the positive kinetic
energy density

τ (r,θ,φ) =
∑
nlm

|∇φnlm|2. (A2)

To this end, we calculate the gradient ∇φnlm using the product
rule

∇φnlm = ∇RnlYlm + Rnlr∇Ylm, (A3)

where � lm = r∇Ylm is the vector spherical harmonics along
the φ direction. The � lm obey Unsöld’s theorem [41], i.e.,

l∑
m=−l

|� lm|2 = 1

4π
(2l + 1)(l + 1)l, (A4)

which mirrors the fact that spatial densities must be radially
symmetric. In the same way, the Ylm’s obey the well-known
addition theorem, i.e.,

l∑
m=−l

|Ylm|2 = 1

4π
(2l + 1). (A5)

Hence, we are left with the expression for the radial KED:

τRadial(r) = 1

4π

N∑
n=1

n−1∑
l=0

(2l + 1)

×
{[

∂

∂r
Rnl(r)

]2

+ l(l + 1)

[
Rnl(r)

r

]2 }
. (A6)

KED of the Bohr atom

Consider noninteracting electrons that are bound by a
potential of a Bohr atom, i.e.,

vHL
s (r) = − Z

|r| , (A7)

where Z is the atomic number. The system consists of a finite
number of N electrons and the KS orbitals are the familiar
functions

φηlm(r,θ,φ) = Rηl(r)Ylm(θ,φ), (A8)

where the Rηl’s are proportional to Laguerre polynomials
and the Ylm’s are the normalized spherical harmonics. The
eigenvalues are

εη = −Z2

2

1

η2
. (A9)

We take the system to be filled with particles up to principal
quantum number η = Nshell, which means that it contains
N = 2

∑Nshell
η=1 η2 = (1/3)Nshell(Nshell + 1)(2Nshell + 1) parti-

cles (including the spin degree of freedom). Furthermore, as
explained in the main text, the atomic number Z scales the
system, so we set Z = N2

shell to simplify the problem. Using
Eq. (A6), the positive KED τ becomes

τHL(r) = 1

4π

Nshell∑
η=1

η−1∑
l=0

(2l + 1)

(
2Z

η

)3 (η − l − 1)!

2η[(η + l)!]

×
({

∂

∂r

[
e
− Zr

η

(
2Zr

η

)l

L2l+1
η−l−1

(
2Zr

η

)]}2

+ l(l + 1)

[
1

r
e
− Zr

η

(
2Zr

η

)l

L2l+1
η−l−1

(
2Zr

η

)]2)
.

(A10)

APPENDIX B: PROPERTIES OF THE MATHIEU GAS

Given a potential which is constant in two spatial directions
and varies along the third, e.g., z, according to

vMG
s (z) = λ(1 − cos(pz)), (B1)

where λ is the amplitude and p is the wave vector of the
oscillation, the solutions to the corresponding eigenvalue
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problem are of the form

ϕMG
η (z) = 1

L3

[
ceη

(
z,−1

2

λ̄

p̄2

)
+ iseη

(
z,−1

2

λ̄

p̄2

)]

= 1

L3
eiηp̄z̄

∑
k∈Z

c
η

2ke
i2kp̄z̄, (B2)

where ηp̄kFL3 = 2πn3 (n3 ∈ Z), and L3 is the size of the
system, measured in units of z. Here, the functions ceη and seη

are the real even and odd Mathieu functions, respectively. We
have introduced the scaled parameters

λ̄ = λ

μ
, p̄ = p

2kF
, z̄ = kFz, (B3)

where kF = √
2μ is the Fermi wave vector of the uniform

electron gas. The c
η

2k are found from the relation

(2k + η)2c
η

2k − λ̄

2p̄

(
c
η

2k−2 + c
η

2k+2

) = a

(
η,

λ̄

2p̄2

)
c
η

2k, (B4)

and they are normalized according to∑
k∈Z

∣∣cη

2k

∣∣2 = 1. (B5)

The eigenvalue associated with the ϕη are

εη

μ
= λ̄ + p̄2a

(
η,

λ̄

2p̄2

)
. (B6)

Using relation (21), the positive kinetic energy density
becomes

τMG(z)

τu

= 5

2
p̄

∫ ηm

0
dη

{
1

2
(1 − p̄2aη − λ̄)2

× [
ce2

η(p̄z̄,q̄) + se2
η(p̄z̄,q̄)

] + p̄2(1 − p̄2aη − λ̄)

× [
ce′2

η (p̄z̄,q̄) + se′2
η (p̄z̄,q̄)

]}
, (B7)

where τu = k5
F/(10π2) and aη are the eigenvalues of Eq. (B6),

ηm is the energy of the highest occupied state, and
q̄ = −(1/2)λ̄/p̄2.

APPENDIX C: KED OF THE HERMITE GAS

For the HG, the potential varies along the z axis as an HO,
i.e.,

vHG
s (z) = ω2

2
z2. (C1)

The eigenfunctions are the familiar

ϕHG
η (z) =

(√
ω

π

1

2ηη!

)1/2

Hη(
√

ωz)e− ωz2

2 , (C2)

with corresponding eigenvalues

εη = ω
(
η + 1

2

)
, (C3)

for η = 0,1, . . . . We introduce the scaled parameters,

w = ω

μ
, N (μ) =

⌊
1

w
− 1

2

⌋
, z̄ = kFz, (C4)

where kF = √
2μ, and N (μ) is the number of occupied z

orbitals, respectively. Division with the KED of the free-
electron gas yields the dimensionless quantity

τHG(z̄)

τu

= 1

4π

√
w

2π

N(μ)∑
η=0

1

2ηη!

[
1 − w

(
η + 1

2

)]

×
{

1

2
H 2

η

(√
w

2
z̄

)
e− 1

2 wz̄2

[
1 − w

(
η + 1

2

)]

+
{

d

dz̄

[
Hη

(√
w

2
z̄

)
e− ωz̄2

4

]}2 }
. (C5)

Note that the curvature parameter w describing the wideness
of the potential parabola now directly determines the number
of occupied orbitals in the z direction.
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