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Stability of multinode Dirac semimetals against strong long-range correlations
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We study the stability of Dirac semimetals with N nodes in three spatial dimensions against strong 1/r

long-range Coulomb interactions. We particularly study the cases of N = 4 and N = 16, where the N = 4 Dirac
semimetal is described by the staggered fermions and the N = 16 Dirac semimetal is described by the doubled
lattice fermions. We take into account the 1/r long-range Coulomb interactions between the bulk electrons.
Based on the U(1) lattice gauge theory, we analyze the system from the strong coupling limit. It is shown that
the Dirac semimetals survive in the strong coupling limit when the out-of-plane Fermi velocity anisotropy of the
Dirac cones is weak, whereas they change to Mott insulators when the anisotropy is strong. A possible global
phase diagram of correlated multinode Dirac semimetals is presented. Implications of our result to the stability
of Weyl semimetals and three-dimensional topological insulators are discussed.
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I. INTRODUCTION

Dirac semimetals in three spatial dimensions have gapless
three-dimensional (3D) linear dispersions, i.e., 3D Dirac
cones, in the bulk. They can be regarded as a 3D analog of
graphene. After the theoretical predictions had been made
[1–3], the Dirac semimetals such as Na3Bi and Cd3As2

were experimentally discovered recently [4–8]. These Dirac
semimetals possess two Dirac nodes which are protected
by crystalline symmetry. One of the important meanings of
the realization of Dirac semimetals is on the point that they
can lead to various topological phases, since they lie next
to various topological phases in the phase diagrams. In 3D
topological insulators, the bulk energy gap closing is required
to make the system turn into normal band insulators [9–11].
At these transition points, Dirac semimetals can be realized.
Experimentally, such a continuous transition is observed in
the solid-solution system TlBi(S1−xSex)2 [12]. Further, Weyl
semimetals can be realized when time-reversal or inversion
symmetry breaking occurs in Dirac semimetals [13–17].
Regardless of intensive searches, Weyl semimetal phases have
not been experimentally observed so far. Hence, it is expected
that recent experimental realization of the Dirac semimetals
also gives rise to the realization of Weyl semimetal phases.

Stability of topological phases against electron correlation
is one of the attractive themes. It has been shown that strong
short-range interactions break 2D topological insulator phases
[18–28], 3D topological insulator phases [29,30], and Weyl
semimetal phases [30–32]. On the other hand, recent studies
have suggested that these topological phases can survive strong
1/r long-range Coulomb interactions [33–35]. What about
in Dirac semimetals? In Dirac semimetals, the effects of
long-range interactions are expected to be important, since the
screening effect is considered to be weak due to the vanishing
density of states near the Fermi level.

Effects of long-range Coulomb interactions in graphene
have been studied widely [36]. Monolayer graphene on a
substrate with sufficiently small dielectric constant has been
predicted theoretically to be insulating (i.e., Dirac fermions
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become massive) due to strong 1/r Coulomb interactions
[37–46]. However, as the number of layers is increased, it
has been found that the semimetal phase survives strong 1/r

Coulomb interactions [37,38,40,41,47]. As a powerful method
which enables us to treat strong 1/r Coulomb interactions
properly, the U(1) lattice gauge theory has been applied to
discuss the semimetal-insulator transition in graphene [41–46].
In this theory, the value of the chiral condensate is used
as the order parameter for the transition. It should be noted
that the value obtained in an analytical calculation, the strong
coupling expansion of the lattice gauge theory [43], and the
value obtained in a numerical calculation [41,42] are in good
agreement in the strong coupling region.

In this paper, we focus on the effects of strong 1/r long-
range Coulomb interactions in multinode Dirac semimetals.
Due to the vanishing density of states near the Fermi level, the
screening effect is considered to be weak in Dirac fermion
systems. Then it is expected that long-range interactions
become important. Based on the U(1) lattice gauge theory,
we introduce two effective lattice models and take into
account 1/r long-range Coulomb interactions between the
bulk electrons. Further we take into account the out-of-plane
Fermi velocity anisotropy of the Dirac cones, since it is not
small in experimentally observed Dirac semimetals [4,5]. With
the use of the strong coupling expansion of the lattice gauge
theories and the mean-field approximation, we analyze the
system from the strong coupling limit. The value of the chiral
condensate, which is equivalent to the dynamically generated
mass of Dirac fermions, serves as the order parameter for the
semimetal-insulator transition.

II. MODEL

Let us start from the effective continuum model for
correlated N -node Dirac semimetals. The model we consider
is the (3 + 1)D four-component massless Dirac fermions of N

flavors interacting with the electromagnetic [U(1) gauge] field.
Compared to the usual quantum electrodynamics, our model is
characterized by the Fermi velocity of Dirac fermions vF which
is much smaller than the speed of light c. Due to this nature, the
interactions via the vector potential (spatial components of the
electromagnetic field) is suppressed by the factor vF/c ∼ 10−3.
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Then the Euclidean action of the system can be written as

S =
∫

d4x

N∑
f =1

ψ̄f (x)[γ0(∂0 + iA0) + ξjγj ∂j ]ψf (x)

+ β

2

∫
d4x(∂iA0)2, (1)

where ψf (x) is a four-component spinor with f denoting
the flavor of Dirac fermions, γμ (μ = 0,1,2,3) are the 4 × 4
gamma matrices which satisfy the Clifford algebra {γμ,γν} =
2δμν , and A0 is the scalar potential. Here we have introduced
parameters for the Fermi velocity anisotropy ξj with ξ1 =
ξ2 = 1 and ξ3 = vF⊥/vF‖. Note that we have rescaled variables
as vF‖x0 → x0, A0/vF‖ → A0 in Eq. (1). A parameter β,
which represents the effective strength of the 1/r Coulomb
interactions, is given by

β = vF‖ε
e2

= vF‖ε
4πcα

, (2)

where e is the electric charge, ε is the dielectric constant of
the system, and α(� 1/137) is the fine-structure constant.
The smallness of the Fermi velocity makes the Coulomb
interactions effectively strong. β = 0 corresponds to the strong
coupling limit. In this study we consider the case of β � 1,
i.e., the case of small dielectric constant.

In the following, we introduce two specific effective lattice
models for N -node Dirac semimetals with N = 4 and N =
16. We take advantage of the so-called “fermion doubling
problem” which occurs when considering Dirac fermions on
lattices. It is known that the fermion doublers can emerge in the
cases where lattice fermions possess chiral symmetry, which
has been proved by the Nielsen-Ninomiya theorem [48].

The N = 16 Dirac semimetal.— First we consider a
(3 + 1)D N = 16 Dirac semimetal interacting via 1/r

Coulomb interactions on a lattice. As the noninteracting action,
we adopt the doubled lattice fermions (in the chiral limit)
which reproduce the four-component massless Dirac fermions
of sixteen flavors in the continuum limit [49]. The Euclidean
action of the system is given by S(N=16) = S

(N=16)
F + SG. The

fermionic part S
(N=16)
F is written as

S
(N=16)
F = 1

2

∑
n

[ψ̄nγ0Un,0ψn+0̂ − ψ̄n+0̂γ0U
†
n,0ψn]

+ 1

2

∑
n,j

ξj [ψ̄nγjψn+ĵ − ψ̄n+ĵ γjψn], (3)

where ψn is a four-component spinor. This action is understood
as the naively discretized action of the four-component Dirac
fermions of single flavor. The U(1) gauge part SG is written as

SG = β
∑

n

∑
μ>ν

[
1 − 1

2
(Un,μUn+μ̂,νU

†
n+ν̂,μU †

n,ν + H.c.)

]
.

(4)

Here μ̂ (μ = 0,1,2,3) denotes the unit vector along the
μ direction, and n = (n0,n1,n2,n3) is a lattice site on a four-
dimensional isotropic lattice. The U(1) gauge link variables
Un,μ are given by Un,0 = eiA0(n) ≡ eiθn (−π � θn � π ) and
Un,j = 1.

The N = 4 Dirac semimetal.— Next we consider a (3 + 1)D
N = 4 Dirac semimetal interacting via 1/r Coulomb in-
teractions on a lattice. As the noninteracting action, we
adopt the staggered fermions (in the chiral limit) which
reproduce the four-component massless Dirac fermions of four
flavors in the continuum limit [50,51]. The Euclidean action of
the system is given by S(N=4) = S

(N=4)
F + SG. The fermionic

part S
(N=4)
F is written as

S
(N=4)
F = 1

2

∑
n

ηn,0[χ̄nUn,0χn+0̂ − χ̄n+0̂U
†
n,0χn]

+ 1

2

∑
n,j

ξjηn,j [χ̄nχn+ĵ − χ̄n+ĵ χn], (5)

where χn is a single-component spinor, ηn,0 = 1, ηn,1 =
(−1)n0 , ηn,2 = (−1)n0+n1 , and ηn,3 = (−1)n0+n1+n2 . The gauge
part SG is the same as Eq. (4). The action (5) can be understood
as an action obtained by doing the spin diagonalization (the
Kawamoto-Smit transformation) [52] to ψn in the action (3)
as

ψn = Tnξn, ψ̄n = ξ̄nT
†
n (6)

with Tn = (γ0)n0 (γ1)n1 (γ2)n2 (γ3)n3 and ξn ≡ [χ1
n ,χ2

n ,χ3
n ,χ4

n ]T ,
and then by retaining one of the four components in ξn.
However, to be precise, the action of staggered fermions
after recovering the spinor structure does not coincide with
that of Wilson fermions. This is known as the taste breaking
of staggered fermions. The (2 + 1)D staggered fermions
have been used as an effective lattice model for graphene
[41–46], since they reproduce the four-component massless
Dirac fermions of two flavors in the continuum limit [53].

III. STRONG COUPLING EXPANSION

Let us derive the effective actions in the strong coupling
limit (β = 0). We can derive the effective action Seff by
integrating out the U(1) gauge link variable U0,n in the partition
function Z up to the arbitrary order in β as follows:

Z(N=16) =
∫

D[ψ,ψ̄,U0]e−S(N=16) =
∫

D[ψ,ψ̄]e−S
(N=16)
eff .

(7)

Here we have written down the case of the N = 16 Dirac
semimetal explicitly. The same method can be applied to the
case of N = 4 by replacing ψ to χ . In the strong coupling
limit, SG vanishes and thus Un,0 is contained only in S

(N=16)
F

and S
(N=4)
F . Then the integral

∫
DU0e

−S
(N=16)
F is performed as

∏
n

∫ π

−π

dθn

2π
exp

{
1

2
[ψ̄nγ0Un,0ψn+0̂ − ψ̄n+0̂γ0U

†
n,0ψn]

}

=
∏
n

[
1 − 1

4
ψ̄nγ0ψn+0̂ψ̄n+0̂γ0ψn + · · ·

]

≈ e
1
4

∑
n tr[γ T

0 ψ̄nψnγ
T
0 ψ̄n+0̂ψn+0̂], (8)

where we have used the fact that the Grassmann variables ψα

and ψ̄α satisfy ψ2
α = ψ̄2

α = 0 with α denoting the component
of the spinors. In the second line, we have neglected the terms
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which consist of 8,12, and 16 different Grassmann variables.
As is mentioned in Sec. V, their contributions appear in higher
orders of the order parameter and do not affect the discussion
on the semimetal-insulator transition in this model. Further in
the last line, we have rewritten the exponent as

ψ̄n,α(γ0)αβψn+0̂,βψ̄n+0̂,γ (γ0)γ δψn,δ

= −tr
[
γ T

0 ψ̄nψnγ
T
0 ψ̄n+0̂ψn+0̂

]
. (9)

The subscripts α and β denote the component of the spinors,
and the superscript T denotes the transpose of a matrix. In
the general cases of SU(Nc) gauge field (Nc � 1), we can
perform the integration with respect to the gauge link variables
U in Eq. (7) by using the SU(Nc) group integral formulas:∫

dU1 = 1,
∫

dUUab = 0,
∫

dUUabU
†
cd = δadδbc/Nc, and so

on. Finally we obtain the effective action of the N = 16 Dirac
semimetal in the strong coupling limit given by

S
(N=16)
eff = 1

2

∑
n,j

ξj [ψ̄nγjψn+ĵ − ψ̄n+ĵ γjψn]

− 1

4

∑
n

tr
[
γ T

0 ψ̄nψnγ
T
0 ψ̄n+0̂ψn+0̂

]
. (10)

From this equation, we see that the electron-electron interac-
tions in the strong coupling limit is spatially on-site interaction
but not in the (imaginary) time.

In the N = 4 case, χ is a single-component Grassmann
variable. Therefore, due to the nature of Grassmann variables
χ2 = χ̄2 = 0, the approximation done in the second line of
Eq. (8) is not needed. Finally we obtain the effective action of
the N = 4 Dirac semimetal in the strong coupling limit as

S
(N=4)
eff = 1

2

∑
n,j

ξjηn,j [χ̄nχn+ĵ − χ̄n+ĵ χn]

− 1

4

∑
n

χ̄nχnχ̄n+0̂χn+0̂. (11)

Note that this action is exact in the strong coupling limit,
although we call it “effective action.”

IV. FREE ENERGIES IN THE STRONG COUPLING LIMIT

Let us derive the free energies in the strong coupling limit at
zero temperature. To this end, we apply the extended Hubbard-
Stratonovich transformation to the interaction terms. First let
us consider the case of the N = 16 Dirac semimetal. In this
case, introducing the two complex matrix auxiliary fields Q

and Q′, eκtrAB with κ > 0 and A,B being matrices is deformed
as follows [33]:

eκtrAB = (const.)
∫

D[Q,Q′] exp
{−κ

[
QαβQ′

αβ

−AαβQβα − BT
αβQ′

βα

]}
. (12)

This integral is approximated by the saddle point values Qαβ =
〈BT 〉βα and Q′

αβ = 〈A〉βα . In the case of the N = 4 Dirac
semimetal, we can apply Eq. (12) with the subscripts removed,
since there is no spinor structure in the action.

Free energy of the N = 16 Dirac semimetal.— We
set (κ,A,B) = (1/4,γ T

0 ψ̄nψn,γ
T
0 ψ̄n+0̂ψn+0̂) to decouple the

interaction term (the second term) of Eq. (10) to fermion
bilinear form. In this process, we need to assume the form
of the 4 × 4 matrix 〈ψ̄nψn〉 by the mean-field approximation.
Recall that the purpose of this study is to discuss the semimetal-
insulator transition induced by strong long-range Coulomb
interactions. Here let us consider the possible gapped phases
in our model. In the action (3) with Un,0 = 1, only the identity
matrix 1 and the matrix γ5 can open energy gaps. This is
because, in the presence of these matrices, the single-particle
Hamiltonian of the system is given by

H(k) = ξjαj sin kj + m4α4 + m5α5 (13)

with αj = γ0γj , α4 = γ0 and α5 = iγ0γ5, which
leads to the gapped energy spectrum E(k) =
±

√∑
j (ξj sin kj )2 + m2

4 + m2
5. Note that the action (3)

possesses chiral symmetry, namely, the action is invariant
under the chiral transformation ψn → eiαγ5ψn. In such
cases, as in the case of graphene [40–46], the identity
matrix (i.e., the mass term) serves as the order parameter
for the semimetal-insulator transition. Therefore we can
set 〈ψ̄nψn〉 = −σ1. If the value of σ is nonzero in the
strong coupling limit, then the value of σ corresponds to
σ =

√
m2

4 + m2
5 in the energy spectrum E(k). Namely, we

obtain the gapped spectrum. We can regard the value of σ

as the dynamically generated mass of Dirac fermions. In the
lattice QCD, σ is known as the “chiral condensate.”

Then the terms QαβQ′
αβ , AαβQβα and BT

αβQ′
βα in the

integrand of Eq. (12) are calculated explicitly as

QαβQ′
αβ = 〈BT 〉βα〈A〉βα = tr[〈B〉〈A〉]

= σ 2tr
[(

γ T
0

)2] = 4σ 2, (14)

AαβQβα = Aαβ〈BT 〉αβ = tr[A〈B〉]
= −σ tr

[
γ T

0 ψ̄nψnγ
T
0

] = −σψ̄nψn, (15)

BT
αβQ′

βα = BT
αβ〈A〉αβ = tr[B〈A〉]

= −σ tr
[
γ T

0 ψ̄nψnγ
T
0

] = −σψ̄nψn, (16)

where we have used 〈ψ̄n+0̂ψn+0̂〉 = 〈ψ̄n−0̂ψn−0̂〉 = 〈ψ̄nψn〉 =
−σ1 and (γ T

0 )2 = (γ 2
0 )T = 1. Combining these three equa-

tions, we obtain the interaction term decoupled to fermion
bilinear:

1

4

∑
n

tr
[
γ T

0 ψ̄nψnγ
T
0 ψ̄n+0̂ψn+0̂

] ∼ −1

4

∑
n

[4σ 2 + 2σψ̄nψn].

(17)

We are now in a position to derive the free energy at zero
temperature in the strong coupling limit. Combining Eqs. (10)
and (17), the effective action expressed by the auxiliary field
σ is given by

S
(N=16)
eff (σ ) = V

T
σ 2 +

π∑
k=−π

ψ̄kM(k; σ )ψk (18)

with M(k; σ ) = ∑
j ξj iγj sin kj + σ/2. As mentioned above,

the value σ/2 can be regarded as the dynamically generated
mass. Here V and T are the volume and temperature of
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the system, respectively, and we have done the Fourier
transform from n = (n0,n) to k = (k0,k). From this action,
we derive the free energy at zero temperature per unit
space-time volume F (N=16)(σ ), according to the usual formula
F (N=16) = − T

V
ln Z(N=16). The partition function Z(N=16) is

calculated by the Grassmann integral formula Z(N=16) =∫
D[ψ,ψ̄]e−ψ̄Mψ = detM. The determinant of M is calcu-

lated by the formula detM =
√

det(MM†). Finally, after a
straightforward calculation, we arrive at the free energy in the
strong coupling limit:

F (N=16)(σ ) = σ 2 − 2
∫ π

−π

d3k

(2π )3
ln

[ ∑
j

ξ 2
j sin2 kj + 1

4
σ 2

]
.

(19)

The ground state is determined by the stationary condition
dF (N=16)(σ )/dσ = 0.

Free energy of the N = 4 Dirac semimetal.— We set
(κ,A,B) = (1/4,χ̄nχn,χ̄n+0̂χn+0̂) to decouple the interaction
term (the second term) of Eq. (11) to fermion bilinear form.
Like in the N = 16 case above, we need to assume the value
of 〈χ̄nχn〉 by the mean-field approximation. Note that the
lattice action (5) also possesses chiral symmetry, namely, the
action is invariant under the chiral transformation defined by
χn → eiαε(n)χn, χ̄n → eiαε(n)χ̄n with ε(n) = (−1)n0+n1+n2+n3 .
Hence we can set 〈χ̄nχn〉 = −σ . Then with this approximation,
the interaction term is decoupled to fermion bilinear as

1

4

∑
n

χ̄nχnχ̄n+0̂χn+0̂ ∼ −1

4

∑
n

[σ 2 + 2σ χ̄nχn]. (20)

It is convenient to perform the Fourier transform only to the
spatial directions, due to the factor ηn,j in the noninteracting
part of the effective action (11). By introducing the eight-
component spinor �n0,k as

�n0,k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

χn0 (k1,k2,k3)
χn0 (k1 − π,k2,k3)
χn0 (k1,k2 − π,k3)
χn0 (k1,k2,k3 − π )

χn0 (k1,k2 − π,k3 − π )
χn0 (k1 − π,k2,k3 − π )
χn0 (k1 − π,k2 − π,k3)

χn0 (k1 − π,k2 − π,k3 − π )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (21)

and substituting Eq. (20) into Eq. (11), the effective action is
rewritten as

S
(N=4)
eff (σ ) = 1

4

V

T
σ 2 +

∑
n0

π∑
k=0

�̄T
n0,kV(n0,k; σ )�n0,k. (22)

Note that the sum over the wave vector kj is from 0 to π .
The procedure to derive the free energy at zero temperature
per unit space-time volume F (N=4)(σ ) is the same as the case
of N = 16. The calculation of detV is a little complicated but
can be done analytically to be detV = [

∑
j ξ 2

j sin2 kj + 1
4σ 2]4.

Finally we arrive at the free energy in the strong coupling limit:

F (N=4)(σ ) = 1

4
σ 2 − 1

2

∫ π

−π

d3k

(2π )3
ln

[∑
j

ξ 2
j sin2 kj + 1

4
σ 2

]
,

(23)

where we have used the fact that the integrand is an even
function. The ground state is determined by the stationary
condition dF (N=4)(σ )/dσ = 0.

V. NUMERICAL RESULTS

First we consider the result for the N = 4 case. The Fermi
velocity anisotropy vF⊥/vF‖(=ξ3) dependence of the chiral
condensate σ in the strong coupling limit is shown in Fig. 1.
It was found that the the value of σ becomes zero when
the ratio vF⊥/vF‖ is larger than about 0.24, whereas the
value of σ is nonzero when vF⊥/vF‖ is smaller than about
0.24. As mentioned in Sec. IV, the value of σ , the chiral
condensate, is regarded as the dynamically generated mass of
Dirac fermions, and can be used as the order parameter for
the semimetal-insulator transition. Hence the result indicates
that whether the system is insulating or semimetallic (i.e.,
gapped or gapless) in the strong coupling limit depends on
the value of the Fermi velocity anisotropy. Namely, the N = 4
Dirac semimetals survive in the strong coupling limit when the
anisotropy is weak, whereas they change to Mott insulators
when the anisotropy is strong. We see from Fig. 1 that the
transition is of the second order.

The result, that the system becomes gapped in the strong
coupling limit when the Fermi velocity anisotropy is strong
(i.e., the ratio vF⊥/vF‖ is small), could be understood by
the fact that in general quantum effects become stronger
in lower dimensions. In the case of monolayer graphene,
theoretical studies have shown that the graphene suspended
in vacuum (or the graphene on a substrate with sufficiently
small dielectric constant) becomes gapped due to strong 1/r

Coulomb interactions [37–46]. In the the N = 4 case, the
interaction term in the effective action [Eq. (11)] describes
spatially onsite interactions. This means that our model with
vF⊥ = 0 in the strong coupling limit is equivalent to a model
for a stacked 2D system. To be more precise, our model
with vF⊥ = 0 in the strong coupling limit corresponds to
an effective lattice model for monolayer graphene in the
strong coupling limit, since the (2 + 1)D staggered fermions

Gapped Gapless

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  0.1  0.2  0.3  0.4

FIG. 1. (Color online) Fermi velocity anisotropy vF⊥/vF‖ depen-
dence of the chiral condensate σ for the N = 4 case in the strong
coupling limit (β = 0). When vF⊥/vF‖ = 0, the system corresponds
to monolayer graphene in the strong coupling limit.
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reproduce the four-component Dirac fermions of two flavors
in the continuum limit [53]. Actually, the value of σ when
vF⊥ = 0 in our model, σ � 0.24, is equal to the value obtained
by a lattice strong coupling expansion study of monolayer
graphene [43].

Here we would like to mention the correctness of our value
of σ in the strong coupling limit. As for monolayer graphene
which is described by (2 + 1)D staggered fermions, the value
of σ obtained in a lattice strong coupling expansion study with
the mean-field approximation [43] is in qualitative agreement
(within about 10% of difference) with the values obtained in
Monte Carlo studies [41,42]. Hence it is expected that our value
of σ for the N = 4 case is quantitatively correct, because the
mean-field approximation gives more proper results in higher
dimensions in general.

Finally we consider the result for the N = 16 case. We
see easily that F (N=16)(σ ) = 4F (N=4)(σ ). Namely, within our
calculation the values of σ for both the N = 4 and the
N = 16 cases, which serve as the order parameter for the
semimetal-insulator transition, are equivalent in the strong
coupling limit. Here note that we have neglected the interaction
terms which consist of 8,12, and 16 fermion fields when
deriving the effective action of the N = 16 Dirac semimetal
[Eq. (10)]. If the 8 fermion field term, S8 ∼ ψ̄ψψ̄ψψ̄ψψ̄ψ ,
is taken into account, then we obtain S8 ∼ σ 4 + σ 3ψ̄ψ by a
rough mean-field approximation. The 12 and 16 fermion field
terms can be approximated in the same way. When σ = 0 at the
stationary point of the free energy F (N=16)(σ ), i.e., when the
Fermi velocity anisotropy is weak, the effects of these higher
order terms in the free energy can be neglected near σ = 0.
In other words, the result that the N = 16 Dirac semimetal
survives in the strong coupling limit will not be changed even
though such terms are taken into account.

However, when σ �= 0 at the stationary point ofF (N=16)(σ ),
i.e., when the anisotropy is strong, such terms will modify the
value of σ at the stationary point. Here note that the interaction
term in the effective action [Eq. (10)] describes spatially onsite
interactions. Namely, our model with vF⊥ = 0 in the strong
coupling limit corresponds to a model of stacked (2 + 1)D
four-component Dirac fermions of eight flavors in the strong
coupling limit. It has been reported in the (2 + 1)D cases
that the value of σ becomes smaller as the number of Dirac
fermion flavor N2D becomes larger and the semimetal phase
with large N2D survives in the strong coupling limit [40,41,47].
Therefore, when we take into account those higher order terms
in the free energy, it is expected that the value of σ is suppressed
in the case of small vF⊥/vF‖. To verify this prediction, further
study is needed.

VI. DISCUSSIONS

First, we note the relations between our models and the
experimentally observed Dirac semimetals. In the observed
Dirac semimetals, there exist large out-of-plane Fermi ve-
locity anisotropy such that vF⊥/vF‖ ≈ 0.25 in Na3Bi [4] and
vF⊥/vF‖ ∼ 0.1 in Cd3As2 [5]. Therefore we expect that our
result gives some perception to realistic materials. On the other
hand, as for the number of the Dirac nodes N , N is two in both
Na3Bi and Cd3As2. From the results in the (2 + 1)D case, i.e.,
multilayer graphene [41], it is expected that the dynamically

 0

Mott Insulator

 0  0.1  0.2  0.3  0.4

Dirac Semimetal

FIG. 2. (Color online) A possible global phase diagram of a
correlated N -node Dirac semimetal with N = 4. The β = 0 (β = ∞)
line represents the strong coupling limit (noninteracting limit). The
Mott insulator phase is defined as the phase with nonzero value of σ .

generated mass gap σ in the strong coupling limit becomes
larger with decreasing N . However, it is difficult to show such
a behavior explicitly in our study. Hence the stability of the
N = 2 case is a remaining problem.

Second, let us discuss a possible global phase diagram of
correlated N -node Dirac semimetals with N = 4 and N = 16.
We see from Fig. 1 that as the ratio vF⊥/vF‖ is increased
from zero, the value of σ becomes smaller and eventually
reaches zero. The chiral condensate σ can be used as the order
parameter for the semimetal-insulator transition. Namely, the
system is gapless in the strong coupling limit (β = 0) when
the ratio vF⊥/vF‖ is large, whereas the system is gapped when
the ratio vF⊥/vF‖ is small. We call the gapped phase with
nonzero σ the Mott insulator. On the other hand, the system
is obviously a Dirac semimetal in the noninteracting limit
(β = ∞). Therefore, there must exist the critical strength of
the 1/r Coulomb interactions βc, below which the system
becomes semimetallic, i.e., the value of σ becomes zero. This
critical value βc will become smaller as the value of σ in the
strong coupling limit becomes smaller. A schematic global
phase diagram for the N = 4 case based on this analysis is
shown in Fig. 2. In the case of N = 16, as mentioned in the
previous section, it is expected that the value of σ in the strong
coupling limit is suppressed when the ratio vF⊥/vF‖ is small.
Namely, it is expected that the region of the Mott insulator
phase shrinks in the global phase diagram.

In this study, we have focused only on the energy gap
generation by strong 1/r Coulomb interactions, and thus the
detailed information of the spinors in the low-energy effective
model [Eq. (1)] is not required. However, if we construct a
low-energy effective model of some realistic material, then
the spinors should be associated with the lattice structure and
the spins of electrons, as in the case of graphene. Hence it is
expected that some order such as a magnetic or charge order
is realized in the Mott insulator phase in Fig. 2, although it
is difficult in this study to identify what the order is. This
can be understood from the fact that the two possible orders
in the Hamiltonian (13), the α4 order where no symmetry
is broken and the α5 order where both time-reversal and
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inversion symmetries are broken, are energetically degenerate.
The result of this paper is not changed even though the α5 order
is considered as the gapped order instead of the α4 order.

Third, let us discuss the implications of our results to
the stability of Weyl semimetals. Weyl semimetals have
gapless 3D linear dispersions in the bulk, and the effective
Hamiltonians around the Weyl nodes are described by not
the Dirac Hamiltonian but the Weyl Hamiltonian HWeyl(k) =∑3

i=1 vi · kσi where σi are the Pauli matrices. At least either
time-reversal or inversion symmetry breaking is required to
realize a Weyl semimetal phase [13–17,54–57]. Each Weyl
node possesses chirality defined by c = sgn[v1 · (v2 × v3)] =
±1. The number of the Weyl nodes with chirality +1 and that of
chirality −1 must be equal in time-reversal symmetry broken
Weyl semimetals. For example, the Weyl semimetal phase
predicted by a first-principles calculation in pyrochlore iridates
possesses 24 Weyl nodes [54]. Here let us consider a simplified
low-energy effective model for a Weyl semimetal with 2N

nodes. The Hamiltonian of such a system can be written as

H eff
Weyl =

∑
k

N∑
f =1

vF‖{ψ†
f +(k)[ξikiσi]ψf +(k)

+ψ
†
f −(k)[−ξikiσi]ψf −(k)}

=
∑

k

N∑
f =1

ψ
†
f (k)vF‖

[
ξikiσi 0

0 −ξikiσi

]
ψf (k), (24)

where ψf = [ψf +,ψf −]T with ψf ± being a two-component
spinor, the subscript ± denotes the chirality of each Weyl
node, and we have introduced the Fermi velocity anisotropy
ξi . By introducing the 4 × 4 gamma matrices γμ in the chiral
representation, we obtain the low-energy effective action (1).
Namely, this indicates that in a rough approximation, the
low-energy effective model of a 2N -node Weyl semimetal
is equivalent to that of a N -node Dirac semimetal. Weyl
semimetals have a topological property such that the energy
gap opens only if the Weyl nodes with opposite chirality meet
each other, since a single Weyl fermion cannot be massive by
itself. Due to this property, Weyl semimetals are expected to
be more stable against strong 1/r Coulomb interactions than
Dirac semimetals. However, it is not easy to treat strong 1/r

Coulomb interactions properly in multinode Weyl semimetals.
In this study, it was found that the N -node Dirac semimetals
with N = 4 and N = 16 survive in the strong coupling limit.
Hence, it could be said that the NW-node Weyl semimetals
with NW = 8 and NW = 32 also survive in the strong coupling
limit when the Fermi velocity anisotropy is weak. As for the
cases of NW < 8, a recent study has reported that a Weyl
semimetal with NW = 2 survives in this limit [35].

Finally, let us discuss the implications of our results to
the stability of 3D topological insulators. It is known that 3D
topological insulators can be regarded as 3D Dirac fermion

systems. In the noninteracting cases, the bulk energy gap closes
when the phase transition from the topological insulator phase
to the normal band insulator phase occurs. In other words,
there exist Dirac point(s) in the bulk when the system is on the
phase boundary between the topological insulator phase and
the normal band insulator phase. For example, the Fu-Kane-
Mele model has three Dirac points [9,10], and the effective
model for Bi2Se3 has one Dirac point [11] on their phase
boundaries. What about in the interacting cases? The phase
transitions from the topological insulator phase to the other
phases can occur without the gap closing, when accompanying
the breaking of symmetry of the system such as time-
reversal symmetry or inversion symmetry. However, the gap
closing is required when no symmetry is broken, as in the
noninteracting cases. From this viewpoint, our result, that
the Dirac semimetals survive in the strong coupling limit,
suggests that 3D topological insulator phases can be stable
against strong 1/r Coulomb interactions. Actually, a recent
study has reported that a 3D topological insulator phase of
Bi2Se3-type survives in the strong coupling limit when the
spin-orbit interaction of the system is strong [33].

VII. SUMMARY

In summary, based on the U(1) lattice gauge theory, we
have studied the stability of N -node Dirac semimetals in
three spatial dimensions with N = 4 and N = 16 against
strong 1/r long-range Coulomb interactions. It was shown
that the Dirac semimetals survive in the strong coupling limit
when the Fermi velocity anisotropy is weak, whereas they
change to Mott insulators when the anisotropy is strong.
This means that the three-dimensionality of the Dirac cones
plays an important role in the stability. The value of the
dynamically generated mass gap at least for the N = 4 case
is expected to be quantitatively correct. A possible global
phase diagram of correlated Dirac semimetals was presented.
Dirac semimetals can lead to various topological phases by
the change of parameters or symmetry breakings. Our result,
that Dirac semimetals are stable against strong 1/r long-range
Coulomb interactions, implies the stability of other topological
phases. Namely, it is suggested that Weyl semimetals, which
correspond to Dirac semimetals in a rough approximation,
can survive in the strong coupling limit. The existence of 3D
topological insulator phases in the strong coupling limit is also
suggested.
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